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Helena Ramalhinho Lourenço
lena.upf.edu

ILS 2

Outline

► Introduction to ILS
► Applications of ILS
► Hybrid ILS and other Extensions

§ Hydrid with other metaheuristics
§ SimILS
§ Two-stage Optimization using ILS
§ MathILS
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Outline

► Applications:
§ Market Basket Analyisis
§ BonArea
§ Supply Chain Design for ecommerce
§ SEAT/Volkwagen
§ Zara (INDITEX & OESIA)
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Local optimization algorithms

► Local search 
§ 1. Get a initial solution x (current solution). Use a constructive 

heuristic.
§ 2. Search the neighborhood. While there is an untested neighbor 

of x:
* 2.1 Let x’ be an untested neighbor of x;
* 2.2 If c(x’)<c (x) set x=x’; (x’ is the new current solution)

§ 3. Return x (local optimal solution).
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Local optimization algorithms

► Design of a local optimization algorithm:
§ Obtain an initial solution

* Heuristic
* Random solution

§ Define the neighborhood
* Specific for each problem

§ How to search the neighborhood
* Complete search
* First improvement
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Local optimization algorithms

► Comments
§ The search stops at the first local optimum solution with respect to 

the neighborhood N.
§ The final solution highly depends on the initial solution and on the 

neighborhood.
§ No way back out of unattractive local optima...

global optimal solution

c(x)

xx*x1x2x3x4x5
local optima
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Multi-Start

► Iterative improvement or hill-descending 

§ 1. Get a initial random solution x.

§ 2. Run an local optimization (output x) 

§ 3. If cost(x)<cost(xbest) set xbest=x;

§ 4. If the stop criteria is not verified, go back to step 1.

§ 5. Output the best solution found.

* Comments

– Successive repetition of local improvement.

– Easy to implement.

– Random solutions may be very bad.
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Iterated Local Search

► A Local Search Method…
§ Single chain on search

► Search on the space of local optimal solutions
► Combines local optimization with a big transition/large 

step/perturbation.
§ Perturbation should not be easily undone by the local search
§ Most important aspect of the ILS 

► Able to make large changes at any stage of the algorithm.
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Iterated Local Search

► Get an initial solution x; 

* Heuristic method or a random solution.

* local optimization method

► For a certain number of iterations:

§ Perturbation Step
* method that makes a large modification based in optimization and on the 

structure of the solution x, resulting in x’.

§ Small-steps

* local optimization method, initial solution x’; final solution x’’.

§ Perform an accept/reject test
* accept all solutions, accept with a certain probability or accept only if it is a 

better solution.

* If x’’ is accepted, then  x = x’’. 

► Return the best solution found.
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Iterated Local Search

► A simple implementation…
§ Generate Initial Solution

* Greedy Heuristic
§ Local Search Method

* First improvement local search 
* Definition of neighborhood

§ Perturbation Method
* One move of a high level neighborhood

§ Acceptance Criteria
* Accept if a better solution is found

Often leads to 
very good 

performance

Only requires few 
lines of additional 

code 
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Iterated Local Search

► Generate Initial 
Solution
§ Randomized Greedy 

Heuristic
§ Random solution

► Acceptance Criteria
§ Better
§ Random Walk
§ Simulated Annealing type
§ Restart

► Local Search Method
§ Local search
§ Tabu search

► Perturbation 
§ Higher level of 

neighborhood
§ Strength of the perturbation

* Big/small

§ Adaptive memory
§ Modify input data
§ Optimized perturbation 

ILS 12

Iterated Local Search

► Improving ILS
§ Relationship between local search and perturbation.

* Perturbation must lead to a new region of the solution space that 
cannot be reached by a local search method.

* Perturbation should not be easily undo by the local search.
§ Perturbation can incorporate problem-specific information.

* As for example optimization methods
* Destruction and construction approach

§ A good perturbation transforms one excellent solution into a 
excellent starting point to a local search.

§ Local search method must be fast.
§ Complexity must be added progressively and in a modular way.
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Iterated Local Search

► Google Scholar’s number of publications 
► “Iterated Local Search”

§ About 10,000 publications
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Iterated Local Search

► ILS applied to Complex and large-scale real problems

• Complex problems.
• Large scale problems.Accuracy

• Fast answer.
• Analysis of several scenarios.Speed

• Fast changes.
• Different constraints in different 

areas.
Flexibility

• Need of fast implementationSimplicity
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Traveling Salesman Problem

► Traveling Salesman Problem
§ Given a number of cities and the costs (distances) of traveling 

from any city to any other city…

§ What is the least-cost round-trip route that visits each city exactly 

once and then returns to the starting city? 

§ http://www.math.uwaterloo.ca/tsp/
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Traveling Salesman Problem

► Generate Initial Solution
§ Constructive Heuristic: nearest neighbor, insertion heuristic

► Local Search Method
§ 2-opt/3-opt Neighborhood

► Perturbation Method
§ One 4-opt move (double-bridge)

► Acceptance Criteria
§ Accept only if the best 
solution improved
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► Given a clique C, its edge neighborhood (cut-clique) is 
defined by the set of edges E’(C)= {(i,j) ∈ E :  i ∈ C  and  j ∈
V \ C }, and  |E’(C)| is its size. Denote N(i)={jÎV:(i,j)ÎE}.

► Maximum Cut-Clique
§ Maximum edge neighborhood clique max |E’ (C)| = 7

1 3

2

5

7

64 8

Maximum Cut-Clique Problem
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ILS for Cut-Clique Problem

► Perturbation
§ Select randomly one node
§ Build the clique with all nodes in the previous clique and fully 

connected to this node
Set C¬ [CÇN(i)]È{i};
Set U¬Æ and C’¬C;

► Local Optimization
§ Add, Swap and Aspiration moves
§ R-ILS (random version)
§ D-ILS (deterministic version)
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Maximum Cut-Clique Problem

► Traditional approach
§ Solve with Integer Linear Programming Software
§ Branch-and-Bound / Branch-and-cut general exact algorithm
§ Obtain the Optimal Solution / Lower Bound
§ CPLEX Optimizer
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Computational results:

Intel Core i7-2600 with 3.40GHz and 8GB RAM; using CPLEX 11.2

Instance | V | | E | d
MC problem MCC Problem

w(G) | N(C) | | C | | N(C) | time

d1-RTN 2418 9317 0.0032 10 195 8 1273 605.11

d3-RTN 4755 26943 0.0024 18 1097 ---- ---- ----

d7-RTN 6511 44615 0.0021 18 1576 ---- ---- ----

d15-RTN 7965 62136 0.0020 18 1979 ---- ---- ----

d30-RTN 10101 91803 0.0018 21 13099 ---- ---- ---

d66-RTN 13308 148035 0.0017 ---- ---- ---- ---- ----

c-fat200-1 200 1534 0.077 12 72 9 81 0.05

c-fat200-2 200 3235 0.163 24 264 17 306 0.09

c-fat200-5 200 8473 0.426 58 1682 44 1892 0.05

c-fat500-1 500 4459 0.036 14 98 11 110 0.76

c-fat500-2 500 9139 0.073 26 338 19 380 0.80

c-fat500-5 500 23191 0.186 64 2048 48 2304 0.83

c-fat500-10 500 46627 0.374 126 7938 94 8930 0.58

time in secondsThe ---- symbol means that CPLEX was not able to read and preprocess the model in one hour
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Computational results of the ILS:

Intel Core i7-2600 with 3.40GHz and 8GB RAM

Instance | V | | E | d
MCC Problem

| C | | N(C) | time

d1-RTN 2418 9317 0.0032 8 1273 0.1762

d3-RTN 4755 26943 0.0024 12 3526 0.4743

d7-RTN 6511 44615 0.0021 15 5656 0.6777

d15-RTN 7965 62136 0.0020 16 7772 0.8757

d30-RTN 10101 91803 0.0018 21 13099 1.1317

d66-RTN 13308 148035 0.0017 28 22379 1.4081

c-fat200-1 200 1534 0.077 9 81 0.1385

c-fat200-2 200 3235 0.163 17 306 0.0866

c-fat200-5 200 8473 0.426 44 1892 0.0664

c-fat500-1 500 4459 0.036 11 110 0.5451

c-fat500-2 500 9139 0.073 19 380 0.3595

c-fat500-5 500 23191 0.186 48 2304 0.2381

c-fat500-10 500 46627 0.374 94 8930 0.2111

time in seconds100 runs
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Market Basket Analysis

► The main objective is to analyze large dataset of store 
transactions

► Obtain relevant insights to do a better planning of the 
Marketing strategies and operations.
§ Product placement
§ Optimal product-line offering
§ Personalized marketing campaigns
§ Product promotions
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► Raeder and Chawla (2011) say “... no techniques 
currently available in the literature sufficiently addresses 
the problem of finding meaningful relationships in a large 
transaction databases.”

► Dataset
§ a household panel database for the British ice cream market.

§ 691 different varieties of products available in the British market.

Market Basket Analysis
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nodes:
products in a 
store
edges:
represent pairs 
of products (i,j) 
bought 
together by a 
customer on a 
given 
purchase visit 
to the store
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Maximum cardinality clique

prod id number # external links
147 4
148 13
149 3

375 9
489 16
518 0
539 0

541 0

45 links to 32 other products

G has 691 nodes and 1181 edges

Cut-cliques applied to Market basket 
networks
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Maximum cut-clique

prod id number # external links
21 10
65 14
66 23
72 23
80 21

305 9

Cut-cliques applied to Market basket 
networks

G has 691 nodes and 1181 edges

100 links to 75 other products
ILS 29maximum cut-cliquemaximum cardinality clique

Cut-cliques applied to Market basket 
networks
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Marketing Implications

► The solution obtained is formed by the top-selling ice 
creams from leading brands: Walls, Nestlé and Mars.

ILS 31

Marketing Implications

► The set of products constituting the maximum clique is not 
the clique with largest incidence to other products in the 
network.

► The householders buying the 6 products in the MCC are 
also strong potential buyers for the remaining products, 
especially those products involved in the 100 links.

► The MCC reveals interacting patterns from leading-sale 
products.
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Warehouse Zara

► Optimization of the picking
of the online orders

► This warehouse prepares 
30,000 to 500,000 orders
a day. 
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Warehouse Zara

► Input data
§ Online order to be prepared
§ Due date of the orders
§ Detail information of each SKU of the orders
§ Location of each SKU of the orders in the warehouse
§ Distance matrix of each location in the warehouse

► Decision Variables
§ Orders to be prepared in the next preparation (Oleada)
§ Orders associated with each group 
§ Routing of the picking of each group
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Warehouse Zara

► Constraints
§ Number of orders by group (size of the preparation area)
§ Number of groups by preparation phase (oleada)
§ Number of employees
§ Number of SKUs by group
§ Due date at packing area
§ Other special constraints…
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Warehouse Zara

► Algorithm
§ Clustering, Assignment, Routing Algorithm (CARA)
§ Greedy Randomized Adaptive Search Procedure (GRASP)
§ Iterated Local Search (ILS)

► Results
§ Run the algorithm for the small instance with 500 orders, 2 area-

stocks, 200 positions, and more than 400 items. 
§ Be able ton prepare more 25% order per hour!
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Hybrid ILS and Extensions

► Hydrid with other metaheuristics

► SimILS

► MathILS

Word cloud: Blum et al. (2011) Hybrid metaheuristics in 
combinatorial optimization: A survey. Applied Soft 

Computing 11:4135-4151  
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ILS… SimILS… MathILS…

► ILS represents one of the most efficient yet easy-to-
implement frameworks for solving combinatorial 
optimization problems.

► Easy to implement and adapt.
► Most real-life problems are complex and filled with 

uncertainty.
► By integrating simulation inside the local search process, 

SimILS framework extends the virtues of ILS to stochastic 
COPs as well. 

► The same by using exact methods, lower bounds etc…
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Hybrid ILS with other metaheuristics

► Use the ILS structure with other metaheuristics
► Local Optimization Phase

§ Tabu Search
§ VNS
§ Simulated Annealing
§ Variable Neighborhood  Search
§ ….

► Perturbation Phase
§ Large neighborhood change
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Distribution problem

► Extended Vehicle Routing Problem
§ Heterogeneous fleet (7 different truck capacities)

§ Time windows in the stores

§ Constraints of assigning some trucks to some stores.
§ Maximum driving hours

§ Multitrip for some vehicles 

§ Sales constraints

► Minimize operative costs
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Distribution problem

► GILS-VND Algorithm
§ GILS-VND, combina un Iterated Local Search (ILS), Greedy

Randomized Adaptive Search Procedure (GRASP), y Variable 
Neighborhood Descent (VND). 

§ ILS Structure
* Initial solution: GRASP
* Local improvement: Variable Neighborhood Descend
* Perturbation: Refine using random neighborhood

§ Coelho V.N., Grasas A., Ramalhinho H., Coelho I.M., Souza M.J.F. 
(2016), An ILS-based Algorithm to Solve a Large-scale Real 
Heterogeneous Fleet VRP with Multi-trips and Docking Constraints, 
European Journal of Operational Research 250 (2): 367–376. 

ILS 41

Distribution problem

► Computational results

ILS 42

Distribution problem

► Results
§ Savings 10% daily with respect to the actual solutions.

* A significant daily amount!
§ Savings of 2% compared with Prins’ Algorithm with a simpler 

version of the problem.
§ Smaller number of vehicles need.
§ Better coordination with sales department.
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SimILS

► Stochastic Combinatorial Optimization Problems
§ Uncertainty is present – Random Data

* Example: Stochastic Demand in Vehicle Routing Problems

* Stochastic processing times in scheduling

* etc…

§ Strategic Problems

► Extends ILS to solve Stochastic Models…

► SimILS
§ Simulation + Iterated Local Search
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Stochastic Combinatorial Optimization 
Problems
► SimILS

Real-Life System with 
Uncertainty

Mathematical 
Deterministic Model

Mathematical 
Stochastic Model

ILSSimILS Simulation

Simplifying
Assumptions

Complex 
DecisionMaking
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SimILS

ILS 46

Exemplification of the SimILS for a COP with 
stochastic objective function

ILS 47

SimILS
Stochastic Constraints

ILS 48

Designing Internal supply routes

► Design a fix set of routes to supply components and 
materials to the production assembly line.

► Routes are fixed... Demand is stochastic.

Joint work with Marcelus Fabri (UPF)
ILS 49

Designing Internal supply routes

► Working on a SimILS
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Supply Chain Design for ecommerce

► Supply Chain Design for ecommerce
§ Two-Stage Stochastic Programming Problem 

► The goal is to find:
§ the subset of warehouses to be opened;

§ and determine the customer’s assignment to the open warehouses 
§ … such that all the demand is served at minimum total cost. 
§ Demand is stochastic …

§ Each customer area must have 2 or 3 warehouses assigned as 
regular warehouses. 
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Supply Chain Design for ecommerce

► Two-Stage Optimization Problems
► The problems has two groups of variables interrelated 

among them … 
§ Strategical decision variables (long term deterministic decision)
§ Operational decision variables (short term decisions), therefore 

stochastics at the moment of the decision process!
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Supply Chain Design for ecommerce

► Solving this Two-Stage Stochastic Optimization Problem
► Deterministic Equivalent Model (DEM) 

§ solved by CPLEX.

