We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Francès, G., Ramírez, M., Lipovetzky, N. and Geffner, H.Purely Declarative Action Representations are Overrated: Classical Planning with Simulators. In Proc. of the 26th Int. Joint Conf. on Artificial Intelligence (IJCAI 2017)

Francès, G., Ramírez, M., Lipovetzky, N. and Geffner, H. Purely Declarative Action Representations are Overrated: Classical Planning with Simulators. In Proc. of the 26th Int. Joint Conf. on Artificial Intelligence (IJCAI 2017)

Classical planning is concerned with problems where a goal needs to be reached from a known initial state by doing actions with deterministic, known effects. Classical planners, however, deal only with classical problems that can be expressed in declarative planning languages such as STRIPS or PDDL. This prevents their use on problems that are not easy to model declaratively or whose dynamics are given via simulations. Simulators do not provide a declarative representation of actions, but simply return successor states. The question we address in this paper is: can a planner that has access to the structure of states and goals only, approach the performance of planners that also have access to the structure of actions expressed in PDDL? To answer this, we develop domain-independent, black box planning algorithms that completely ignore action structure, and show that they match the performance of state-of-the-art classical planners on the standard planning benchmarks. Effective black box algorithms open up new possibilities for modeling and for expressing control knowledge, which we also illustrate.

Additional material: