We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Derkach D, Ruiz A, Sukno FM. Head Pose Estimation Based on 3-D Facial Landmarks Localization and Regression. FG 2017 Workshop on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, Washington DC, USA, in press, 2017.

D. Derkach, A. Ruiz and F.M. Sukno. Head Pose Estimation Based on 3-D Facial Landmarks Localization and Regression. FG 2017 Workshop on Dominant and Complementary Emotion Recognition Using Micro Emotion Features and Head-Pose Estimation, Washington DC, USA, in press, 2017.

In this paper we present a system that is able to estimate head pose using only depth information from consumer RGB-D cameras such as Kinect 2. In contrast to most approaches addressing this problem, we do not rely on tracking and produce pose estimation in terms of pitch, yaw and roll angles using single depth frames as input. Our system combines three different methods for pose estimation: two of them are based on state-of-the-art landmark detection and the third one is a dictionary-based approach that is able to work in especially challenging scans where landmarks or mesh correspondences are too difficult to obtain. We evaluated our system on the SASE database, which consists of ∼ 30K frames from 50 subjects. We obtained average pose estimation errors between 5 and 8 degrees per angle, achieving the best performance in the FG2017 Head Pose Estimation Challenge. Full code of the developed system is available on-line.

Additional information: