We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Fonseca, E., Gong R., Bogdanov D., Slizovskaia O., Gomez E., Serra X. Acoustic scene classification by ensembling gradient boosting machine and convolutional neural networks. Workshop on Detection and Classification of Acoustic Scenes and Events

Fonseca, E.Gong R.Bogdanov D.Slizovskaia O.Gomez E., Serra X. Acoustic scene classification by ensembling gradient boosting machine and convolutional neural networks. Workshop on Detection and Classification of Acoustic Scenes and Events

This work describes our contribution to the acoustic scene classification task of the DCASE 2017 challenge. We propose a system that consists of the ensemble of two methods of different nature: a feature engineering approach, where a collection of hand-crafted features is input to a Gradient Boosting Machine, and another approach based on learning representations from data, where log-scaled mel-spectrograms are input to a Convolutional Neural Network. This CNN is designed with multiple filter shapes in the first layer. We use a simple late fusion strategy to combine both methods. We report classification accuracy of each method alone and the ensemble system on the provided cross-validation setup of TUT Acoustic Scenes 2017 dataset. The proposed system outperforms each of its component methods and improves the provided baseline system by 8.2%.

Additional material: