List of results published directly linked with the projects co-funded by the Spanish Ministry of Economy and Competitiveness under the María de Maeztu Units of Excellence Program (MDM-2015-0502).

List of publications acknowledging the funding in Scopus.

The record for each publication will include access to postprints (following the Open Access policy of the program), as well as datasets and software used. Ongoing work with UPF Library and Informatics will improve the interface and automation of the retrieval of this information soon.

The MdM Strategic Research Program has its own community in Zenodo for material available in this repository   as well as at the UPF e-repository   

 

 

Back Aspandi D, Martinez O, Sukno F, Binefa X. Fully End-to-End Composite Recurrent Convolution Network for Deformable Facial Tracking In The Wild. 14th IEEE International Conference on Automatic Face & Gesture Recognition

Aspandi D, Martinez O, Sukno F, Binefa X. Fully End-to-End Composite Recurrent Convolution Network for Deformable Facial Tracking In The Wild. 14th IEEE International Conference on Automatic Face & Gesture Recognition

Human facial tracking is an important task in computer vision, which has recently lost pace compared to other facial analysis tasks. The majority of current available tracker possess two major limitations: their little use of temporal information and the widespread use of handcrafted features, without taking full advantage of the large annotated datasets that have recently become available. In this paper we present a fully end-to-end facial tracking model based on current state of the art deep model architectures that can be effectively trained from the available annotated facial landmark datasets. We build our model from the recently introduced general object tracker Re, which allows modeling the short and long temporal dependency between frames by means of its internal Long Short Term Memory (LSTM) layers. Facial tracking experiments on the challenging 300-VW dataset show that our model can produce state of the art accuracy and far lower failure rates than competing approaches. We specifically compare the performance of our approach modified to work in tracking-by-detection mode and showed that, as such, it can produce results that are comparable to state of the art trackers. However, upon activation of our tracking mechanism, the results improve significantly, confirming the advantage of taking into account temporal dependencies.

doi: 10.1109/FG.2019.8756630