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ABSTRACT

We numerically study a network of two identical populations of identical real-valued quadratic maps. Upon variation of the coupling strengths
within and across populations, the network exhibits a rich variety of distinct dynamics. The maps in individual populations can be synchro-
nized or desynchronized. Their temporal evolution can be periodic or aperiodic. Furthermore, one can find blends of synchronized with
desynchronized states and periodic with aperiodic motions. We show symmetric patterns for which both populations have the same type of
dynamics as well as chimera states of a broken symmetry. The network can furthermore show multistability by settling to distinct dynamics
for different realizations of random initial conditions or by switching intermittently between distinct dynamics for the same realization. We
conclude that our system of two populations of a particularly simple map is the most simple system that can show this highly diverse and
complex behavior, which includes but is not limited to chimera states. As an outlook to future studies, we explore the stability of two popu-
lations of quadratic maps with a complex-valued control parameter. We show that bounded and diverging dynamics are separated by fractal
boundaries in the complex plane of this control parameter.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0002272

Chimera states are characterized by the intriguing coexistence
of synchronization and desynchronization in networks. They
were first described in models with a very simple structure,
namely, in ring networks of identical non-locally coupled phase
oscillators,1,2 as well as in two populations of identical phase
oscillators with3 and without4 frequency mismatch between the
populations. Apart from simple phase oscillators,3–7 further work
on chimera states in two populations of time-continuous dynam-
ics used phase oscillators with coupling delay,8,9 external forcing,9

or with inertia,10–13 Stuart–Landau oscillators,13–15 pulse-coupled
oscillators,16 experimental mechanical17 or chemical oscillators,18

models of neurons,13,19,20 and social agents,21 among others.
Extensive work is also dedicated to chimera states in networks
of time-discrete maps (e.g., Refs. 22–44). There are, however,
only very few studies on chimera states in two populations of
maps.45,46 Here, we address this very simple setting and study

two populations of real-valued quadratic maps. We show that
a plentitude of distinct dynamics can be generated by varying
the coupling strengths within and across the two populations.
After being started with random initial conditions, the maps in
individual populations can synchronize or desynchronize, and
their temporal evolution can become periodic or aperiodic. Fur-
thermore, individual populations can show combinations of syn-
chronized and desynchronized states as well as combinations of
periodic and aperiodic motions. We provide various examples for
which both populations have the same type of dynamics, such as
an aperiodic motion, which is synchronous within populations
but asynchronous across populations. We furthermore show dif-
ferent chimera states, for which the symmetry between the two
identical populations is broken by the network dynamics. For
example, while one population can be synchronous and periodic,
the other population can be asynchronous and aperiodic. A key
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point of this study is that a single and very simple system is
capable of generating highly diverse and complex behavior. It
is this simplicity which allows us to describe the basic mecha-
nism behind the symmetry breaking in our system of all identical
elements.

Lattices of coupled logistic maps have been shown to exhibit
different scenarios of complete or partial synchronization (e.g.,
Refs. 47 and 48). Chimera states in a ring network of nonlo-
cally coupled logistic maps were first described by Omelchenko
and colleagues.22 Nayak and Gupte45 reported on chimera states
in two populations of sine-circle maps. The first experimen-
tal observation of chimeras in electro-optical coupled map lat-
tices in one and two dimensions was provided by Hagerstrom
et al.24 Apart from coupled logistic maps,22,23,27–30,37–39,41–44 chimera
states were illustrated for coupled Henon maps,26,32–34,36 sine-
circle maps,45,46 sine-squared maps,35,44 cosine maps,24 piecewise
linear and logistic maps,25 and cubic maps.31,39,40 They were
found for ring networks with nonlocal coupling,22–26,28–36,39,41–43

ring networks with hierarchical connectivity,38 globally coupled
networks with delay,35 two-dimensional lattices,24,40 as well as
two-,27,34,37 three-,43 and many-layer multiplex networks.39,41 Apart
from phase chimeras,22–24,28–34,36,38–43 the existence of amplitude
chimeras,28–32,34,36,38–41,43 double-well chimeras,31,39,40 nested chimera
states,38 splay chimeras,46 and solitary state chimeras34,36 was shown.
Dynamics were found to show spatial as well as spatiotemporal
chaos (e.g., Refs. 22 and 25). Further work on chimera states in
maps revealed temporal intermittency,29,32 noise-induced inter-layer
switching,44 and relay synchronization.43

By means of a linear change of variables, the logistic map can
be transformed into the quadratic map f(z) = z2 + c, which is a par-
ticularly simple map that can show chaos. For complex-valued c and
z, the quadratic map allows one to generate the fractal Julia sets and
Mandelbrot set, which made this map famous, including in popu-
lar science.49 We confine the quadratic map to real values by setting
c = −1.8 and using real-valued initial conditions. Decreasing the
control parameter from c = 0.25 to c = −2 leads to a period-
doubling bifurcation scenario. For c = −1.8, the quadratic map
shows chaotic motion, and windows of periodic solutions are close-
by on the axis of the parameter c.

We use a network of two identical populations, X and Y,
each composed by N = 100 identical quadratic maps. Each individ-
ual map is coupled with strength Cw to all other maps within its
population and with strength Ca to all maps in the other population,

X : xt+1
i = f(xt

i) +
Cw

N

∑N

j=1
[f(xt

j) − f(xt
i)]

+
Ca

N

∑N

j=1
[f(yt

j) − f(xt
i)], (1)

Y : yt+1
i = f(yt

i) +
Cw

N

∑N

j=1
[f(yt

j) − f(yt
i)]

+
Ca

N

∑N

j=1
[f(xt

j) − f(yt
i)]. (2)

Here, t is discrete time in units of the iteration step. We use ran-
dom initial conditions distributed uniformly in [−1.5, 1.5] for the

variables xt=1
i and yt=1

i . They are independent for X and Y and across
the maps i = 1, . . . , N.

To characterize the network’s dynamics, we first define the fol-
lowing time-resolved measures. The standard deviation of xt

i across
nodes (i = 1, . . . , N) is denoted by σ t

x and is used to assess the syn-
chronization within population X. We get σ t

x = 0, if at time t all
maps are identically synchronized, regardless of whether or not
their motion is periodic. For a non-synchronous motion, we get
σ t

x > 0, without normalization to some upper bound. Periodicity

with period p is assessed by δt
x,p = 〈|xt

i − x
t+p
i |〉, where | · | denotes

the absolute value and the angular brackets indicate averaging across
nodes (i = 1, . . . , N). A value of δt

x,p = 0 means that at time t, all

maps are at the beginning of a period p cycle, regardless of whether
or not they are synchronized across nodes. In general, when we
report the dynamics to be periodic with order p, we imply that p is
the minimum period. Temporal averages of σ t

x and δt
x,p are denoted

by σx and δx,p, respectively. The quantities σ t
y , σy, δ

t
y,p, and δy,p are

defined analogously for population Y.50,59 These measures allow us
to characterize different types of symmetry broken chimera states.
A dynamics with broken synchronization symmetry is detected if
σx = 0 but σy > 0, or σx > 0 but σy = 0. In contrast, σx = σy = 0
or σx ≈ σy > 0 indicates that the synchronization symmetry is not
broken. In an analogous way, the δ measures assess the periodic-
ity symmetry. The σ and δ measures are independent. For a given
dynamics, the measures can, therefore, determine if both types of
symmetry are broken, only one type of symmetry is broken, or if
the dynamics is symmetric with regard to both synchronization and
periodicity.

Before we explore the two-parameter space spanned by the cou-
pling strengths within populations and across populations, we first
show the results obtained for nine different exemplary combinations
of these coupling strengths. This includes three settings in which the
coupling across populations is stronger than the one within them.
The respective values of Cw and Ca are given in Figs. 1–4, where we
show realizations of the dynamics obtained for the nine settings.51

We use the labels 1–9 to refer to the settings in the text and to
identify them in the parameter plane displayed in Fig. 5.

Figure 1(a) shows a realization of the network’s dynamics
obtained for setting 1. Shortly after being started with random initial
conditions, at t ≈ 20, both populations enter into a joint asyn-
chronous and aperiodic dynamics. As a result, we find σ t

x ≈ σ t
y > 0

[Fig. 1(b)] and δt
x,6 ≈ δt

y,6 > 0 [Fig. 1(c)]. Starting at t ≈ 50, this

initial symmetry between the two populations’s dynamics is bro-
ken and both pass through some transient motions that are distinct
between them. Eventually, both populations enter into a period-6
motion, X at t ≈ 100 and Y at t ≈ 120. However, while popula-
tion Y is synchronous across its nodes, X remains asynchronous.
In consequence, we get δt

x,6 = δt
y,6 = 0 and σ t

x > 0, σ t
y = 0. This

configuration remains stable, as can be seen from Fig. 1(d), which
shows the same realization of the dynamics but for a later inter-
val. Averaging across this interval, we get σx = 0.78, while σy, δx,6,
and δy,6 remain zero. Visual inspection of Fig. 1(d) might suggest
that X and Y enter into a period-2 and period-3 motion, respec-
tively. However, δt

x,2 and δt
y,3 are nonzero, and p = 6 is the lowest

period for which we obtain δt
x,6 = 0 and δt

y,6 = 0. Accordingly, for

this realization, the network symmetry is broken by the dynamics
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FIG. 1. Periodic dynamics with a broken synchronization symmetry coexists with globally asynchronous and periodic dynamics. Results for two exemplary realizations
obtained for different random initial conditions with setting 1: Cw = 2.7 × 10−1 and Ca = 1.2 × 10−2. (a)–(d) First realization, (e) second realization. Panel (a)–(c) have the
same abscissa. (a) Values of the maps vs discrete time t and index i for the populations X and Y . (b) Synchronization measures σ t

x (blue) and σ t
y (red) for the same interval

as shown in panel (a). These measures take zero values for full synchronization of the corresponding population. (c) Same as panel (b), but for the periodicity measures δtx,6
(blue) and δty,6 (red), which take zero values for period-6 dynamics. (d) Same realization like in panel (a), but for a later time interval. (e) Same as panel (d), but showing the

second realization of the dynamics obtained for setting 1. We used N = 100 and c = −1.8.

of its two populations with regard to their synchronization. In
contrast, the symmetry is maintained with regard to the popula-
tions’ periodicity. This dynamics can be regarded as analogous to
phase chimeras previously described in ring networks of coupled
maps.22–24,28–34,36,38–43 Figure 1(e) shows the network dynamics still
for setting 1, but after being started with a different set of ran-
dom initial conditions. In contrast to the first realization discussed
above [Figs. 1(a)–1(d)], for this second realization, both populations
show the same type of behavior. They are periodic (δx,2 = δy,2 = 0)
and asynchronous (σx = σy = 0.79). Hence, for this second realiza-
tion, the network symmetry is not broken by the dynamics of its

populations. Such a coexistence of qualitatively different dynamics
for different random initial conditions is not a peculiarity of set-
ting 1. We found it for many of the cases we studied. This effect
of initial conditions should be investigated further in future studies
using methods such as those used in Refs. 52–54. In the following
examples, we restrict ourselves to one realization for each setting,
each selected to illustrate a different type of dynamics.

Figure 2(a) displays a realization for setting 2. During approx-
imately the first 80 iterations, both populations behave qualitatively
similar. An increasing number of nodes engages to a motion, which
is almost periodic in time with p = 6 and synchronous across nodes.
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FIG. 2. Dynamics with broken synchronization symmetry and broken periodicity symmetry. Panels (a)–(c) are analogous to Figs. 1(a)–1(c), but here for an exemplary
realization of setting 2: Cw = 1.7 × 10−4 and Ca = 1.7 × 10−2 with N = 100 and c = −1.8.

As a result, σ t
x , σ t

y , δt
x,6, and δt

y,6 all decrease during this initial phase

[Figs. 2(b) and 2(c)]. Furthermore, this emerging pattern is locked
across the two populations. Subsequently, in population Y, more
and more nodes join, and eventually all nodes are synchronized.
For t > 220, we, therefore, get σ t

y = 0 and δt
y,6 ≈ 0.01. The contrary

behavior is observed for population X. From t ≈ 80 to t ≈ 150, all
nodes return to an asynchronous and aperiodic motion. The values
of σ t

x and δt
x,6 approach the ones they had for random initial con-

ditions at t = 1. After these initial transients, population X evolves
as asynchronous and aperiodic, while Y is synchronous and almost
periodic. Population Y cannot settle to a fully periodic dynamics due
to the aperiodic input from population X, but the deviations from a
period-6 motion remain very small, δy,6 = 0.01. Accordingly, in this
example, the symmetry is broken with regard to both the synchro-
nization and periodicity of the two populations. It is analogous to
amplitude chimeras in ring networks of coupled maps.28–32,34,36,38–41,43

Above, we already included a dynamics in which the two
populations behave qualitatively the same, namely, periodic and
asynchronous [second realization of setting 1, see again Fig. 1(e)].
Further symmetric dynamics are shown in Fig. 3. Setting 3 allows
generating aperiodic and asynchronous dynamics [Fig. 3(a)]. Ape-
riodic dynamics, which are synchronous within populations but
asynchronous across the populations, can be obtained with setting
4 [Fig. 3(b)]. Setting 5 results in aperiodic and globally synchronous
dynamics [Fig. 3(c)]. A realization obtained for setting 6 is shown
in Fig. 3(d). Both populations are synchronous and periodic with

p = 3. While at first sight, there seems to be a lag-1 synchroniza-
tion between X and Y, the map values are, in fact, different for the
two populations. This is, however, difficult to perceive at the reso-
lution of the gray scale for their display. Setting 7 yields an example
for a blended pattern resulting in an intermediate degree of peri-
odicity and synchronization [Fig. 3(e)]. This pattern resembles the
initial transient of setting 2 (see again Fig. 2), but remains stable for
this realization of setting 7. At first sight, the realization obtained for
setting 8 [Fig. 3(f)] looks like a periodic and globally synchronous
dynamics. Indeed, all maps are in a period-6 motion. However, two
maps in X and three maps in Y are detached from their respective
population and are synchronized to each other instead. Accordingly,
this dynamics represents solitary states (cf. Refs. 34, 36, and 55).
Furthermore, a closer inspection of the values reveals that neither
the motion of the detached maps nor the motion of the remaining
majority of maps is synchronized across X and Y. As last example, we
show a realization of the dynamics obtained for setting 9 [Fig. 4]. In
contrast to the examples we described above, this dynamics does not
settle to a stable configuration. After initial transients, population
X synchronizes at t ≈ 750, while Y remains asynchronous (σ t

x = 0,
σ t

y > 0). Furthermore, Y remains aperiodic (δt
y,12 > 0). In contrast,

population X switches intermittently between an aperiodic motion
(e.g., δt

x,3 > 0 between 1480 < t < 1623) and an almost periodic
motion (e.g., δt

x,3 ≈ 0 between 1624 < t < 2513). Such intermittent
behavior was described for chimeras in ring networks of maps29,32

and two populations of phase oscillators with inertia11,12 before.
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FIG. 3. A variety of dynamics without symmetry breaking. All panels display values of the maps vs discrete time t and index i for the populations X and Y . Panel (a):
Setting 3. Cw = 3.8 × 10−4 and Ca = 9.5 × 10−5. We get σx = σy = 1.1, δx,12 = 1.0, and δy,12 = 1.1. For such aperiodic dynamics, we report δx,12 and δx,12, since this

includes p ∈ {2, 3, 4, 6, 12}. Panel (b): Setting 4. Cw = 4.7 × 10−1, Ca = 5.9 × 10−5, σx = σy = 0, δx,12 = 1.1, and δy,12 = 0.69. Panel (c): Setting 5. Cw = 2.0 × 10−1,

Ca = 2.5 × 10−1, σx = σy = 0, and δx,12 = δy,12 = 1.3. Panel (d): Setting 6.Cw = 4.9 × 10−1,Ca = 7.8 × 10−3, σx = σy = 0, and δx,3 = δy,3 = 0. Panel (e): Setting 7.

Cw = 1.3 × 10−2,Ca = 6.3 × 10−3,σx = 0.70,σy = 0.66, δx,6 = 0.33, and δy,6 = 0.32. Panel (f): Setting 8.Cw = 3.2 × 10−1,Ca = 2.9 × 10−5,σx = 0.22,σy = 0.18,
and δx,3 = δy,3 = 0. In all panels: N = 100 and c = −1.8.

In order to describe the mechanism behind our results, we write
the network equations [Eqs. (1) and (2)] in a different form (cf.
Refs. 23, 28, 30, 33, 38, 40, 41, 43, and 45). Defining γ = 1 − Cw −

Ca, F(Xt) = 1
N

∑N
j=1 f(xt

j), and F(Yt) = 1
N

∑N
j=1 f(yt

j), we get

X : xt+1
i = γ f(xt

i) + CwF(Xt) + CaF(Yt), (3)

Y : yt+1
i = γ f(yt

i) + CwF(Yt) + CaF(Xt), (4)

where f(z) = z2 + c continues to be the quadratic map. When
regarded in isolation, and for the ranges of Cw and Ca used here,
the rescaled map γ f exhibits a period-doubling bifurcation scenario
very similar to the one of f. However, the fine structure of the bifur-
cation diagram and the positions of the bifurcation points with
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FIG. 4. Intermittent switching between different dynamics. Panels (a) and (b) are analogous to the graphics in Fig. 3, but here for two intervals of one realization of setting 9
(Cw = 3.7 × 10−5, Ca = 1.9 × 10−2, N = 100, and c = −1.8). (c) Synchronization measures σ t

x (blue) and σ t
y (red) for a longer interval, including the intervals of panels

(a) and (b). (d) Same as panel (c), but for the periodicity measures δtx,6 (blue) and δty,6 (red).

regard to the parameter c depend on γ (results not shown). This
already leads to an impact of the coupling strengths Cw and Ca

on the characteristics of the dynamics. What is more important is
the input by F(Xt) and F(Yt). At the level of individual maps, they
add to the period-doubling bifurcation parameter c. Therefore, even
smallest differences in these terms can push the map from a peri-
odic to a chaotic regime or vice versa. The fact that these terms are
time-dependent increases the complexity further. At the level of the
network dynamics, the F(Xt) and F(Yt) terms break the symmetry
between the two populations since their positions are crossed over
in Eqs. (3) and (4). Therefore, once X and Y enter into different
types of dynamics, also F(Xt) and F(Yt) differ, resulting in a differ-
ent input for X and Y. Like reasoned above, these different inputs
can potentially push X and Y into different dynamical regimes, again
leading to different F(Xt) and F(Yt), and so on. This process may
then either amplify or reduce the differences in the dynamics of X
and Y. For certain values of Cw and Ca in combination with some
initial conditions, this mechanism leads to the stabilization of a

symmetry broken dynamics [see again first realization of setting 1 in
Figs. 1(a)–1(d)]. For the same Cw and Ca, but in combination with
other transitory dynamics, the difference in X and Y can fade out.
Accordingly, an initial symmetry breaking between X and Y does not
always lead to the stabilization of a symmetry broken chimera state.
Instead, the system can likewise settle to a symmetric dynamics [see
again second realization of setting 1 in Fig. 1(e)]. For other Cw and
Ca, only symmetry broken (see again setting 2 in Fig. 2) or only sym-
metric patterns are stable [see again settings 3–7 in Figs. 3(a)–3(e).
Setting 8 shows a plentitude of qualitatively different patterns for dif-
ferent initial conditions, only one of which is displayed in Fig. 3(f)].
Finally, again for other combinations of the coupling strengths, the
dynamics might not settle down to a stable pattern but switch inter-
mittently between different dynamical regimes (see again setting 9
in Fig. 4).

After inspecting details of individual realizations for exemplary
pairings of Cw and Ca, we now explore the full two-parameter plane
spanned by these coupling strengths. Figure 5(a) allows identifying
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FIG. 5. Synchronization (a) and periodicity (c) of individual populations as well as the symmetry breaking of these properties across populations [(b), (d), and (e)] in
dependence on the coupling strengths. We vary the coupling within populations Cw and across populations Ca equidistantly spaced in 366 steps on a logarithmic scale but
keep N = 100 and c = −1.8. The labels 1–9 mark the combinations of Cw and Ca used for the nine settings discussed in the text and used as examples in Figs. 1–4.
They are in the same positions in all panels, and their different colors are only used to enhance readability. The cyan diagonal marks Cw = Ca. For each combination, we
generate 50 independent realizations of the network dynamics [Eqs. (1) and (2)] for 50 different random initial conditions, where the same 50 realizations are used across all
panels. For each realization, we then compute the temporal averages σx , σy , δx,p, and δy,p for t ∈ [10 000, 12 000]. In all panels, the following maximal and minimal values
are taken across the 50 realizations. (a) Zero values of min{σx} indicate that X exhibits a fully synchronous motion for at least one of the realizations. (b) At the nonzero
max{|σx − σy |} values, the symmetry between the populations is broken with regard to their synchronization for at least one realization. If, for a given combination of Cw

and Ca, a certain realization results in the minimal value in panel (a), this does neither imply nor rule out that the same realization leads to the maximum value in panel (b).
The reason is that panel (b) does not only depend on σx but also on σy . The panels (c) and (d) are analogous to (a) and (b), but based on the measures of periodicity δx,12
and δy,12. (e) Nonzero max{|σx − σy | · |δx,12 − δy,12|} values indicate that the symmetry was broken for both synchronization and periodicity in at least one realization. If,
for a given combination of Cw and Ca, a certain realization results in the maximum value in panel (b), this does neither imply nor rule out that the same realization leads to
the maximum value in panel (e). Both |σx − σy | and |δx,12 − δy,12|, as opposed to only one of these differences, have to be high to reach the maxima displayed in panel (e).
Analogous relations hold for panels (d) and (e).

the regions in this parameter plane for which X shows a fully syn-
chronous motion for at least one of 50 independent realizations
(dark brown). These are complemented by regions for which we
obtain only dynamics with various degrees of desynchronization
(red, yellow to white). The strongest degrees of synchronization
symmetry breaking between the populations [yellow regions in
Fig. 5(b)] are found for a subset of parameter settings at which
individual populations can show fully synchronous dynamics [dark
brown regions in Fig. 5(a)]. A certain symmetry across the diagonals
in the results in Figs. 5(a) and 5(b) can be attributed to the influ-
ence of γ , which is symmetric in Cw and Ca. In contrast, the driving

caused by F(Xt) and F(Yt) in Eqs. (3) and (4) is not symmetric in
Cw and Ca. Somewhat more complicated patterns are seen above
the diagonals in Figs. 5(a) and 5(b), i.e., where the coupling across
populations is stronger than the one within populations. The panels
Figs. 5(c) and 5(d) are analogous to Figs. 5(a) and 5(b), but based
on the measures of periodicity. We observed dynamics with periods
p ∈ 2, 3, 4, 6, 12, and here depict results for p = 12, because this
includes all lower order periods. With regard to periodicity, more
complex patterns, including two periodic but not symmetry bro-
ken windows centered around Cw ≈ 4.7 × 10−1, Ca ≈ 4.7 × 10−3,
and Cw ≈ 3.6 × 10−1, Ca ≈ 1.2 × 10−1 are seen below the diagonals.
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FIG. 6. Octopus’s garden. In panels (a)–(c), gray colors show the complement of the Mandelbrot set, i.e., the set of complex c for which the values of an individual quadratic
map initiated at z = 0 diverge to infinity. Darker gray indicates a faster divergence. Turquoise areas inside the Mandelbrot set show the set of complex c for which the
iterates of the two populations of coupled maps [Eqs. (1) and (2)] remain bounded for all times. Dark brown to yellow colors are used for those c for which these iterates
diverge to infinity, where yellow colors indicate a slower divergence. Panels (a)–(h) are obtained for Cw = 2.7 × 10−1 and Ca = 1.2 × 10−2 (setting 1). Panels (b)–(h) are
successive zooms, magnifying the dashed squares in the preceding panels (a)–(g). Axes labels indicate c values in the outermost corners. Panels (i)–(l) are obtained for
Cw = 1.7 × 10−4 and Ca = 1.7 × 10−2 (setting 2). Here, the instabilities can collide, cross, and overlay each other. In each panel, we use different color codes to enhance
the contrast. Initial conditions are always generated in the following way. We start the uncoupled quadratic map with z = 0 and take the i-th and i − 1th iterate as initial
condition for the ith map in X and Y , respectively (i = 1, . . . ,N = 100). To allow to better resolve the details of these patterns, all panels are magnified in Figs. 1–12 in the
supplementary material.
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The most prominent region of periodicity symmetry breaking, on
the other hand, is found above the diagonal and coincides with a
region of synchronization symmetry breaking (the region including
settings 2 and 9 and limited from below by setting 7). That does not
necessarily mean that the symmetry was broken in both properties.
Likewise, the symmetry could be broken for the synchronization
in some realizations and for the periodicity in some other realiza-
tions. However, as revealed by panel Fig. 5(e), this region indeed
comprises realizations of the dynamics for which the symmetry is
broken for both synchronization and periodicity. At the diagonals
of the plots, we have Cw = Ca, corresponding to a network with one
population of identical and identically coupled maps. The maximal
across-population differences of the synchronization and periodic-
ity measures [Figs. 5(b), 5(d), and 5(e)] can nonetheless be non-zero
since the values for individual populations are non-zero and show
finite-size fluctuations across the two populations. As a whole, the
results shown in Fig. 5, complement the findings first described by
Omelchenko et al.22,23 and Hagerstrom et al.24 according to which
chimera states can be found at the transition between spatial coher-
ence and incoherence in rings and lattices of coupled maps. We
here find chimera states at the transition between synchronous vs
asynchronous and periodic vs aperiodic motions.

In summary, we show that two populations of coupled
quadratic maps show a plentitude of symmetric dynamics and sym-
metry broken chimera states. These patterns arise spontaneously
from random initial conditions, i.e., there is no need to craft initial
conditions to induce them. Abrams et al.4 argued that their system
of two populations of coupled phase oscillators was the simplest sys-
tem that supports chimera states. Since our system is based on a
time-discrete map, and moreover on a particularly simple map, we
can claim that our system is even simpler than the one of Abrams
and colleagues. In fact, the results which we present here are sup-
posedly only the tip of the iceberg of the system’s complexity. First
of all, we only show selected realizations for nine different com-
binations of the coupling strengths within and across population.
We observed further types of symmetric and asymmetric patterns,
which are not shown here for the sake of conciseness. We assume
that yet unobserved patterns can be found upon further exploration
of the parameter space spanned not only by the coupling strengths
Cw and Ca but also by the system size N and control parameter
of individual maps c. This might also include dynamics, which we
could not find despite actively searching for them, such as dynamics
for which the symmetry is broken with regard to their periodicity
but not with regard to their synchronization. Furthermore, we only
studied a limited number of iterations. The dynamics we illustrate
here are typically stabilized after some hundreds of iterations. How-
ever, we cannot rule out that some of these dynamics are, in fact,
long transients that eventually collapse to some other dynamics (cf.
Refs. 11, 12, 29, 32, and 56).

Finally, so far, we have only used a real-valued c for the
quadratic map f(z) = z2 + c. It remains to be explored what types
of dynamics can be discovered for complex values of c. The Mandel-
brot set is defined by the set of complex c for which the values of the
quadratic map initiated at z = 0 remain bounded for all times. For
those c that form the complement of the Mandelbrot set, the map
values diverge to infinity.49 As an outlook, we present an analysis
(Fig. 6) of the complex values of c from within the Mandelbrot set.

We determine for which of these c the values of our two populations
of coupled quadratic maps remain bounded. This approach is dif-
ferent from ring networks of N locally coupled quadratic maps for
which the complex control parameters are varied independently for
each map yielding a spatial Mandelbrot set of dimensionality 2N.57,58

Since we use the same control parameter for all maps, we can display
the results in the complex plane. We find that the c values for which
the dynamics remain bounded and those for which the dynamics
escapes to infinity are separated by fractal boundaries fragmenting
the Mandelbrot set in a rich variety of ways (Fig. 6). Evidently, our
system inherits this capacity to generate a fractal structure from
the quadratic map. The high dimensionality of our system, how-
ever, leads to additional complexity, and a study of these intriguing
fractal, self-similar patterns, which at some scales resemble octopus
tentacles, remains the subject for future work.

SUPPLEMENTARY MATERIAL

See the supplementary material consisting of Figs. 1–12 for
enlarged displays of the 12 panels of Fig. 6.
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