We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back [PhD thesis] Towards spatial reuse in future wireless local area networks: a sequential learning approach

[PhD thesis] Towards spatial reuse in future wireless local area networks: a sequential learning approach

Author: Francesc Wilhelmi Roca

Supervisors: Boris Bellalta, Cristina Cano, Anders Jonsson

The Spatial Reuse (SR) operation is gaining momentum in the latest IEEE 802.11 family of standards due to the overwhelming requirements posed by next-generation wireless networks. In particular, the rising traffic requirements and the number of concurrent devices compromise the efficiency of increasingly crowded Wireless Local Area Networks (WLANs) and throw into question their decentralized nature. The SR operation, initially introduced by the IEEE~802.11ax-2021 amendment and further studied in IEEE 802.11be-2024, aims to increase the number of concurrent transmissions in an Overlapping Basic Service Set (OBSS) using sensitivity adjustment and transmit power control, thus improving spectral efficiency. Our analysis of the SR operation shows outstanding potential in improving the number of concurrent transmissions in crowded deployments, which contributed to enabling low-latency next-generation applications. However, the potential gains of SR are currently limited by the rigidity of the mechanism introduced for the 11ax, and the lack of coordination among BSSs implementing it. The SR operation is evolving towards coordinated schemes where different BSSs cooperate. Nevertheless, coordination entails communication and synchronization overhead, which impact on the performance of WLANs remains unknown. Moreover, the coordinated approach is incompatible with devices using previous IEEE 802.11 versions, potentially leading to degrading the performance of legacy networks. For those reasons, in this thesis, we start assessing the viability of decentralized SR, and thoroughly examine the main impediments and shortcomings that may result from it. We aim to shed light on the future shape of WLANs concerning SR optimization and whether their decentralized nature should be kept, or it is preferable to evolve towards coordinated and centralized deployments. To address the SR problem in a decentralized manner, we focus on Artificial Intelligence (AI) and propose using a class of sequential learning-based methods, referred to as Multi-Armed Bandits (MABs). The MAB framework suits the SR problem because it addresses the uncertainty caused by the concurrent operation of multiple devices (i.e., multi-player setting) and the lack of information in decentralized deployments. MABs can potentially overcome the complexity of the spatial interactions that result from devices modifying their sensitivity and transmit power. In this regard, our results indicate significant performance gains (up to 100\% throughput improvement) in highly dense WLAN deployments. Nevertheless, the multi-agent setting raises several concerns that may compromise network devices' performance (definition of joint goals, time-horizon convergence, scalability aspects, or non-stationarity). Besides, our analysis of multi-agent SR encompasses an in-depth study of infrastructure aspects for next-generation AI-enabled networking.

Link to manuscript: http://hdl.handle.net/10803/669970