► SimILS
§ Simulation + Iterated Local Search
§ Use simulation to obtain the expected overall cost.
§ Local Search on open/close warehouses
§ Only promising solutions are tested in a stochastic environment. 

► SimILS results compared favorably with DEM, with shorter 
running times.
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Supply Chain Design for ecommerce

► Deterministic Equivalent Model (DEM) 
§ Stochastic Programming 

Open/close 
Warehouse Regular/not

regular
Warehouse

Demand 
assignment 

on scenario k
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SimILS for SC Design Problem

Procedure SimILS 
 !"=GenerateInitialSolution 
 !∗=LocalSearch(!") 
 (!∗,sf(!∗),statistics)=Simulation(!∗,long) 
 Repeat 
  !$=Perturbation(!∗,statistics, history) 
  !$∗=LocalSearch(!$) 
  (!$∗,sf(!$∗),statistics)=Simulation(!$∗,short) 
  !∗ =AcceptanceCriterion(!∗, !$∗,history) 
 Until termination condition met 
 (!∗,sf(!∗),statistics)=Simulation(!∗,long) 
Return !∗,sf(!∗) 
End 
 

Destruction-
Reconstruction process

(a) open (b) close (c) open-close
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Supply Chain Design for ecommerce

► Some results…
► cap11#, 

§ 50 facilities
§ 50 customers

► Capa/b/c#, 
§ 100 facilities
§ 1000 customers
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Solution Methods

► Good solutions for 
complex and large-
scale problems

► Short running times
► Easily adapted

Local Search Methods
Metaheuristics

Integer Programming
Exact Methods

• Mathematical proved 
optimal solutions

• Important information on 
the characteristics and 
properties of the 
problem.
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Math - Iterated Local Search

► Get an initial solution x; 

* Heuristic method or a random solution.

* local optimization method

► For a certain number of iterations:

§ Perturbation Step
* Uses a exact method to solve a subproblem or a relaxation of the 

problem. 
§ Small-steps

* local optimization method, initial solution x’; final solution x’’.

§ Perform an accept/reject test

* accept all solutions, accept with a certain probability or accept only if it 
is a better solution.

* If x’’ is accepted, then  x = x’’. 

► Return the best solution found.
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MathILS

► Maybe the first application…
§ Use an exact algorithm to solve a sub problem within a Iterated 

Local Search heuristic for the Job-Shop Scheduling Problem
§ Solving to optimality  the one-machine scheduling problem 

with due dates and delivery times using the Carlier Algorithm.
* Lourenço H.R. (1995), Job-Shop Scheduling: computational study of local 

search and large-step optimization methods. European Journal of Operational
Research 83(2): 347-364. ISSN 0377-2217. 

* PhD Thesis, Lourenco H.R.  (1993)
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Example of Applications

► Real Applications
§ Maybe the best set of problems to apply Matheuristics methods…

§ Why?

* Complex problems with a large number of constraints.

* Sometimes difficult to model…

* But, a simplification of the problem is frequently a well-studied 
optimization problem.

§ Apply metaheuristics for the real general problem…

§ And exact methods for the well-known relaxation problem.
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Metaheuristics

► Which is the best metaheuristic?
§ Begin with a simple method and then turn, if necessary, to a more 

complicated one or refine the first implementation
§ Small number of parameters
§ Evaluate its performance by:

* Accuracy
* Speed
* Simplicity
* Flexibility
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Conclusions

► Iterated Local Search
§ Simple
§ Easy to implement
§ Robust
§ Highly effective
§ Modularity

► Start simple and add complexity if needed!
► The success of ILS lies in the biased sampling of the set 

of local optimal.
► More than 6000 publications in google scholar.

Do you want to try to 
implement an ILS?
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Iterated Local Search
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