Back Cell lesson: better coordinated than isolated

Cell lesson: better coordinated than isolated

01.06.2021

 

Blasco-Moreno B, de Campos-Mata L, Böttcher R, García-Martínez J, Jungfleisch J, Nedialkova D, Chattopadhyay S, Gas M, Oliva B, Pérez-Ortín J, Leidel S, Choder M & Díez J. The exonuclease Xrn1 activates transcription and translation of mRNAs encoding membrane proteins. Nature Communications, March, 2019. https://doi.org/10.1038/s41467-019-09199-6.

 

This paper identifies a single key coordinator of the three main stages of gene expression to maintain the proper homeostasis of membrane proteins. This coordination may be important to prevent their toxic aggregation

 

Abstract

The highly conserved 5’–3’ exonuclease Xrn1 regulates gene expression in eukaryotes by coupling nuclear DNA transcription to cytosolic mRNA decay. By integrating transcriptome-wide analyses of translation with biochemical and functional studies, we demonstrate an unanticipated regulatory role of Xrn1 in protein synthesis. Xrn1 promotes translation of a specific group of transcripts encoding membrane proteins. Xrn1-dependence for translation is linked to poor structural RNA contexts for translation initiation, is mediated by interactions with components of the translation initiation machinery and correlates with an Xrn1-dependence for mRNA localization at the endoplasmic reticulum, the translation compartment of membrane proteins. Importantly, for this group of mRNAs, Xrn1 stimulates transcription, mRNA translation and decay. Our results uncover a crosstalk between the three major stages of gene expression coordinated by Xrn1 to maintain appropriate levels of membrane proteins.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multimedia

Categories:

SDG - Sustainable Development Goals:

Els ODS a la UPF

Contact