We have relevant datasets, repositories, frameworks and tools of relevance for research and technology transfer initiatives related to knowledge extraction. This section provides an overview on a selection of them and links to download or contact details.

The MdM Strategic Research Program has its own community in Zenodo for material available in this repository  as well as at the UPF e-repository  . Below a non-exhaustive list of datasets representative of the research in the Department.

As part of the promotion of the availability of resources, the creation of specific communities in Zenodo has also been promoted, at level of research communities (for instance, MIR and Educational Data Analytics) or MSc programs (for instance, the Master in Sound and Music Computing)

 

 

Back [PhD thesis] Knowledge Extraction and Representation Learning for Music Recommendation and Classification

[PhD thesis] Knowledge Extraction and Representation Learning for Music Recommendation and Classification

Author: Sergio Oramas

Supervisor: Xavier Serra

In this thesis, we address the problems of classifying and recommending music present in large collections. We focus on the semantic enrichment of descriptions associated to musical items (e.g., artists biographies, album reviews, metadata), and the exploitation of multimodal data (e.g., text, audio, images). To this end, we first focus on the problem of linking music-related texts with online knowledge repositories and on the automated construction of music knowledge bases. Then, we show how modeling semantic information may impact musicological studies and helps to outperform purely text-based approaches in music similarity, classification, and recommendation. Next, we focus on learning new data representations from multimodal content using deep learning architectures, addressing the problems of cold-start music recommendation and multi-label music genre classification, combining audio, text, and images. We show how the semantic enrichment of texts and the combination of learned data representations improve the performance on both tasks.

Additional material: