Register here

 

 

The third edition of RECSM Winter Methods School (February 16-18, 2022) is comprised of one course. This online course lasts for three days, with four-hour long lectures per day. 

The course is open to academics (students, professors, individuals employed by colleges and universities, and other institutions of higher education) and non-academics (consultants and other practitioners from the private sector or national and international organizations).

 

Structural Equation Modelling

  • Course fee: 250€.  

Mode of instruction

Online

Payment details

You can pay with a bank transfer or credit/debit card.

​Cancellation Policy

All refund/cancellation requests must be provided via email to [email protected] and received prior to January 10th, 2022. From January 11th cancellation will not be refunded.

Invoices are sent upon demand.

 

Course details: Structural Equation Modelling

  • Instructor Terrence Jorgensen, University of Amsterdam.
  • Mode of teaching: Online 
  • Course fees: 250€
  • Dates: February 16-18
  • 10:00 - 14:00 CET

 

Course Description

Structural equation modeling (SEM) is a very general statistical technique, as it has regression analysis, path analysis, and factor analysis as special cases. It is also possible to combine the advantages of these techniques, which makes SEM one of the most general and most flexible techniques available to researchers. As a result, SEM presently is also one the most widely used techniques in the social and behavioral sciences.

This course will introduce you to the fundamentals of SEM by first translating some familiar methods (t tests and ANOVA, regression and correlation) into mean and covariance structure (MACS) analyses.  Then you will see how path analysis is more general than the general(ized) linear model and better able to facilitate testing hypotheses about mediation. The second day will introduce tactics for evaluating data–model correspondence and introduce measurement models for latent variables.  Day 3 will cover path analysis and moderation involving latent variables—the latter of which requires evaluating measurement invariance—and end with how to handle common nonideal data.

Software

All instruction and example syntax will utilize the latest version of the statistical software environment R, as well as the latest versions of add-on packages lavaan and semTools. Students are encouraged to reproduce analyses using the example data provided, as well as using their own data whenever possible.

Prerequisites

Besides familiarity and some experience with R, students are expected to be familiar with the fundamental statistical concepts (e.g., descriptive and inferential statistics, null-hypothesis significance testing) as well as the general(ized) linear model (GLM) and its special cases: regression, t tests, ANOVA, and correlation. Familiarity with basic psychometrics (classical test theory, reliability, and validity) are helpful, especially for the portion of the course involving latent variables.  Given the frequency with which SEMs are communicated using matrices (even in applied literature), some familiarity with basic matrix algebra is advantageous but not strictly necessary.

Schedule

Day 1

Introduction to lavaan: Mean and Covariance Structures

Exercises: SEM approach to regression, t tests, AN(C)OVA

Path analysis, indirect effects (mediation)

Exercises: Path analysis

Day 2

Confirmatory factor analysis (CFA)

Exercises: CFA

Structural regression with latent variables

Exercises: Full SEM

Day 3

Testing hypotheses implied by a SEM: A trilogy of tests

Exercises: Model comparison

Global and local indices of approximate data–model fit

Exercises: Honest evaluation of model fit

 

References and Recommended Reading

Foundational texts about general(ized) linear modelling and hypothesis testing:

  • Judd, C. M., McClelland, G. H., & Ryan, C. S. (2017). Data analysis: A model comparison approach to regression, ANOVA, and beyond (3rd ed.). New York, NY: Routledge. ISBN-13: 9781138819832
  • Fox, J. (2016). Applied regression analysis and generalized linear models (3rd ed.) Los Angeles, CA: Sage.

 

Introductory and advanced SEM texts:

  • Beaujean, A. A. (2014). Latent variable modeling using R: A step-by-step guide. Routledge.
  • Bollen, K. A. (1989). Structural equations with latent variables. Wiley.
  • Loehlin, J. C., & Beaujean, A. A. (2016). Latent variable models: An introduction to factor, path, and structural equation analysis. Taylor & Francis.
  • Hoyle, R. H. (Ed.). (2012). Handbook of structural equation modeling. Guilford.

Reporting SEM results: