Music Information Research Lab
We work on the following research topics: sound and music description, music information retrieval, singing voice synthesis, audio source separation, music and audio processing.
Our current challenges are:
- Exploit the multimodal character of music to enhance its automatic processing.
- Reduce the semantic gap between automatic features and user descriptors through user-centered paradigms.
- Connect music description and music creation.
- Incorporate advanced learning techniques for music processing.
- Apply our current know-how on singing voice modelling to statistical-based modelling of animal vocalizations.
Team
Emilia Gómez, Visiting Professor, Head of lab | Juan Gómez, PhD student |
Jordi Bonada, Postdoc | Helena Cuesta, PhD student |
Perfecto Herrera, Postdoc | Lorenzo Porcaro, PhD student |
Merlijn Blaauw, PhD student | Roser Batlle, Research engineer |
Research
Within the area of Music Information Retrieval, we aim at automatically generating “descriptors” that capture the sonological or musical features that are embedded in the audio signals. More details about our research in Music Information Retrieval.
Our research in the field of audio signal processing is wide and multidisciplinary, with an important focus on technology transfer acknowledged by dozens of patents and several commercial products of great success. Currently our interests spread in the area of singing voice synthesis, voice transformation, source separation and automatic soundscape generation. More details about our research in Voice and Audio Processing.