List of results published directly linked with the projects co-funded by the Spanish Ministry of Economy and Competitiveness under the María de Maeztu Units of Excellence Program (MDM-2015-0502).

List of publications acknowledging the funding in Scopus.

The record for each publication will include access to postprints (following the Open Access policy of the program), as well as datasets and software used. Ongoing work with UPF Library and Informatics will improve the interface and automation of the retrieval of this information soon.

The MdM Strategic Research Program has its own community in Zenodo for material available in this repository   as well as at the UPF e-repository   



Back Barbieri F, Ballesteros M, Ronzano F, Saggion H. Multimodal Emoji Prediction. Proceedings of the North American Chapter of ACL (NAACL)

Barbieri F, Ballesteros M, Ronzano F, Saggion H. Multimodal Emoji Prediction. Proceedings of the North American Chapter of ACL (NAACL)

Emojis are small images that are commonly included in social media text messages. The combination of visual and textual content in the same message builds up a modern way of communication, that automatic systems are not used to deal with. In this paper we extend recent advances in emoji prediction by putting forward a multimodal approach that is able to predict emojis in Instagram posts. Instagram posts are composed of pictures together with texts which sometimes include emojis. We show that these emojis can be predicted by using the text, but also using the picture. Our main finding is that incorporating the two synergistic modalities, in a combined model, improves accuracy in an emoji prediction task. This result demonstrates that these two modalities (text and images) encode different information on the use of emojis and therefore can complement each other.