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Combinatorial Optimization

» Combinatorial Optimization problem
= Given a setof elements £ = {1, 2, ..., n}

= Set of feasible solutions F
* Each element of F is a subset of E.

= Objective function f{x): F >R.
= |n the minimization version the problem consists in
* Finding x*e F, such that f(x* <f{x) V'x e F.
— Discrete Optimization
— Graph models
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Combinatorial Optimization Problems

» Traveling Salesman Problem (TSP)

» Routing problems
= Vehicle Routing Problem (VRP)
= Heterogeneous Vehicle Routing Problem (HVRP)

» Location problems CoNil?
» Scheduling problems B e
= Job-shop scheduling problem !ﬁs F]l :
= Parallel machines ARG 7 o i ey ;:
o o Bt
» Other ... R

= Clique problems
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Traveling Salesman Problem

» Traveling Salesman Problem

= Given a number of cities and the costs (distances) of traveling
from any city to any other city...
What is the least-cost round-trip route that visits each city exactly
once and then returns to the starting city?
http://www.math.uwaterloo.ca/tsp/
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Traveling Salesman Problem

» Traveling Salesman Problem
= Traveling Salesman Problem
* E: set of edges, each has a cost c(e);
* A any subset of edges forming a Hamilton cycle;
* ¢(x): total cost of the edges in x.
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Traveling Salesman Problem
» Problem difficult to solve...

= the size of the solution space is O(n)! forn > 2
* where n is the number of cities.

#eities SEERIEE #symetric tours
tours

5 24 12

6 120 60

7 720 360

8 5040 2520

9 40320 20160

10 362880 181440

20  1.2165E+17 6.08226E+16
25  6.2045E+23 3.10224E+23
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Traveling Salesman Problem

» Mathematical programming model (asymmetric)

m =number of edges;

if n =number of vertices;

{1, if (i, /) is in the tour;

0, otherwise.
©;; = cost/distance of edge (i)

n
> X =1 i=l..,n
S‘S‘—I, for a]lSC{l,...,/z};

X E{O,l}, i=l.,mj=1..,n
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Example TSP

» Real applications
= Time windows
= Distance vs. Cost vs. Time
= Customer constraints

Several vehicles

Different capacities
= Etc....
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Facility Location Models

» Important problem in Logistics, Health Care, Public
Sector, Telecommunications...
= Where to locate new facilities.
* Retailers, warehouses, factories.
= Very complex problems
» Warehouse location problem
= to locate a set of warehouses in a distribution network
» Cost of locating a warehouse at a particular site:

= fixed cost vs variable cost
* cost of open facility vs. transportation cost
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Facility Location Models

» Where to locate the facilities?
= Warehouses
= Schools
= Hospitals
= Etc...
» How to meet customer demands from the facilities?
= Which facility (facilities) serves each customer?
= How much demand is met from each facility?
» Costs
= Transportation, warehousing, customer service, ...
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Facility Location Models

» Facility Location Models
= p-Median
* ILP Model
= Covering problems 20
* Maximal covering location problem et e
= Capacitated Facility Location . 4

* Single-source capacitated facility location

= And many more ... e e
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Facility Location: p-median
» Location of p facilities to serve n customers.

» Which is the best location?

» Which facility should serve each customer?
= Minimizing costs, distances, etc.
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Facility Location: p-median

» Locate 3 schools to serve 9 areas.
» Each area should be assigned to one and only one
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Facility Location: p-median

» Which is the best location for the 3 schools that minimize
the total distance?
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school. Tiempo entre distritos
. . ™ . Distrito 1 2 3 4 5 6 7 8 9
» The distances between the potential facility location 1 0 5 4 > 1 7 P 9 1
(school) and the areas is indicated as follows... 2 5 0 12 10 8 4 2 1 9
3 4 12 0 " 2 2 7 10 12
4 2 10 " 0 2 7 1 1 14
5 1 8 2 2 0 6 4 4 5
6 7 4 2 7 6 0 4 3 2
7 2 2 7 1 4 4 0 8 5
8 9 1 10 1 4 B 8 0 9
9 1 9 12 14 5 2 5 9 0
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Facility Location: p-median Facility Location: p-median
» Variables RS
. A . . min 3 3¢,
= x;=1if areaiis assigned to school at j ; 0 otherwise, for i=1j=1
i j=1, ..., 9. M
= y;=1if a school is located at area j, otherwise, for j=1, ... st inj =1 Vi o
9. /=
* Binary Variables. Xij < Vi Vi, j ()
m
Xy, =p 3
Jj=1
x;,y; binary Vi, j
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» Maximal Covering Location model

= This problem identifies the minimal number and the location
of facilities, which ensures that no demand point will be farther
than the maximal service distance or time from a facility.

Combinatorial Optimization 17

e
Barcelona
Maximal Covering Location Model

» The objective is to locate the minimum number of centers
to satisfy a demand within 5 units of time

» Traveling times (units of time) from population i (row) to
facility j (column):

Distrito 1 2 3 4 5 6 7 8 s 10 11 12
1 0 5 4 2 1 7 2 9 1 4 2 8
2 5 o 12 10 8 4 2 1 9 7 7 9
3 4 12 0 1 2 2 7 10 12 1 6 8
4 2 10 1 0 2 7 1 [EREVERET 1 2
5 1 8 2 2 0 6 4 4 5 3 6 8
6 7 4 2 7 6 0 4 3 2 2 10 4
7 2 2 7 1 4 4 0 3 5 4 8 6
s 9 110 1 4 3 8 0 9 7 8 3
9 1 9 12 14 5 2 5 9 0 3 4 5
10 4 7 1 18 3 2 4 7 3 0 5 10
i 2 7 6 1 s 10 8 3 4 5 0o 12
12 8 9 8 2 8 4 6 3 5 10 12 gzation 18
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Maximal Covering Location Model

» Data
= m= number of potential location for the center
= n= number of populations to be covered
= d; = distance between population i and center (facility) j
= D,. = maximum service time.
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Maximal Covering Location Model

» Variables
= x; = 1 if population i is covered by a center at ; 0 otherwise, for i,
j=1, ..., 12.
= y; = 1 if a center is open at location j, otherwise, for j=1, ..., 12.
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Maximal Covering Location Model

min E:;y/.
st ixi/ =1 Vi a

X;=Y; Vi, j 2)
dgx; =D, Vi, j 3)

Xx;,Y; binarias Vi, j

‘max
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Maximal Covering Location Model

» Simple Formulation

= y; =1 if a center is open at location j, otherwise, for j=1, ..., m.

Lo
min E .
= i

st

Ey, =1 for i=l..,nandN,={j:d, =D}

JEN;

Yy, binarias Vj
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» Location of facilities to serve n customers.

Number of location is not fixed in advanced.

Fixed cost to open a facility.

Each customer only served by only one facility.
Each customer has a annual demand to be served.
Capacity constraints in the facilities.

» Which is the best location?
» Which facility should serve each customer?
= Minimizing costs.
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Capacitated Facility Location

= Data

= nretailers

= m potential sites for warehouses
didemand of retailer /
fj fixed cost of open warehouse at location j

gjdemand capacity at warehouse at location j

cij unit transportation cost between warehouse j and retailer i
» Binary Variables

= yj= open/close warehouse at location j

= xj if retailer i is served or not by warehouse j

Combinatorial Optimization 24
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Capacitated Facility Location

(1) min f(x)=73 Sex,+ 3 £y,
F T U =g
s.a
2) Eldix,.jﬁqjyj, j=L.,m
G) Sx;=1 i=lu,n
j=1

@) x5y, €01}, i=1luyn;j=1,m
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Capacitated Facility Location

» If the open locations are decided...
= |f demand of all customers is 1...
* The subproblem is the Assignment Model
* Easy to solve
= |f demand of all customers is an integer ...
* The subproblem is the Generalized Assignment Model
* Difficult to solve
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Assignment problem Generalized Assignment
» Assign each task to each individual » | : set of tasks (i=1, ..., n)
= x;= |1, if individual j is assigned to task j » J: set of agents (=1, ..., m)
0, otherwise » a = resource capacity of agent j
el d 2 » b; = resource needed if task i is assigned to agent j
1 minz= 2 Lljxlj B ) )
> One to one assignment ==l » ¢;= cost of task / if assigned to agent j
s.a
¢ =l i=len » The variables:
j=1
",, = x; =1, if task i is assigned to agent j; 0, otherwise.
lei/' =1 Jj=1 n
=

X >0 forall i,j
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Generalized Assignment

() min f(x)= iz":ciixij

j=1i=1
s.a

n

2 Dbyx;<a,j=1...,m

i=1
B Yx;=li=IL..,n

@ x;eloli=1..,n;j=1...,m
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Research links on Location models

» EWGLA

= European working Group on Locational Analysis
* http://www.vub.ac be/EWGLA/
» Location Analysis -INFORMS
* hitp:/location.section.informs.ora/
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Design of logistics network

» Commercial Software
= Llamasoft
* https://www.llamasoft.com/solutions/network-optimization/
* LogicTools LogicNet Plus XE
— httos://www.voutube . com/watch?v=KksQbzRMwvQ
— https://www.youtube.com/watch?v=yfhHgEVLUVU
= JDA
* Network Design and Optimization
— httos://ida.com/solutions/adaptable-manufacturing-distribution-
solutions/manufacturing-plannina/network-design-and-optimization
— 2y=| |
= Amazon Supply Chain Optimization Technologies

* https://www.youtube.com/watch?v=ncwsr10f6Cw
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Vehicle Routing

» A large part of many logistics systems involves the
management of a fleet of vehicles used to serve
= warehouses
= retailers
= customers
» General class of vehicle routing problems.
» Can be applied to other areas too...
= Humanitarium Logistics
= Retailing and Logistics
= E-commerce

= Flow routing in telecommunications
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» A set of customers at known geographical locations has to
be supplied by a fleet of vehicles from a single depot.

» Each customer has a specific demand.
» Each route starts and finish at the depot.

» The objective is to find the set of routes whose total length
or cost is minimal. =
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Vehicle Routing

» Set of clients (vertex set) V={0,...,n}

= Location 0 correspond to the depot

= d;demand of client
» Set of arcs A={1,...,m}

= ¢; nonnegative cost associate with each arc (travel cost)
» k vehicles with identical capacity Q.
» Customer are visited by one and only one vehicle.
» Find de set of routes minimizing the total cost.
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Vehicle Routing model

» A set of customers at known geographical locations has to be supplied by a
fleet of vehicles from a single depot.
» Set of clients (vertex set) V={0,...,n}
= Location 0 correspond to the depot
» m vehicles with identical capacity Q
= Each route starts and finishes at the depot.
» Each customer has a specific demand.
= gidemand of clienti; i=1,...n
» The objective is to find the set of routes whose total length or cost is
minimal.
= cjnonnegative cost associate with each arc (travel cost between i and j).
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Vehicle Routing model

» Variables

1 if vehicle k visits customer j immediately after customer i;
#7100 otherwise

i=0,.,n;j=0,.,mk=1..,m

1 ifiisvisited by vehicle k;
Y = .
0 otherwise

Combinatorial Optimization 36
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Vehicle Routing model

mn

. "
min ¥ Xc¢; XXy
j=0i=0 ' k=1

st
Syu=L i=l..n o)
k=1
£yg=m, i=0 @)
k=1

4y <0, k=1...m ?3)
i=l
/rz,’oxf/‘ :éoxm =Yy i=Lomk=1...m @)
HZQ_X,,AS‘S‘—L forallS < {l,..,nfk=1...m (5
xpel0l), i=0,.,m =0 mk=1..m
y,ke{O,l}, i=0,...,mk=1..m
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Vehicle Routing

» Solve the TSP model
= Heuristics
* Savings Heuristics - Clarke & Wright (1964)
= EXCEL
* Same difficulties as for the TSP...
= Commercial Software
* ArcRoute Logistics (ESRI)
L many more
= Metaheuristics
* Local search heuristic
* ... many more

Combinatorial Optimization 38

Universitat
e
Extensions Vehicle Routing

» Vehicle routing problem with vehicles with different
capacities.

» Vehicle routing problem with time windows.
» Vehicle routing with simultaneous pickups and deliveries.
» Reverse Logistics

» Forward (products) and reverse (packages) channel for
the same customer.

» Vehicle routing with multi depots.
= Location, assignment and routing decisions
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Scheduling

» Allocation of limited resources to the processing of tasks.
= Resources
* Machines, crews, vehicles, planes, buses, personal...
= Tasks
* Jobs, flights, distribution operations, projects...
» Important role in most manufacturing, logistics and service
industries.

» Strategic and operations decisions.
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Scheduling

» Allocation of limited resources to the processing of tasks.
= Resources
* Machines, crews, vehicles, planes, buses, personal...
= Tasks
* Jobs, flights, distribution operations, projects...
» with the objective of...
= Minimize completion time; cost; etc.
» Important role in most manufacturing, logistics and service
industries.

» Strategic and operations decisions.

Combinatorial Optimization 41
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The Goals of Scheduling

» By scheduling effectively, companies use assets more
effectively and create greater capacity per dollar invested,
which, in turn, lowers cost.

» Faster delivery and better use of resources.
» Better customer service.
» Good scheduling is a competitive advantage.

i |[3:]
M
s | [22]
0 1 2 3 4 5 6 7
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Scheduling

» Applications Areas

= Logistics

= Transportation
* Many applications (train, bus, truck, airlines, etc.)
* Crew Scheduling
* Vehicle Scheduling

= Distribution

= Production and operations

Information processing and communications
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Scheduling Examples

» Transportation
= Airlines
= Train
= Public transportation
» Hospital
= Outpatient treatments
= Operating rooms
» Course Scheduling-Timetabling
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The Goals of Scheduling

» Allocation of limited resources to the processing of tasks,
with the objective of...
= Minimize completion time;
= Minimize WIP inventory;
* Keep inventory levels low
= Maximize utilization;
* Make effective use of personnel and equipment
= Minimize customer waiting time.

» ... so the goods or services are at the right place at the
right time.
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The Goals of Scheduling

» By scheduling effectively, companies use assets more

effectively and create greater capacity per dollar invested,
which, in turn, lowers cost.

» Faster delivery and better use of resources.
» Better customer service.

» Good scheduling is a competitive advantage.
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Scheduling Models

» Classify the problems
= Machine configurations
= Processing characteristics and constraints
= Objectives and performance measures
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Scheduling Models

» Notation
= njobs J={Uy, Jy, ..., Jp}
= m machines M={M;, My, ..., Mp}
= r;:release date
= d;: due date
= g;: delivery time
= w;: priority factor or weight
= Cj: completion time

Combinatorial Optimization 48
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Scheduling Models

» Machine Configurations

= Single-machine models

= Parallel-machine models
* Any machine can process the jobs.

= Flow-shop models
* multiple operations on different machines
* all jobs have identical routes

= Job-shop models
* multiple operations on different machines

Combinatorial Optimization 49
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Scheduling Models

» Processing characteristics and constraints:
= precedence constraints
= routing constraints

= sequence-dependent setup times

preemptions

tooling constraints

personal scheduling constraints
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Scheduling Models

» Objectives and performance measures:
= Makespan objectives

C,... =max{C,,C,,...,C,}

max

C, =max{C,,,Cpy,....C,, i =1,..,n

e
Barcelona
Scheduling Models

» Objectives and performance measures:
= Due date related objectives
= Lateness
L,;=C;~d,
= Minimize maximum lateness (Lmay)
= Tardiness
7, = maxlc, ~d, 0}

= Minimize the weighted tardiness / Total wsighted completion time

>w, lechj
Jj=1 J=

Combinatorial Optimization 51 Combinatorial Optimization 52
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Scheduling Methods Priority Rules for Dispatching Jobs
> Solution Methods: » First come, first served (FCFS)
= General purpose scheduling procedures = The first job to arrive at a work center is processed first
* Priority dispatching rules .
ty disp 9 » Earliest due date (EDD)
= Exact methods
* Branch-and-bound = The job with the earliest due date is processed first
* Branch-and-cut » Shortest processing time (SPP)
= Heuristics = The job with the shortest processing time is processed first
* Constructive heuristics » Longest processing time (LPT)
— Priority Rules ) X o )
X . X = The job with the longest processing time is processed first
— One-machine scheduling relaxations
= METAHEURISTICS
Combinatorial Optimization 53 Combinatorial Optimization 54
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First Come, First Served Rule

» Process first job to arrive at a work center first
» Average performance on most scheduling criteria

» Appears ‘fair’ & reasonable to customers
= |mportant for service organizations
* Example: Restaurants
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Universitat
upf.| Pompeu Fabra
Barcelona

Earliest Due Date Rule

» Process job with earliest due date first
» Widely used by many companies
= |f due dates important

= |f MRP used
* Due dates updated by each MRP run

» Performs well on many scheduling criteria
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The Job-Shop Scheduling

» A set of njobs, Ji, ..., dn
» A set of m machines, My, ..., M,

» Schedule the processing of each job by the machines.
» The objective is to minimize the maximum completion
time (makespan) .
SE85E588

= () Y

= Min Cpa= max C;.

Combinatorial Optimization 57

The Job-Shop Scheduling

» Each job consists of a sequence of operations:
= Oy
J; % = 69 0y
o = 0y ) .
» Each operation is processed by a givern"machine during
uninterrupted processing time pj;.

Pij @ @
P 82 T B
g = =y
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The Job-Shop Scheduling

» Constraints
= Each machine can process at most one job at a time.
= Each job can be processed by at most one machine at a time.
= Jobs have different processing order by the machines.
= No preemption

= 8
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The Job-Shop Scheduling

» A schedule is an allocation of the operations to
time intervals on the machines.
= Example:
* i M/ 1; Ma/2; M2/ 1;

* J2r Ma/1; Mi/1; M2/2;
* Ja: Mi/1; M2/ 3; Ma/1; wr ([ [ 2|
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The Job-Shop Scheduling

pij = processing time of job j on machine i
yij = starting time of job j on machine i

Disjunctive Model

Minimize Cinax
Subject to
Vi - Vij 2 Pij For all edges (i, j) =>(k, j)
Conax - ¥ij 2 Pij For all operations (i, j)
Yij- yi€ 2pi® O yi-y;2.p;; For all edges (i, #) — (i, j)
¥ 2.0 For all operations (i,j)
Transform in a ILP model Combinatra Optrizaion &1
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The Job-Shop Scheduling

» Disjunctive graph G=(O,D,N)

* Roy & Sussman (1964)

= Operation Oij - Node with weight pij.
* O = Set of nodes

= Arc for each consecutive operations of a job.
* D = set of (conjunctive) arcs

= Disjunctive arc for each pair of operations that are to be processed

in the same machine.

* N = set of disjunctive arcs (edges)

Combinatorial Optimization 62
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The Job-Shop Scheduling

» Disjunctive graph G=(O,D,N)
= Initial node 0
* dummy arcs from 0 to the first operation of each job.
= Final node *
* dummy arcs from the last operation of each job to *.

Combinatorial Optimization 63

Universitat
upf.| Pompeu Fabra
Barcelona

The Job-Shop Scheduling

» Example:
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The Job-Shop Scheduling

» Solution:
= Orient each disjunctive arc in one of two the possible way.
= Sequence the operations in each machine.
* complete orientation
* consistent (acyclic)
» Makespan
= Value of the longest path in the oriented graph.
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The Job-Shop Scheduling

» Feasible solution:

Combinatorial Optimization 66
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The Job-Shop Scheduling

» NP-hard in the strong sense
= Garey,Johnson and Sethi (1976).
= Earned a reputation for intractability.
» MT10 remained unsolved for over 20 years.
= 10 jobs and 10 machines
» Very few special cases can be solved in polynomial time:
= 2 machines, 2 operations/job;

= 2 machines, unit processing times.
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Clique problems

» Find set of high related elements

» Applications:
= Consider a social network, the elements represent people, find a
largest subset of people who all know each other... or buy the
same product... or...
= Marketing basket applications
= Other application in Bioinformatics, Chemistry etc.

» http://en.wikipedia.org/wiki/Clique_problem

Combinatorial Optimization 69
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Maximum Clique Problem Maximum Clique Problem
» Given a simple and undirected graph G =(V, E),with ¥ G=(LE)

={1, .., n} the setof nodes and E cVxV the set of @

edges @ o ®
» C CV isadliqueif (ij)€E, forallijeC
» A clique Cis maximum if it is the largest clique in G. @ maximum clique

= Clique cardinality @ @ w(G)=3

= 0(G) =max{ |C|: Cis a cligue of G } ©)

®
@®
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Maximum Weight Clique Problem

» Maximum (edge) Weight Clique Problem

» Given a simple and undirected graph G =(V, E ), with V'
={1, .., n} the setof nodes and E cVxV the set of
edges

» C cV isacliqueif (i,j) €E, for all ijeC
» If we assign weights a; to each edge (i,j)eE
» Let Cbe aclique and A(C) = Z,;,- belong ¢ 8jj

» we want to find a clique C with maximum A(C)

Combinatorial Optimization 71
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Maximum Weight Clique Problem

G=(VE)
0.2 @ o
@ 0.8 N 03
® nn: O 03 © maximum (edge)-
- o s weight clique
0.1 @ 07 0.2 @
0.3 05
@ ® @ 0.8 O:S o 0.3 @
3 .g 08
0.1 7 o7 AN
G o
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Maximum Clique Problem

if nodes i is in the cli
» Known formed t}onls 1o eé ris i the cique ieV
0 otherwise

Edge Formulation (EF)
S
iev

x,+x,<1 , Y@, ))eE

x efol} . VieV

Combinatorial Optimization 73

Maximum Clique Problem

Max Z =x+Xx,+X3+X,+X5+X5+X, +Xg

s.z.

x +x, <1 Xy +x5 <1 G=(Y E)

X, +x5<1 X;+ x5 =<1 ©)

X, +x, <1 Xy +xg <1 @ ® ®
X +x, <1 X5 +x <1 ®

X, +xg <1 X5 +xg <1 @

X, +x; <1 Xg +xg <1 ® ®
X, +x5 <1

X, +xg <1
X, +xg <1

x; 20, fori=1,...8
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Maximum Cut-Clique Problem

» Given a clique C, its edge neighborhood (cut-clique) is
defined by the set of edges E’(C)={(ij) EE: i €C and j €
V\C} and |E’(C)|is its size. Denote N(i)={jeV:(i))eE}.

» Maximum Cut-Clique

= Maximum edge neighborhood clique
max [E"(C)| =7

®
Q—0 @

@—0—6—=©@

e
Maximum Cut-Clique Problem

» Formulation (1/2)

G=(V,E) and  O= { gmin»-» Gmax } asetof
all possible clique’s sizes

» Variables
N {1 if nodes 7 is in the clique

X, >

0 otherwise

, _J1 if thecliquesizeisequal to ¢
w! = Y

0 otherwise
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Maximum Cut-Clique Problem Combinatorial Optimization Models
» Formulation (2/2) » Many real problems are on combinatorics nature...
?
max SN - g-(g- » How tc.> solve these problems?
ier <0 » In particular when they are of large scale...
All the edges incident Minus the ones inside » And need a l'apid response ...
. on the clique the clique . . .
subject to » Sometimes a online solution...
x,+x,<1, V(i,j)eE
Zx, = qu” I
= g0
9 =1 . " -
%W Metaheuristics is the answer!

xe{ol}, Vier ; w'e{0l}, VgeQ
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