We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Martins Dias G, Nurchis M, Bellalta B. Adapting Sampling Interval of Sensor Networks Using On-Line Reinforcement Learning. IEEE World Forum on Internet of Things 2016

Martins Dias G, Nurchis M, Bellalta B. Adapting Sampling Interval of Sensor Networks Using On-Line Reinforcement Learning. IEEE World Forum on Internet of Things 2016

Monitoring Wireless Sensor Networks (WSNs) are composed of sensor nodes that report temperature, relative humidity, and other environmental parameters. The time between two successive measurements is a critical parameter to set during the WSN configuration because it can impact the WSN's lifetime, the wireless medium contention and the quality of the reported data. As trends in monitored parameters can significantly vary between scenarios and within time, identifying a sampling interval suitable for several cases is also challenging. In this work, we propose a dynamic sampling rate adaptation scheme based on reinforcement learning, able to tune sensors' sampling interval on-the-fly, according to environmental conditions and application requirements. The primary goal is to set the sampling interval to the best value possible so as to avoid oversampling and save energy, while not missing environmental changes that can be relevant for the application. In simulations, our mechanism could reduce up to 73% the total number of transmissions compared to a fixed strategy and, simultaneously, keep the average quality of information provided by the WSN. The inherent flexibility of the reinforcement learning algorithm facilitates its use in several scenarios, so as to exploit the broad scope of the Internet of Things.

Additional material:

- arXiv version

- Data: Intel Lab Data with after-processing to fill missing values as described in the article (if interested, contact the authors)