29/11/2023 Seminari del COLT, a càrrec d'Alessandro Laio, SISSA (Scuola Internazionale Superiore di Studi Avanzati)

"Identifying informative distance measures in high-dimensional feature spaces", a càrrec d'Alessandro Laio, SISSA (Scuola Internazionale Superiore di Studi Avanzati)

20.11.2023

 

 

Dia: 29 de novembre del 2023
Horari: de 12.00 a 13.00
Lloc: sala 52.737

 

Description:
Real-world data  typically contain a large number of features that are often heterogeneous in nature, relevance, and also units of measure. When assessing the similarity between data points, one can build various distance measures using subsets of these features. Finding a small set of features that still retains sufficient information about the dataset is important for the successful application of many statistical learning approaches.
We introduce an approach that can assess the relative information retained when using two different distance measures, and determine if they are equivalent, independent, or if one is more informative than the other. This test can be used to identify the most informative distance measure  out of a pool of candidates, to compare the representations in deep neural networks, and to infer causality in high-dimensional dynamic processes and time series.

Multimedia

Categorías:

ODS - Objetivos de desarrollo sostenible:

Els ODS a la UPF

Contact