No results founds

2024 (1)

Ono M, Izumi Y, Maruyama K, Yasuoka Y, Hiramatsu A, Aramburu J, López-Rodríguez C, Nonoguchi H, Kakizoe Y, Adachi M, Kuwabara T, Mukoyama M. Characterization of gene expression in the kidney of renal tubular cell-specific NFAT5 knockout mice. American Journal of Physiology - Renal Physiology 2024; 326(3): 394-410.

2023 (1)

Tillé L, Cropp D, Charmoy M, Reichenbach P, Andreatta M, Wyss T, Bodley G, Crespo I, Nassiri S, Lourenco J, Leblond MM, Lopez-Rodriguez C, Speiser DE, Coukos G, Irving M, Carmona SJ, Held W, Verdeil G. Activation of the transcription factor NFAT5 in the tumor microenvironment enforces CD8+ T cell exhaustion. Nature Immunology 2023; 24(10): 1645-53.

2021 (3)

Hiramatsu A, Izumi Y, Eguchi K, Matsuo N, Deng Q, Inoue H, Nakayama Y, Nonoguchi H, Aramburu J, López-Rodríguez C, Kakizoe Y, Adachi M, Kuwabara T, Kim-Mitsuyama S, Mukoyama M. Salt-sensitive hypertension of the renal tubular cell-specific NFAT5 (Nuclear Factor of Activated T-Cells 5) knockout mice. Hypertension 2021; 78(5): 1335-46.

Lunazzi G, Buxadé M, Riera-Borrull M, Higuera L, Bonnin S, Huerga Encabo H, Gaggero S, Reyes-Garau D, Company C, Cozzuto L, Ponomarenko J, Aramburu J, López-Rodríguez C. NFAT5 amplifies antipathogen responses by enhancing chromatin accessibility, H3K27 demethylation, and transcription factor recruitment. Journal of Immunology 2021; 206(11): 2652-67.

Muhammad K, Xavier D, Klein-Hessling S, Azeem M, Rauschenberger T, Murti K, Avots A, Goebeler M, Klein M, Bopp T, Sielaff M, Tenzer S, Möckel S, Aramburu J, López-Rodríguez C, Kerstan A, Serfling E. NFAT5 controls the integrity of epidermis. Frontiers in Immunology 2021; 12.

2020 (1)

Huerga Encabo H, Traveset L, Argilaguet J, Angulo A, Nistal-Villán E, Jaiswal R, Escalante CR, Gekas C, Meyerhans A, Aramburu J, López-Rodríguez C. The transcription factor NFAT5 limits infection-induced type I interferon responses. Journal of Experimental Medicine 2020; 217(3).

2019 (2)

Adrover JM, Del Fresno C, Crainiciuc G, Cuartero MI, Casanova-Acebes M, Weiss LA et al. A neutrophil timer coordinates immune defense and vascular protection. Immunity 2019; 50(2): 390-402.

2018 (3)

Buxadé M, Huerga Encabo H, Riera-Borrull M, Quintana-Gallardo L, López-Cotarelo P, Tellechea M, Martínez-Martínez S, Redondo JM, Martín-Caballero J, Flores JM, Bosch E, Rodríguez-Fernández JL, Aramburu J, López-Rodríguez C.. Macrophage-specific MHCII expression is regulated by a remote Ciita enhancer controlled by NFAT5 . Journal of Experimental Medicine 2018; 215(11): 2901-2918.

Essig K, Kronbeck N, Guimaraes JC, Lohs C, Schlundt A, Hoffmann A, Behrens G, Brenner S, Kowalska J, Lopez-Rodriguez C, Jemielity J, Holtmann H, Reiche K, Hackermüller J, Sattler M, Zavolan M, Heissmeyer V. Roquin targets mRNAs in a 3'-UTR-specific manner by different modes of regulation. Nature Communications 2018; 9(1).

Tellechea M, Buxadé M, Tejedor S, Aramburu J, López-Rodríguez C. NFAT5-regulated macrophage polarization supports the proinflammatory function of macrophages and T Lymphocytes. Journal of Immunology 2018; 200(1): 305-315.

2017 (1)

Alberdi M, Iglesias M, Tejedor S, Merino R, López-Rodríguez C, Aramburu J. Context-dependent regulation of Th17-associated genes and IFNy expression by the transcription factor NFAT5. Immunology & Cell Biology 2017; 95(1): 56-67.

2015 (2)

López-Rodríguez C, Aramburu J, Berga-Bolaños R. Transcription factors and target genes of pre-TCR signaling. Cellular and Molecular Life Sciences 2015; 72(12): 2305-2321.

S. Boland B, E. Widjaja C, Banno A, Zhang B, H. Kim S, Stoven S, R. Peterson M, C. Jones M, Irene Su H, E. Crowe S, D. Bui J, B. Ho S, Okugawa Y, Goel A, V. Marietta E, Khosroheidari M, Jepsen K, Aramburu J, López-Rodríguez C, J. Sandborn W, A. Murray J, Harismendy O, John T. Chang. Immunodeficiency and Autoimmune Enterocolopathy Linked to NFAT5 Haploinsufficiency. Journal of Immunology 2015; 194(6).

2014 (2)

Aramburu J, López-Rodríguez C. Nuclear factor of activated T cells. In: MacKay Ian, Rose NR (eds.). Encyclopedia of Medical Immunology: Allergic Diseases. Springer; 2014.

Aramburu J, Ortells MC, Tejedor S, Buxadé M, López-Rodríguez C. Transcriptional regulation of the stress response by mTOR. Science Signaling 2014; 7(332): 1-11.

2013 (1)

Berga-Bolaños, Rosa; Alberdi, Maria; Buxadé, Maria; Aramburu, Jose; López Rodríguez, Cristina. NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proceedings of the National Academy of Sciences of the United States of America 2013; 110(40): 16091-16096.

2012 (2)

Buxadé M, Lunazzi G, Minguillón J, Iborra S, Berga-Bolaños R, Del Val M, Aramburu J, López-Rodríguez C. Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. Journal of Experimental Medicine 2012; 209(2): 379-393.

Ortells MC, Morancho B, Drews-Elger K, Viollet B, Laderoute KR, López-Rodríguez C, Aramburu J. Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Research 2012; 40(10): 4368-4384.

2010 (1)

Berga-Bolaños R, Drews-Elger K, Aramburu J, López-Rodríguez C. NFAT5 Regulates T Lymphocyte Homeostasis and CD24-Dependent T Cell Expansion under Pathologic Hypernatremia. Journal of Immunology 2010; 185(11): 6624-6635.

2009 (3)

Aramburu J, López-Rodríguez C. Brx shines a light on the route from hyperosmolarity to NFAT5 . Science Signaling 2009; 2(65): 1-2.

Drews-Elger K, Ortells MC, Rao A, López-Rodriguez C, Aramburu J. The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress. PLoS ONE 2009; 4(4): 5245-5245.

Estrada-Gelonch, A.; Aramburu, J.; López-Rodríguez, C. Exclusion of NFAT5 from mitotic chromatin resets its nucleo-cytoplasmic distribution in interphase. PLoS ONE 2009; 4(9): 7036-7036.

2008 (1)

Morancho B, Minguillon J, Molkentin JD, Lopez-Rodriguez C, Aramburu J. Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Molecular Biology 2008; 9: 13-13.

2006 (1)

Aramburu J, Drews-Elger K, Estrada-Gelonch A, Minguillon J, Morancho B, Santiago V, Lopez-Rodriguez C. Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochemical Pharmacology 2006; 72(11): 1597-1604.

2005 (1)

Esensten, J. H.; Tsytsykova, A. V.; López-Rodríguez, C.; Ligerio, F. A.; Rao, A.; Goldfeld, A. E. NFAT5 binds to the TNF promoter distinctly from NFATp, c, 3, and 4, and activates TNF transcription during hypertonic stress alone. Nucleic Acids Research 2005; 33(12): 3845-3854.

2004 (1)

López-Rodríguez, C.; Antos, C. L.; Shelton, J.; Richardson, J. A.; Fangming, L.; Novobrantseva T. I.; Bronson, R.T.; Igarashi P.; Rao, A.; Olson, E. N. Loss of NFAT5 results in renal atrophy and lack of tonicity-responsive gene expression. Proceedings of the National Academy of Sciences of the United States of America 2004; 101(8): 2392-2397.

2002 (2)

Jauliac, S., López-Rodríguez, C., Shaw, L. M., Rao, A. and Toker, A. The role of NFAT transcription factors in the regulation of integrin-mediated carcinoma invasion. Nature Cell Biology 2002; 4: 540-544.

Stroud, J. C.; López-Rodríguez, C.; Rao, A.; Chen, L. Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nature Structural Biology 2002; 9: 90-94.

2001 (2)

López-Rodríguez, C.; Aramburu, J.; Jin, L.; Rakeman, A. S.; Michino, M.; Rao, A. Bridging the NFAT and NF-kB Families: NFAT5 Dimerization Regulates Cytokine Gene Transcription in Response to Osmotic Stress. Immunity 2001; 15(1): 47-58.

Macián, F.; López-Rodríguez, C.; Rao, A. Partners in transcription: NFAT and AP-1. Oncogene 2001; 20(19): 2476-2489.

2000 (2)

López-Rodríguez C, Delgado MD, Puig-Kroger A, Nueda A, Munoz E, Leon J, Bernabeu C, Corbi AL. c-Myc inhibits CD11a and CD11c leukocyte integrin promoters. European Journal of Immunology 2000; 30(9): 2465-2471.

Puig-Kroger A, López-Rodríguez C, Relloso M, Sanchez-Elsner T, Nueda A, Munoz E, Bernabeu C, Corbi AL. Polyomavirus enhancer-binding protein 2/core binding factor/acute myeloid leukemia factors contribute to the cell type-specific activity of the CD11a integrin gene promoter. Journal of Biological Chemistry 2000; 275(37): 28507-28512.

1999 (3)

Aramburu, J.; Yaffe, M. B.; López-Rodríguez, C.; Cantley, L.C.; Hogan, P. G.; Rao, A. Affinity-driven peptide selection yields an NFAT inhibitor more selective than cyclosporin A. Science magazine 1999; 285: 2129-2133.

López-Rodríguez C, Aramburu J, Rakeman AS, Rao A. NFAT5 a constitutively nuclear NFAT protein that does not cooperate with fos and jun. Proceedings of the National Academy of Sciences of the United States of America 1999; 96(13): 7214-7219.

López-Rodríguez C, Aramburu, J, Rakeman AS, Copeland NG, Gilbert DJ, Thomas S, Disteche C, Jenkins NA, Rao A. NF-AT5: The NF-AT Family of Transcription Factors Expands in a New Direction. Cold Spring Harbor Symposia on Quantitative Biology 1999; 64: 517-526.

1997 (4)

Corbí, A. L.; López-Rodríguez, C. CD11c integrin gene promoter activity during myeloid differentiation. Leukemia and Lymphoma 1997; 25(5-6): 415-425.

López-Rodríguez, C.; Corbí, A. L. PU.1 negatively regulates the CD11c integrin gene promoter through recognition of the major transcriptional start site. European Journal of Immunology 1997; 27: 1843-1847.

López-Rodríguez, C.; Zubiaur, M.; Sancho, J.; Concha, A.; Corbí, A. L. An Octamer element functions as a regulatory element in the differentiation-responsive CD11c integrin gene promoter. Journal of Immunology 1997; 158(12): 5833-5840.

1996 (2)

Aragonés, J.; López-Rodríguez, C.; Corbí, A. L.; Gómez del Arco, P.; López-Cabrera, M.; O. de Landázuri, M.; Redondo, J. M. Dithiocarbamates trigger differentiation and induction of CD11c gene through AP-1 in the myeloid lineage. Journal of Biological Chemistry 1996; 271: 10924-10931.

López-Rodríguez, C.; Kluin-Nelemans, H. K.; Corbí, A. L. AP-1 regulates the basal and developmentally induced transcription of the CD11c leukocyte integrin gene. Journal of Immunology 1996; 156: 3780-3787.

1995 (4)

López-Rodríguez, C.; Nueda, A.; Rubio, M. A.; Corbí, A. L. Regulation of the expression of the LFA-1 and p150,95 leukocyte integrins: involvement of the CD11a and CD11c gene promoters. Immunobiology 1995; 193(2-4): 315-321.

Nueda, A.; López-Rodríguez, C.; Rubio, M. A.; Sotillos, M.; Postigo, A.; del Pozo, M. A.; Vega, M. A.; Corbí, A.L. Hematopoietic cell type-dependent regulation of leukocyte integrin functional activity: CD11b and CD11c expression inhibits LFA-1-dependent aggregation of differentiated U937 cells. Cellular Immunology 1995; 164(2): 163-169.

Rubio, M. A.; López-Rodríguez, C.; Nueda, A.; Armesilla, A. L.; Aller, P.; Vega, M. A.; Corbí, A. L. Granulocyte/macrophage colony-stimulating factor, phorbol ester, and sodium butirate induce the CD11c integrin gene promoter activity during myeloid cell differentiation. Blood 1995; 86(10): 3715-3724.

1994 (1)

Bellón, T.; López-Rodríguez, C.; Rubio, M. A.; Jochems, G.; Bernabeu, C.; Corbí, A. L. Regulated expression of p150,95 (CD11c/CD18) and VLA-4 (CD49d/CD29) integrins during myeloid cell diferentiation. European Journal of Immunology 1994; 24(1): 41-47.

1993 (1)

López-Rodríguez, C.; Nueda, A.; Grospierre, B.; Sánchez-Madrid, F.; Fisher, A.; Springer, T. A.; Corbí, A. L. Characterization of two new CD18 alleles causing severe Leukocyte Adhesion Deficiency. European Journal of Immunology 1993; 23(11): 2792-2798.