We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back AbuRa’ed A, Saggion H. LaSTUS/TALN at Complex Word Identification (CWI) 2018 Shared Task. Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications

AbuRa’ed A, Saggion H. LaSTUS/TALN at Complex Word Identification (CWI) 2018 Shared Task. Proceedings of the Thirteenth Workshop on Innovative Use of NLP for Building Educational Applications

This paper presents the participation of the LaSTUS/TALN team in the Complex Word Identification (CWI) Shared Task 2018 in the English monolingual track . The purpose of the task was to determine if a word in a given sentence can be judged as complex or not by a certain target audience. For the English track, task organizers provided a training and a development datasets of 27,299 and 3,328 words respectively together with the sentence in which each word occurs. The words were judged as complex or not by 20 human evaluators; ten of whom are natives. We submitted two systems: one system modeled each word to evaluate as a numeric vector populated with a set of lexical, semantic and contextual features while the other system relies on a word embedding representation and a distance metric. We trained two separate classifiers to automatically decide if each word is complex or not. We submitted six runs, two for each of the three subsets of the English monolingual CWI track.

Additional material: