Source code documentation for ‘Characterizing unidirectional couplings between point
processes and flows’ - Ralph G. Andrzejak and Thomas Kreuz

8. December 2011.

The source code allows you to calculate the measure L introduced in Andrzejak RG,
Kreuz T: Characterizing unidirectional couplings between point processes and flows.
EPL, 96 (2011) 50012. Please cite this paper if you use this code to calculate the
measure L. In order to understand the following documentation, you should at first read
the paper. In case you need a reprint or have any questions, please contact the authors at
ralphandrzejak at yahoo dot de.

Below we use the example of the coupled Hindmarsh-Rose dynamics studied in [1] to
illustrate the code. In particular we have:

Signall: A flow of the dynamics X
Signal2: A flow of a replica surrogate of the dynamics X
Signal3: A point process derived from dynamics Y.

All signals are of length 200T (see again [1] for the definition of T). The dynamics X is
driving dynamics Y with epsilon = 0.1442. The notation for the following source code
parameters corresponds to the one used in [1].

g: window length

s: step size

W: Theiler window

Q: total duration,

N: Number of windows

k: Number of nearest neighbours
delta_t: sampling step

Remark on time unit convention: The time step between subsequent entries in the
matlab arrays of flow signals corresponds to 1*delta_t. In other words, by going
from the element with index i to the element with index i+1, we make a step of
delta_t. Accordingly, the parameters q, s, and Q are specified in units of
delta_t. The parameters g, s and multiples thereof can directly be used as array
indices, and Q is the length of the flow arrays. Furthermore, the spike times of the point
process signals are also specified in units of delta_t and therefore one should use
delta_t=1 as input for the function ‘AndrzejakKreuzDpointprocess’ below.
Accordingly, the length of the flow signals is 400.000 samples. And the spike times are
bounded by 0 and 400.000. N and W are in units of time windows.

To run the code copy: AndrzejakKreuzExampleData.mat,
AndrzejakKreuzExample.m, AndrzejakKreuzL.m, AndrzejakKreuzDflow.m,

AndrzejakKreuzDpointprocess.m, ¥ SPIKE ISl _distance_new.m into some
directory and call AndrzejakKreuzExample.m Please look through the code and read
the following short documentation of the main functions.



A distance matrix from a flow is calculated using:

function DF=AndrzejakKreuzDflow(flow,Q,q,s,W)

Here flow is a 1-D vector of length Q containing the sample values of the flow. The
output DF is a (N, N) distance matrix. All other parameters are explained above.

A distance matrix from a point process is calculated using

function DP=AndrzejakKreuzDpointprocess(spiketimes,Q,q,s,W,dt,dchoice)

spiketimes is a 1-D vector of containing the times of spikes. The length of the vector
is determined by the number of spikes.

dchoice: In reference [1] we used the ISI distance. With this code you can also use the
SPIKE distance (see references [2-5] for more information on these distances.).
Depending on the value of dchoice, you get as output is the either ISI distance, the
SPIKE distance or both:

If you set

dchoice=1: DPisa 2-D array of size (N,N) containing the SPIKE distance.
dchoice=2: DPisa 2-D array of size (N,N) containing the ISI distance.

dchoice=2: DP is a 3-D array of size (2,N,N) containing the SPIKE distance in
DP(1,:,:) and the ISI distance in DP(2, :, ).

All other parameters are explained above.

The main function is:
function L = AndrzejakKreuzL(DArray,k,W)

DArray is a 3-D array of size (N,N,ND). It contains ND distance matrices of size (N, N).
In our example we have 3 signals. Accordingly, ND=3. For your own data you can use
any number of ND>1 distance matrices (At some point limited by the memory of your
computer). You do not have to specify ND. It will be detected automatically from the
size of DArray. The individual distance matrices can be obtained from flows and/or
point processes. The order used in our example is arbitrary. Whatever order you choose,
will also be used for the output:

L: a 2-D array of size (ND,ND). In element L(a,b) we have L(alb). For example
L(2,3)contains L(signal2 | signal3) = L(replica surrogate of flow X | point process
derived from dynamics Y). The diagonal is set to zero. For the present example, since X
is driving Y, we get a high value for L(signal 1 | signal 3) = L(flow X | point process



derived from dynamics Y). Lower values are obtained for the other non-diagonal
entries.

The following optimisation can be carried out depending on your matlab version:

In AndrzejakKreuzL.m line 45 you can replace
[dummy, Hindexes(:,:,counter3)] = sort(Hdistances(:,:,counter3));

by

[~, Hindexes(:,:,counter3)] = sort(Hdistances(:, :,counter3l));

In AndrzejakKreuzDpointprocess line 22 you can replace

[dummy,isi,time_profiles]=f SPIKE_ ISl _distance_ new(spikemat,0,duration
,dt,mod(dchoice,4));

by

[~,isi,time_profiles]=F SPIKE ISl _distance new(spikemat,0,duration,dt,
mod(dchoice,4));

References:

[1] Andrzejak RG, Kreuz T: Characterizing unidirectional couplings between point
processes and flows. EPL, 96 (2011) 50012.

[2] Kreuz T, Chicharro D, Greschner M, Andrzejak RG: Time-resolved and time-scale
adaptive measures of spike train synchrony. J Neurosci Methods, 195 (2011) 92.

[3] Kreuz T, Chicharro D, Andrzejak RG, Haas JS, Abarbanel HDI: Measuring multiple
spike train synchrony. J Neurosci Methods 183 (2009) 287.

[4] Kreuz T, Haas JS, Morelli A, Abarbanel HDI, Politi A: Measuring spike train
synchrony. J Neurosci Methods 165 (2007) 151

[5] http://www.fi.isc.cnr.it/users/thomas.kreuz/Source-Code/Spike-Sync.html




