We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Amarasinghe I, Hernández-Leo D, Jonsson A. Data-Informed Design Parameters for Adaptive Collaborative Scripting in Across-Spaces Learning Situations. User Modeling and User-Adapted Interaction.

Amarasinghe I, Hernández-Leo D, Jonsson A. Data-Informed Design Parameters for Adaptive Collaborative Scripting in Across-Spaces Learning Situations. User Modeling and User-Adapted Interaction.

This study presents how predictive analytics can be used to inform the formulation of adaptive collaborative learning groups in the context of Computer Supported Collaborative Learning considering across-spaces learning situations. During the study we have collected data from different learning spaces which depicted both individual and collaborative learning activity engagement of students in two different learning contexts (namely the classroom learning and distance learning context) and attempted to predict individual student’s future collaborative learning activity participation in a pyramid-based collaborative learning activity using supervised machine learning techniques. We conducted experimental case studies in the classroom and in distance learning settings, in which real-time predictions of student’s future collaborative learning activity participation were used to formulate adaptive collaborative learner groups. Findings of the case studies showed that the data collected from across-spaces learning scenarios is informative when predicting future collaborative learning activity participation of students hence facilitating the formulation of adaptive collaborative group configurations that adapt to the activity participation differences of students in real-time. Limitations of the proposed approach and future research direction are illustrated.

DOI: https://doi.org/10.1007/s11257-019-09233-8