We have relevant datasets, repositories, frameworks and tools of relevance for research and technology transfer initiatives related to knowledge extraction. This section provides an overview on a selection of them and links to download or contact details.

The MdM Strategic Research Program has its own community in Zenodo for material available in this repository  as well as at the UPF e-repository  . Below a non-exhaustive list of datasets representative of the research in the Department.

As part of the promotion of the availability of resources, the creation of specific communities in Zenodo has also been promoted, at level of research communities (for instance, MIR and Educational Data Analytics) or MSc programs (for instance, the Master in Sound and Music Computing)



Back [TEXT] MuMu: Multimodal Music Dataset

MuMu: Multimodal Music Dataset

MuMu is a Multimodal Music dataset with multi-label genre annotations that combines information from the Amazon Reviews dataset and the Million Song Dataset (MSD). The former contains millions of album customer reviews and album metadata gathered from Amazon.com. The latter is a collection of metadata and precomputed audio features for a million songs. 

To map the information from both datasets we use MusicBrainz. This process yields the final set of 147,295 songs, which belong to 31,471 albums. For the mapped set of albums, there are 447,583 customer reviews from the Amazon Dataset. The dataset have been used for multi-label music genre classification experiments in the related publication. In addition to genre annotations, this dataset provides further information about each album, such as genre annotations, average rating, selling rank, similar products, and cover image url. For every text review it also provides helpfulness score of the reviews, average rating, and summary of the review. 

The mapping between the three datasets (Amazon, MusicBrainz and MSD), genre annotations, metadata, data splits, text reviews and links to images are available here. Images and audio files can not be released due to copyright issues.

  • MuMu dataset (mapping, metadata, annotations and text reviews)
  • Data splits and multimodal feature embeddings for ISMIR multi-label classification experiments 

These data can be used together with the Tartarus deep learning library https://github.com/sergiooramas/tartarus.

See all version under DOI https://doi.org/10.5281/zenodo.831188