Publications
2022 (1)Clusella, Pau; Pietras, Bastian; Montbrió, Ernest. Kuramoto model for populations of quadratic integrate-and-fire neurons with chemical and electrical coupling. Chaos 2022; 32(013105). |
2020 (1)Montbrió E, Pazó D. Exact Mean-Field Theory Explains the Dual Role of Electrical Synapses in Collective Synchronization. Physical Review Letters 2020; 125(24): 1-6. |
2019 (2)Pietras, Bastian; Devalle, Federico; Roxin, Alex; Daffertshofer, Andreas; Montbrió, Ernest. Exact firing rate model reveals the differential effects of chemical versus electrical synapses in spiking networks. Physical Review E 2019; 100(042412). |
Pazó, Diego; Montbrió, Ernest; Gallego, Rafael. The Winfree model with heterogeneous phase-response curves: analytical results. Journal of Physics A: Mathematical and Theoretical 2019; 52(15). |
2018 (3)Devalle, Federico; Montbrió, Ernest; Pazó, Diego. Dynamics of a large system of spiking neurons with synaptic delay. Physical Review E 2018; 98(042214). |
Montbrió, Ernest; Pazó, Diego. Kuramoto Model for Excitation-Inhibition-Based Oscillations. Physical Review Letters 2018; 120(244101). |
Schmidt, Helmut; Avitabile, Daniele; Montbrió, Ernest; Roxin, Alex. Network mechanisms underlying the role of oscillations in cognitive tasks. PLoS Computational Biology 2018; 14(9). |
2017 (3)Devalle, Federico; Roxin, Alex; Montbrió, Ernest. Firing rate equations require a spike synchrony mechanism to correctly describe fast oscillations in inhibitory networks. PLoS Computational Biology 2017; 13(12). |
Gallego R, Montbrió E, Pazó D. Synchronization scenarios in the Winfree model of coupled oscillators Physical Review E 2017; 96(042208). |
Esnaola-Acebes JM, Roxin A, Avitabile D, Montbrió E. Synchrony-induced modes of oscillation of a neural field model. Physical Review E 2017; 96( ). |
2016 (1)Pazó, Diego; Montbrió, Ernest. From Quasiperiodic Partial Synchronization to Collective Chaos in Populations of Inhibitory Neurons with Delay. Physical Review Letters 2016; 116(238101). |
2015 (1)Montbrió, E; Pazó, D;Roxin, A. Macroscopic Description for Networks of Spiking Neurons. Physical Review X 2015; 5(021028). |
2014 (1)Pazó, Diego; Montbrió, Ernest. Low-dimensional dynamics of populations of pulse-coupled oscillators. Physical Review X 2014; 4(1). |
2011 (4)Montbrió, Ernest; Pazó, Diego. Collective synchronization in the presence of reactive coupling and shear diversity. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2011; 84(4). |
Roxin, A.; Montbrió, E.. How effective delays shape oscillatory dynamics in neuronal networks. Physica D: Nonlinear Phenomena 2011; 240(3): 323-345. |
Montbrió, E; Pazó, D. Shear diversity prevents collective synchronization. Physical Review Letters 2011; 106(25): 254101-254105. |
Pazó, Diego; Montbrió, Ernest. The Kuramoto model with distributed shear. Europhysics Letters 2011; 95(6). |
2009 (1)Pazó, D.; Montbrió, E.. Existence of hysteresis in the Kuramoto model with bimodal frequency distributions. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2009; 80(4): 046215-046215. |
2006 (2)Montbrió, E.; Pazó, D.; Schmidt, J.. Time delay in the Kuramoto model with bimodal frequency distribution. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2006; 74(5): 1-5. |
Pazo, D.; Montbrió, E.. Universal behavior in populations composed of excitable and self-oscillatory elements. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2006; 73(5): 1-5. |
2005 (1)Bragard, J.; Montbrió, E.; Mendoza, C.; Boccaletti, S.; Blasius, B.. Defect enhanced anomaly in frequency synchronization of asymmetrically coupled spatially extended systems. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2005; 71(2): 1-5. |
2004 (2)Montbrió E. Synchronization in ensembles of nonisochronous oscillators . 2004. |
Montbrió, E.; Kurths, J.; Blasius, B.. Synchronization of two interacting populations of oscillators. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2004; 70(5-2): 1-5. |
2003 (2)Blasius, B.; Montbrió, E.; Kurths, J.. Anomalous phase synchronization in populations of nonidentical oscillators. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics 2003; 67(3-2): 1-5. |
Montbrió, E.; Blasius, B.. Using nonisochronicity to control synchronization in ensembles ofnonidentical oscillators. Chaos 2003; 13(3-2): 291-308. |