We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Abura'ed A, Bravo A, Chiruzzo L, Saggion H. LaSTUS/TALN+INCO @ CL-SciSumm 2018 - Using Regression and Convolutions for Cross-document Semantic Linking and Summarization of Scholarly Literature. Proceedings of the 3rd Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2018)

Abura'ed A, Bravo A, Chiruzzo L, Saggion H. LaSTUS/TALN+INCO @ CL-SciSumm 2018 - Using Regression and Convolutions for Cross-document Semantic Linking and Summarization of Scholarly Literature. Proceedings of the 3rd Joint Workshop on Bibliometric-enhanced Information Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2018)

In this paper we present several systems developed to participate in the 3rd Computational Linguistics Scientific Document Summarization Shared challenge which addresses the problem of summarizing a scientific paper taking advantage of its citation network (i.e., the papers that cite the given paper). Given a cluster of scientific documents where one is a reference paper (RP) and the remaining documents are papers citing the reference, two tasks are proposed: (i) to identify which sentences in the reference paper are being cited and why they are cited, and (ii) to produce a citation-based summary of the reference paper using the information in the cluster. Our systems are based on both supervised (Convolutional Neural Networks) and unsupervised techiques taking advantage of word embeddings representations and features computed from the linguistic and semantic analysis of the documents.