Vés enrere Petites criatures marines revelen l'origen de les neurones

Petites criatures marines revelen l'origen de les neurones

L’estudi liderat pel Centre de Regulació Genòmica, amb la participació de la Unitat de Proteòmica (UPF-CRG), ha descobert que els components moleculars de les nostres cèl·lules cerebrals van començar a formar-se fa uns 800 milions d'anys en els ancestres d'animals que avui habiten discretament en zones marines poc profundes  

20.09.2023

Imatge inicial

Un estudi publicat a la revista Cell recull nous indicis sobre l'evolució de les neurones, centrant-se en els placozous, uns animals marins d’aproximadament un mil·límetre de grandària. Un equip científic del Centre de Regulació Genòmica (CRG) on hi han participat investigadors de la Unitat de Proteòmica, una esforç conjunt de la UPF i el CRG, demostra que les cèl·lules secretores especialitzades presents en aquestes criatures úniques podrien haver donat lloc a neurones en animals més complexos

Els placozous són animals diminuts que s'alimenten d'algues i microbis viuen a la superfície de roques i altres substrats trobats en mars càlids i poc profunds. Aquestes criatures, amb forma de disc aplanat, es troben entre els animals més simples coneguts, i no tenen parts del cos o òrgans. Es creu que van aparèixer a la Terra fa uns 800 milions d'anys i són un dels cinc principals llinatges dels animals, juntament amb els ctenòfors, les esponges, els cnidaris (corals, anemones de mar i meduses) i els bilaterals (tots els altres animals, inclòs l'ésser humà). 

Els placozous coordinen el seu comportament gràcies a les cèl·lules peptidèrgiques que alliberen petits pèptids que permeten coordinar el moviment o l'alimentació de l'animal. Impulsats per la curiositat sobre l'origen d'aquestes cèl·lules, els autors de l'estudi van utilitzar una sèrie de tècniques moleculars i models computacionals per entendre com van evolucionar els diferents tipus de cèl·lules de placozous i reconstruir quin podria haver estat el seu aspecte i com podrien haver funcionat els nostres ancestres. 

 

Reconstruint tipus cel·lulars antics 

Primer, l'equip va crear un mapa de tots els diferents tipus cel·lulars de placozous, anotant les seves característiques en quatre espècies diferents. Cada tipus cel·lular té un paper especialitzat que prové de l'expressió conjunta de certs gens. Aquests mapes o "atles cel·lulars" van permetre traçar grups o "mòduls" funcionals de gens. Després van crear un mapa de les regions reguladores de l'ADN que controlen l'expressió d'aquests gens. Tot plegat ofereix una visió global sobre el que fa cada cèl·lula i com treballen conjuntament. Finalment, van realitzar comparacions entre espècies per reconstruir com van evolucionar els tipus cel·lulars. 

L'estudi mostra que els nou tipus cel·lulars principals dels placozous semblen estar connectats per cèl·lules "intermèdies" que canvien d'un tipus a un altre. Les cèl·lules creixen i es divideixen, mantenint el delicat equilibri dels tipus cel·lulars necessaris per a què l'animal es mogui i mengi. Això contrasta amb l'existència de llinatges cel·lulars ben separats que trobem en els nostres cossos. També van trobar catorze tipus diferents de cèl·lules peptidèrgiques, que es distingien de les altres en no mostrar ni tipus intermedis ni signes de creixement o divisió. 

 

Les cèl·lules peptidèrgiques comparteixen moltes similituds amb les neurones, un tipus de cèl·lula que es creu que va aparèixer milions d'anys després en l'ancestre comú dels animals bilaterals i cnidaris

 

Sorprenentment, les cèl·lules peptidèrgiques comparteixen moltes similituds amb les neurones, un tipus de cèl·lula que es creu que va aparèixer milions d'anys després en l'ancestre comú dels animals bilaterals i cnidaris. Les anàlisis comparatives entre espècies van revelar que aquestes similituds són úniques dels placozous i no apareixen en d’altres llimatges animals més antics, com ara les esponges o els ctenòfors. 

 

L'evolució de la neurona, pas a pas 

La similitud entre les cèl·lules peptidèrgiques i les neurones és triple. Primer, l'estudi demostra que aquestes cèl·lules dels placozous es diferencien a partir d’una població de cèl·lules epitelials progenitores a través de senyals de desenvolupament que s'assemblen al procés de neurogènesi pel qual altres animals, com ara cnidaris i bilaterals, formen noves neurones. 

En segon lloc, van trobar que les cèl·lules peptidèrgiques tenen molts mòduls de gens necessaris per construir la part d'una neurona que pot enviar un missatge (el complexe pre-sinàptic). No obstant això, aquestes cèl·lules estan lluny de ser una veritable neurona, ja que no tenen els components per a l'extrem receptor d'un missatge neuronal (complexe post-sinàptic) o els components necessaris per conduir senyals elèctrics. 

Finalment, tècniques d'aprenentatge profund van mostrar com les cèl·lules dels placozous es comuniquen entre ells mitjançant unes proteïnes específiques, anomenades GPCRs (receptors acoblats a proteïnes G), que detecten senyals externs i inicien una sèrie de reaccions dins de la cèl·lula. Aquests senyals externs estan mitjançats per neuropèptids, missatgers químics utilitzats per les neurones en diferents processos fisiològics. 

"Ens van sorprendre les similituds", afirma Sebastián R. Najle, primer coautor de l'estudi i investigador postdoctoral al CRG. "Les cèl·lules peptidèrgiques dels placozous tenen moltes similituds amb les cèl·lules neuronals, encara que clarament no ho siguin. És com observar un pas intermedi en l'evolució de les neurones." 

 

La primera neurona 

L'estudi demostra que els components bàsics de la neurona van començar a formar-se fa 800 milions d'anys en animals ancestrals que vivien discretament als mars poc profunds de l'antiga Terra. Des d'una perspectiva evolutiva, és probable que les primeres neurones haguessin començat com una cosa semblant a les cèl·lules secretores peptidèrgiques dels placozous actuals. Aquestes cèl·lules es comunicaven mitjançant neuropèptids, però eventualment van adquirir nous mòduls genètics que els van permetre crear el complexe post-sinàptic, formar axons i dendrites i crear canals iònics que generen senyals elèctrics ràpids. Aquestes innovacions van ser crucials per l’origen de les primeres neurones, aproximadament cent milions d'anys després que els ancestres dels placozous apareguessin per primera vegada a la Terra. 

No obstant això, la història evolutiva completa del sistema nerviós encara s’ha d’explicar del tot. Es creu que la primera neurona moderna va tenir el seu origen en l'ancestre comú dels cnidaris i els bilaterals fa uns 650 milions d'anys. I, tot i així, hi ha cèl·lules semblants a les neurones en ctenòfors, tot i que tenen importants diferències estructurals i no tenen l'expressió de la majoria dels gens trobats en les neurones modernes. La presència d'alguns d'aquests gens neuronals a les cèl·lules dels placozous i la seva absència en ctenòfors planteja noves preguntes sobre la trajectòria evolutiva de les neurones. 

"Els placozous no tenen neurones, però ara hem trobat sorprenents similituds moleculars amb les nostres cèl·lules neuronals. D'altra banda, els ctenòfors sí que tenen xarxes neuronals, amb diferències i similituds clau amb les nostres. Vol dir això que les neurones van aparèixer una sola vegada i després van divergir, o que van evolucionar més d'una vegada, en paral·lel? Són un mosaic, on cada peça té un origen diferent? Aquestes preguntes encara estan obertes", afirma Xavier Grau-Bové, primer coautor de l'estudi i investigador postdoctoral al CRG. 

Els autors de l'estudi creuen que, a mesura que la ciència mundial continuï seqüenciant genomes d'alta qualitat d'espècies diverses, s'estreny el cèrcol sobre l'origen de les neurones i l'evolució d'altres tipus cel·lulars. "Les cèl·lules són les unitats fonamentals de la vida, per la qual cosa comprendre com sorgeixen o canvien amb el temps és essencial per explicar la història evolutiva de la vida. Els placozous, ctenòfors, esponges i altres animals tradicionalment poc estudiats amaguen secrets que tot just estem començant a desxifrar", conclou el professor d'investigació ICREA Arnau Sebé-Pedrós, autor principal de l'estudi i líder de grup júnior al CRG. 

 

L'estudi ha estat liderat pel Laboratori Sebe-Pedrós amb la col·laboració del laboratori de Luis Serrano (CRG), el laboratori Schierwater (Hannover Universtiy) i el laboratori Gruber-Vodicka (Kiel University), i amb el suport de la Unitat de Proteòmica (UPF-CRG) i la Unitat de Microscopia de Llum Avançada del Centre de Regulació Genòmica.

 

Article de referència:

Sebastián R. Najle, SR; Grau-Bové, X, et al.,  ‘Stepwise emergence of the neuronal gene expression program in early animal evolution’; Cell. September 2023. DOI: https://doi.org/10.1016/j.cell.2023.08.027

Multimèdia

Categories:

ODS - Objectius de desenvolupament sostenible:

03. Salut i benestar
Els ODS a la UPF

Contact

Per a més informació

Notícia publicada per:

Oficina de Comunicació