[PhD Thesis] Unsupervised learning for parametric optimization in wireless networks
List of results published directly linked with the projects co-funded by the Spanish Ministry of Economy and Competitiveness under the María de Maeztu Units of Excellence Program (MDM-2015-0502).
List of publications acknowledging the funding in Scopus.
The record for each publication will include access to postprints (following the Open Access policy of the program), as well as datasets and software used. Ongoing work with UPF Library and Informatics will improve the interface and automation of the retrieval of this information soon.
The MdM Strategic Research Program has its own community in Zenodo for material available in this repository as well as at the UPF e-repository
[PhD Thesis] Unsupervised learning for parametric optimization in wireless networks
Author: Rasoul Nikbakht Silab
Supervisors: Àngel Lozano Solsona
This thesis studies parametric optimization in cellular and cell-free networks, exploring data-based and expert-based paradigms. Power allocation and power control, which adjust the transmit power to meet different fairness criteria such as max-min or max-product, are crucial tasks in wireless communications that fall into the parametric optimization category. The state-of-the-art approaches for power control and power allocation often demand huge computational costs and are not suitable for real-time applications. To address this issue, we develop a general-purpose unsupervised-learning approach for solving parametric optimizations; and extend the well-known fractional power control algorithm. In the data-based paradigm, we create an unsupervised learning framework that defines a custom neural network (NN), incorporating expert knowledge to the NN loss function to solve the power control and power allocation problems. In this approach, a feedforward NN is trained by repeatedly sampling the parameter space, but, rather than solving the associated optimization problem completely, a single step is taken along the gradient of the objective function. The resulting method is applicable for both convex and non-convex optimization problems. It offers two-to-three orders of magnitude speedup in the power control and power allocation problems compared to a convex solver—whenever appliable. In the expert-driven paradigm, we investigate the extension of fractional power control to cell-free networks. The resulting closed-form solution can be evaluated for uplink and downlink effortlessly and reaches an (almost) optimum solution in the uplink case. In both paradigms, we place a particular focus on large scale gains—the amount of attenuation experienced by the local-average received power. The slow-varying nature of the large-scale gains relaxes the need for a frequent update of the solutions in both the data-driven and expert-driven paradigms, enabling real-time application for both methods.
Link to manuscript: http://hdl.handle.net/10803/671246