We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Paun B, Bijnens B, Iles T, Iaizzo P, Butakoff C. Patient Independent Representation of the Detailed Cardiac Ventricular Anatomy. Medical Image Analysis

Paun B, Bijnens B, Iles T, Iaizzo P, Butakoff C. Patient Independent Representation of the Detailed Cardiac Ventricular Anatomy. Medical Image Analysis

 

Reparameterization of surfaces is a widely used tool in computer graphics known mostly from the remeshing algorithms. Recently, the surface reparameterization techniques started to gain popularity in the field of medical imaging, but mostly for convenient 2D visualization of the information initially represented on 3D surfaces (e.g. continuous bulls-eye plot). However, by consistently mapping the 3D information to the same 2D domain, surface reparameterization techniques allow us to put into correspondence anatomical shapes of inherently different geometry. In this paper, we propose a method for anatomical parameterization of cardiac ventricular anatomies that include myocardium, trabeculations, tendons and papillary muscles. The proposed method utilizes a quasi-conformal flattening of the myocardial surfaces of the left and right cardiac ventricles and extending it to cover the interior of the cavities using the local coordinates given by the solution of the Laplace’s equation. Subsequently, we define a geometry independent representation for the detailed cardiac left and right ventricular anatomies that can be used for convenient visualization and statistical analysis of the trabeculations in a population. Lastly we show how it can be used for mapping the detailed cardiac anatomy between different hearts, which is of considerable interest for detailed cardiac computational models or shape atlases.

Additional material:

- Supplementary Raw Research Data. This is open data under the CC BY license http://creativecommons.org/licenses/by/4.0/