We develop a large number of software tools and hosting infrastructures to support the research developed at the Department. We will be detailing in this section the different tools available. You can take a look for the moment at the offer available within the UPF Knowledge Portal, the innovations created in the context of EU projects in the Innovation Radar and the software sections of some of our research groups:

 

 Artificial Intelligence

 Nonlinear Time Series Analysis

 Web Research 

 

 Music Technology

 Interactive  Technologies

 Barcelona MedTech

 Natural Language  Processing

 Nonlinear Time Series  Analysis

UbicaLab

Wireless Networking

Educational Technologies

GitHub

 

 

Back Manatunga, K., Hernández-Leo, D. PyramidApp: Scalable Method Enabling Collaboration in the Classroom. Proceedings of the 11th European Conference on Technology Enhanced Learning (EC-TEL 2016)

Manatunga, K., Hernández-Leo, D. PyramidApp: Scalable Method Enabling Collaboration in the Classroom. Proceedings of the 11th European Conference on Technology Enhanced Learning (EC-TEL 2016)

Computer Supported Collaborative Learning methods support fruitful social interactions using technological mediation and orchestration. However, studies indicate that most existing CSCL methods have not been applied to large classes, means that they may not scale well or that it’s unclear to what extent or with which technological mechanisms scalability could be feasible. This paper introduces and evaluates PyramidApp, implementing a scalable pedagogical method refining Pyramid (aka Snowball) collaborative learning flow pattern. Refinements include rating and discussing to reach upon global consensus. Three different face-to-face classroom situations were used to evaluate different tasks of pyramid interactions. Experiments led to conclude that pyramids can be meaningful with around 20 participants per pyramid of 3–4 levels, with several pyramids running in parallel depending on the classroom size. An underpinning algorithm enabling elastic creation of multiple pyramids, using control timers and triggering flow awareness facilitated scalability, dynamism and overall user satisfaction in the experience.

Keywords: Computer-Supported Collaborative Learning, Pyramid / Snowball, Collaborative Learning Flow, Pattern, Large Groups, Classroom

Additional material