The placenta of every expectant mother is located in a different place, its blood vessels are never the same and its connection to the fetus and the umbilical cord also varies from one pregnancy to another. Moreover, the fetus is also always in a different position in each case and floating in amniotic fluid. The fetus is surrounded by highly delicate membranes that can only be perforated once so as not to risk losing the pregnancy. So, when a fetus has a life-threatening condition and requires an emergency intervention in the womb, the fetal surgeon faces a huge challenge because he/she has to decide very precisely where to enter the uterus and, once inside, has very few references to navigate safely.
To date, the surgeon could only resort to an ultrasound to guide the entrance to the uterus and the movement of surgical tools to the fetus. Now, a team of professionals from BCNatal, a consortium formed by Hospital Sant Joan de Déu and Hospital Clínic in collaboration with the team of M.A. González Ballester, ICREA research professor with the Department of Information and Communication Technologies (DTIC) at UPF, has developed for the first time in the world, a system of three-dimensional surgical planning and navigation for fetal surgery that offers many advantages: greater precision for the surgeon, shorter operating time and in the future, it is set to improve the results by making fetal surgery more accessible.
The system provides a virtual reconstruction of the placenta based on MRI and ultrasound. With this 3D map of the placenta, before the procedure, the fetal surgeon has a much more accurate understanding of the status of the placenta and the umbilical cord, and can analyse which is the best entry point to the placenta to gain access to the fetus.
Go on reading, with access to audiovisual demos here