Toumanidou T, Noailly J, Ceresa M, Zhang C, López-Linares K, Macía I, González Ballester M.A. Patient-specific modeling of unruptured human abdominal aortic aneurysms using deformable hexahedral meshes. International Journal of Computer Assisted Radiology and Surgery
Toumanidou T, Noailly J, Ceresa M, Zhang C, López-Linares K, Macía I, González Ballester M.A. Patient-specific modeling of unruptured human abdominal aortic aneurysms using deformable hexahedral meshes. International Journal of Computer Assisted Radiology and Surgery
Toumanidou T, Noailly J, Ceresa M, Zhang C, López-Linares K, Macía I, González Ballester M.A. Patient-specific modeling of unruptured human abdominal aortic aneurysms using deformable hexahedral meshes. International Journal of Computer Assisted Radiology and Surgery, vol. 12, Suppl. 1 (CARS 2017)
Abdominal aortic aneurysm (AAA) disease is a pathological dilation of the aorta involving degeneration of the wall and can lead to aneurysmal rupture with a 90% mortality rate. Although the maximum transverse AAA diameter (DMAX) is the most commonly used predictor of rupture risk and warrants surgery for DMAX>5.5 cm, the reported rupture for smaller aneurysms is up to 23%. Instead, wall stresses obtained through finite element (FE) models that consider the heterogeneous and anisotropic behavior of the wall layers were suggested as a more accurate rupture predictor. Our goal is the generation of patient-specific volumetric FE meshes of unruptured AAA via open-source and automatic workflows aiming to address the following challenges: -Structured hexahedral meshes are required for mesh convergence in the radial direction -Thrombus and outer wall segmentation is challenging because of lack of contrast and fuzzy borders -The workflow should involve few if any manual operations -Ideally, open-source libraries would allow for adaptation of the workflow to any geometry