The second Maria de Maeztu Strategic Research Program (CEX2021-001195-M) of the Department of Information and Communication Technologies (DTIC) takes place between 2023 and 2026. The website for this program is under construction. You can find some details in this news.

The first María de Maeztu Strategic Research Program (MDM-2015-0502) took place between January 2016 and June 2020. It was focused on data-driven knowledge extraction, boosting synergistic research initiatives across our different research areas.

Back [MSc thesis] Cross-Entropy method for Kullback-Leibler control in multi-agent systems

[MSc thesis] Cross-Entropy method for Kullback-Leibler control in multi-agent systems

Author: Beatriz Cabrero Daniel

Supervisor: Mario Ceresa, Vicenç Gómez

MSc program: Master in Intelligent Interactive Systems

We consider the problem of computing optimal control policies in large-scale multiagent systems, for which the standard approach via the Bellman equation is intractable. Our formulation is based on the Kullback-Leibler control framework, also known as Linearly-Solvable Markov Decision Problems. In this setting, adaptive importance sampling methods have been derived that, when combined with function approximation, can be effective for high-dimensional systems. Our approach iteratively learns an importance sampler from which the optimal control can be extracted and requires to simulate and reweight agents’ trajectories in the world multiple times. We illustrate our approach through a modified version of the popular stag-hunt game; in this scenario, there is a multiplicity of optimal policies depending on the “temperature” parameter of the environment. The system is built inside Pandora, a multi-agent-based modeling framework and toolbox for parallelization, freeing us from dealing with memory management when running multiple simulations. By using function approximation and assuming some particular factorization of the system dynamics, we are able to scale-up our method to problems with M = 12 agents moving in two-dimensional grids of size N = 21×21, improving on existing methods that perform approximate inference on a temporal probabilistic graphical model.

Additional material:

 

Department of Information and Communication Technologies, UPF

Grant CEX2021-001195-M funded by MCIN/AEI /10.13039/501100011033


 


Department of Information and Communication Technologies, UPF

[email protected]

  • Àngel Lozano - Scientific director
  • Aurelio Ruiz - Program management