The following list includes a selection of recent and earlier publications by the PIs relevant to our current research


Huerga Encabo H, Traveset L, Argilaguet J, Angulo A, Nistal-Villán E, Jaiswal R, Escalante CR, Gekas C, Meyerhans A, Aramburu J and López-Rodríguez C. The transcription factor NFAT5 limits infection-induced type I interferon responses. (2020). J Exp Med. 217, e20190449.


Aramburu J and López Rodríguez C. Regulation of Inflammatory Functions of Macrophages and T Lymphocytes by NFAT5. (2019). Frontiers Immunol.10, 535.


Buxadé M, Huerga Encabo H, Riera-Borrull M, Quintana-Gallardo L, López-Cotarelo P, Tellechea M, Martínez-Martínez S, Redondo JM, Martín-Caballero J, Flores JM, Bosch E, Rodríguez-Fernández JL, Aramburu J and López-Rodríguez C. (2018). Macrophage-specific MHCII expression is regulated by a remote Ciita enhancer controlled by NFAT5. J Exp Med 215: 2901-2918


Tellechea M, Buxadé M, Tejedor S, Aramburu J and López-Rodríguez C. (2017). NFAT5-regulated macrophage polarization supports the proinflammatory function of macrophages and T lymphocytes. J Immunol. 200:305-315


Alberdi M, Iglesias M, Tejedor S, Merino R, López-Rodríguez C and Aramburu J. (2017). Context-dependent regulation of Th17-associated genes and IFNγ expression by the transcription factor NFAT5. Immunol Cell Biol. 95:56-67


López-Rodríguez C, Aramburu J and Berga-Bolaños R. (2015). Transcription factors and target genes of pre-TCR signaling. Cell Mol Life Sci. 72: 2305-2321


Boland BS, Widjaja CE, Banno A, Zhang B, Kim SH, Stoven S, Peterson MR, Jones MC, Su HI, Crowe SE, Bui JD, Ho SB, Okugawa Y, Goel A, Marietta EV, Khosroheidari M, Jepsen K, Aramburu J, López-Rodríguez C, Sandborn WJ, Murray JA, Harismendy O and Chang JT. (2015). Immunodeficiency and autoimmune enterocolopathy linked to NFAT5 haploinsufficiency. J Immunol. 194: 2551-2560


Aramburu J, Ortells MC, Tejedor S, Buxadé M and López-Rodríguez C. (2014). Transcriptional Regulation of the Stress Response by mTOR. (review) Science Signaling 7: re2


Berga-Bolaños R, Alberdi M, Buxadé M, Aramburu J and López-Rodríguez C. (2013). NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proc Natl Acad Sci USA. 110: 16091-16096


Buxadé M, Lunazzi G, Minguillón J, Iborra I, Berga-Bolaños R, del Val M, Aramburu J and López-Rodríguez C. (2012). Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J Exp Med. 209: 379-393


Ortells MC, Morancho B, Drews-Elger K, Viollet B, Laderoute KR, López-Rodríguez C and Aramburu J. (2012). Transcriptional regulation of gene expression during osmotic stress responses by the mammalian target of rapamycin. Nucleic Acids Res. 40: 4368-4384


Berga-Bolaños R, Drews-Elger K, Aramburu J and López-Rodríguez C. (2010). NFAT5 regulates T lymphocyte homeostasis and CD24-dependent T cell expansion under pathologic hypernatremia. J Immunol. 185: 6624-6635


Drews-Elger K, Ortells MC, Rao A, López-Rodríguez C and Aramburu J. (2009). The transcription factor NFAT5 is required for cyclin expression and cell cycle progression in cells exposed to hypertonic stress. PLoS ONE 4: e5245


Estrada Gelonch A, Aramburu J and López-Rodríguez C. Exclusion of NFAT5 from mitotic chromatin resets its nucleo-cytoplasmic distribution in interphase. (2009). PLoS ONE. 4: e7036


Morancho B, Minguillón J, Molkentin JD, López-Rodríguez C and Aramburu J. (2008). Analysis of the transcriptional activity of endogenous NFAT5 in primary cells using transgenic NFAT-luciferase reporter mice. BMC Molecular Biology. 9:13


Aramburu J, Drews-Elger K, Estrada-Gelonch A, Minguillón J, Morancho B, Santiago V and López-Rodríguez C. (2006). Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem Pharmacol. 72:1597-1604


Minguillón J, Morancho B, Kim S-J, López-Botet M and Aramburu J. (2005). Concentrations of cyclosporine A and FK506 that inhibit IL-2 induction in human T cells do not affect TGF-β1 biosynthesis, whereas higher doses of cyclosporin A trigger apoptosis and release of preformed TGF-β1. J Leukocyte. Biol. 77: 748-758


López-Rodríguez C, Antos CL, Shelton JM, Richardson JA, Lin F, Novobrantseva TI, Bronson RT, Igarashi P, Rao A and Olson EN. (2004). Loss of NFAT5 results in renal atrophy and lack of tonicity responsive gene expression. Proc Natl Acad Sci USA. 101: 2392-2397


Jauliac S, López-Rodríguez C, Shaw LM, Rao A and Toker A. (2002). The role of NFAT transcription factors in the regulation of integrin-mediated carcinoma invasion. Nature Cell Biol. 4: 540-544


Stroud JC, López-Rodríguez C, Rao A and Chen L. (2002). Structure of a TonEBP-DNA complex reveals DNA encircled by a transcription factor. Nature Struct. Biol. 9: 90-94. Journal cover.


López-Rodríguez C, Aramburu J, Jin L, Rakeman AS, Michino M and Rao A. (2001). Bridging the NFAT and NF-kappaB families: NFAT5 dimerization regulates cytokine gene transcription in response to osmotic stress. Immunity 15: 47-58


Okamura H, Aramburu J, García-Rodríguez C, Viola JP, Raghavan A, Tahiliani M, Zhang X, Qin J, Hogan PG and Rao A. (2000). Concerted dephosphorylation of the transcription factor NFAT1 induces a conformational switch that regulates transcriptional activity. Mol Cell. 6: 539-550


López-Rodríguez C, Aramburu J, Rakeman AS and Rao A. (1999). NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc Natl Acad Sci USA. 96: 7214-7219


Aramburu J, Yaffe MB, López-Rodríguez C, Cantley LC, Hogan PG and Rao A. (1999). Affinity-driven peptide selection yields an NFAT inhibitor more selective than cyclosporin A. Science 285: 2129-2133


Aramburu J, García-Cózar F, Raghavan A, Okamura H, Rao A and Hogan PG. (1998). Selective inhibition of NFAT activation by a peptide spanning the calcineurin targeting site of NFAT. Mol Cell. 1: 627-637


Aramburu J, Azzoni L, Rao A and Perussia B. (1995). Activation and expression of the nuclear factors of activated T cells, NFATp and NFATc in human natural killer cells: regulation upon CD16 ligand binding. J Exp Med. 182: 801-810