Garcia-Canadilla P, de Vries T, Gonzalez-Tendero A, Bonnin A, Gratacos E, Crispi F, Bijnens B, Zhang C. Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction. PLoS ONE
List of results published directly linked with the projects co-funded by the Spanish Ministry of Economy and Competitiveness under the María de Maeztu Units of Excellence Program (MDM-2015-0502).
List of publications acknowledging the funding in Scopus.
The record for each publication will include access to postprints (following the Open Access policy of the program), as well as datasets and software used. Ongoing work with UPF Library and Informatics will improve the interface and automation of the retrieval of this information soon.
The MdM Strategic Research Program has its own community in Zenodo for material available in this repository as well as at the UPF e-repository
Garcia-Canadilla P, de Vries T, Gonzalez-Tendero A, Bonnin A, Gratacos E, Crispi F, Bijnens B, Zhang C. Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction. PLoS ONE
Garcia-Canadilla P, de Vries T, Gonzalez-Tendero A, Bonnin A, Gratacos E, Crispi F, Bijnens B, Zhang C. Structural coronary artery remodelling in the rabbit fetus as a result of intrauterine growth restriction. PLoS ONE
Intrauterine growth restriction (IUGR) is a fetal condition that affects up to 10% of all pregnancies and is associated with cardiovascular structural and functional remodelling that persists postnatally. Some studies have reported an increase in myocardial coronary blood flow in severe IUGR fetuses which has been directly associated to the dilatation of the coronary arteries. However, a direct measurement of the coronaries’ lumen diameter in IUGR has not been reported before. The aim of this paper is to perform, for the first time, a quantitative analysis of the effects of IUGR in cardiac geometry and coronary vessel size in a well-known rabbit model of IUGR using synchrotron-based X-ray Phase Contrast Tomography Imaging (X-PCI). Eight rabbit fetal hearts were imaged non-destructively with X-PCI. 3D reconstructions of the coronary arterial tree were obtained after semi-automatic image segmentation. Different morphometric features including vessel lumen diameter of the three main coronaries were automatically quantified. IUGR fetuses had more globular hearts and dilated coronary arteries as compared to controls. We have quantitatively shown that IUGR leads to structural coronary vascular tree remodelling and enlargement as an adaptation mechanism in response to an adverse environment of restricted oxygen and nutrients and increased perfusion pressure.
Open access article: https://doi.org/10.1371/journal.pone.0218192