We have relevant datasets, repositories, frameworks and tools of relevance for research and technology transfer initiatives related to knowledge extraction. This section provides an overview on a selection of them and links to download or contact details.

The MdM Strategic Research Program has its own community in Zenodo for material available in this repository  as well as at the UPF e-repository  . Below a non-exhaustive list of datasets representative of the research in the Department.

As part of the promotion of the availability of resources, the creation of specific communities in Zenodo has also been promoted, at level of research communities (for instance, MIR and Educational Data Analytics) or MSc programs (for instance, the Master in Sound and Music Computing)

 

 

Back Rankothge W, Ma J, Le F, Russo A, Lobo J. Towards making network function virtualization a cloud computing service. Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM)

Rankothge W, Ma J, Le F, Russo A, Lobo J. Towards making network function virtualization a cloud computing service. Proceedings of the 2015 IFIP/IEEE International Symposium on Integrated Network Management (IM)

 

By allowing network functions to be virtualized and run on commodity hardware, NFV enables new properties (e.g., elastic scaling), and new service models for Service Providers, Enterprises, and Telecommunication Service Providers. However, for NFV to be offered as a service, several research problems still need to be addressed. In this paper, we focus and propose a new service chaining algorithm. Existing solutions suffer two main limitations: First, existing proposals often rely on mixed Integer Linear Programming to optimize VM allocation and network management, but our experiments show that such approach is too slow taking hours to find a solution. Second, although existing proposals have considered the VM placement and network configuration jointly, they frequently assume the network configuration cannot be changed. Instead, we believe that both computing and network resources should be able to be updated concurrently for increased flexibility and to satisfy SLA and Qos requirements. As such, we formulate and propose a Genetic Algorithm based approach to solve the VM allocation and network management problem. We built an experimental NFV platform, and run a set of experiments. The results show that our proposed GA approach can compute configurations to to three orders of magnitude faster than traditional solutions.

 

Additional material: