EXISTENCE AND SMOOTHNESS OF THE DENSITY FOR
FRACTIONAL STOCHASTIC INTEGRAL VOLTERRA EQUATIONS

MIREIA BESALU, DAVID MARQUEZ-CARRERAS AND EULALIA NUALART

ABSTRACT. We consider stochastic Volterra integral equations driven by a fractional
Brownian motion with Hurst parameter H > % We first derive supremum norm esti-
mates for the solution and its Malliavin derivative. We then show existence and smooth-
ness of the density under suitable nondegeneracy conditions. This extends the results in
[9] and [13] where stochastic differential equations driven by fractional Brownian motion
are considered. The proof uses a priori estimates for deterministic differential equations
driven by a function in a suitable Sobolev space.

1. INTRODUCTION

We consider the stochastic integral Volterra equation on R
t t
X = X, +/ b(t, s, Xs)ds +/ o(t,s, X, )dWH e (0,T], (1.1)
0 0

where 0 = (0%)gum @ [0,T]2 x RT — R? x R™ and b = (b)gx1 : [0,T]? x R — R? are
measurable functions, W = {WtH’j ,t €0,T],7 =1,...,m} are independent fractional
Brownian motions (fBm) with Hurst parameter H > % defined in a complete probability
space (£, F,P), and Xy is a d-dimensional random variable.

As H > %, the integral with respect to W can be defined as a pathwise Riemann-
Stieltjes integral using the results by Young [15]. Moreover, Zilhe |16] introduced a
generelized Stieltjes integral using the techniques of fractional calculus. In particular, he
obtained a formula for the Riemann-Stieltjes integral using fractional derivatives (see (2.2)
below). Using this formula, Nualart and Rascanu [12] proved a general result on existence,
uniqueness and finite moments of the solution to a class of general differential equations
included in (1.1). These results were extended by Besalt and Rovira [5] for the Volterra
equation (1.1). The proof of these results uses a priori estimates for a deterministic
differential equation driven by a function in a suitable Sobolev space.

The first aim of this paper it is to obtain supremum norm estimates of the solution to
(1.1). We first consider the case where o is bounded since, in this case, the estimates are
of polynomial type, while in the general case are of exponential type. In the case where
o is bounded, we also obtain estimates for the Malliavin derivative of the solution and
show existence and smoothness of the density. To obtain these results, we first derive
a priori estimates for some deterministic equations. Finally, in the case where o is not
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necessarily bounded, we also show existence of the density by first showing the Fréchet
differentiability of the solution to the corresponding deterministic equation.

These results provide extensions of the works by Hu and Nualart [9] and Nualart and
Saussereau [13], where stochastic differential equations driven by fBm are considered.
In particular, we provide a corrected proof of |9, Theorem 7|, as there is a problem in
their argument. The techniques used to obtain the a priori estimates in the present
paper are much more involved than those in [9] and [13] due to the time-dependence of
the coefficients. As in those papers, our nondegeneracy assumption is an ellipticity-type
condition, see Baudoin and Hairer [2| for the existence and smoothness of the density
under Hormander’s condition for stochastic differential equations driven by a fBm with
Hurst parameter H > %

Volterra equations driven by general [t6 processes or semimartingales are widely stud-
ied, see for instance |1, 3, 4, 14]. Nevertheless the literature about Volterra equations
driven by fBm is scarce. As far as the authors know, the main references are the papers
of Deya and Tindel |7, 8], where existence and uniqueness is studied separately for the
case H > % and H > %, using an algebraic integration setting and the Young integral,
respectively. However, supremum norm estimates and existence and smoothness of the
density do not seem to be studied yet in the literature for this kind of equations.

The structure of this paper is as follows: in the next section we introduce all the spaces,
norms and operators used through the paper. In Section 3, we obtain a priori estimates
for the solution of some systems of equations in a deterministic framework and study the
Fréchet differentiability of one of them. Section 4 is devoted to apply the results obtained
in Section 3 to the Volterra equation (1.1) and derive the existence and smoothness of the
density.

Notation: For any integer k > 1, we denote by C¥ the class of real-valued functions
on R? which are k times continuously differentiable with bounded partial derivatives up
to the kth order. We denote by Cp° the the class of real-valued functions on R? which are
infinitely differentiable and bounded together with all their derivatives.

Throughout all the paper, Cy, C, 3, cor, etc. will denote generic constants that may
change from line to line.

2. PRELIMINARIES

For any a € (0, ), we denote by W (0,T;R?) the space of measurable functions f :
[0, 7] — R? such that

| flla1 := sup (\f(t)| + thé’) < 00.
t€[0.7] o t—slot

For any a € (0,1), we denote by W, *(0,T;R™) the space of measurable functions

g :10,T] — R™ such that

— t .
||g||1—a2 = sup M Mdy < 00,
’ ‘t_8|1_a |y_8|2—04

0<s<t<T s
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For any 0 < A < 1, and any interval [a,b] C [0,T], we denote by C*(a, b; R?) the space of
A-Hoélder continuous functions f : [a, b] — R? equipped with the norm

[fllapn := | fllapoo + sup M

a<s<t<y |t —s]?

where || f{la,b.00 = supepa ) [/ ()] We set [[f][x = [[fllozr and [[fllec = [[fllo.100-
Clearly, for any € > 0,

C17o(0, T3 R™) € W3(0, T;R™) € C2(0, T; R™). (2.1)

1
Moreover, as a € (0, 3),

C'7*(0,T;R™) C W0, T;R™).
For d = m = 1, we simply write W(0,T), W,~*(0,T), and C*(0,T).
If f € C*a,b) and g € C*(a,b) with A+ p > 1, it is proved in [16] that the Riemman-
Stieltjes integral fab fdg exists and it can be expressed as

/a fdg = (~ / D2, J(t) DY g, (1), (2.2)

where g, (t) = g(t) — g(b), 1 — p < a < A, and the fractional derivatives are defined as

Dg f(t) = F(ll—oz)(t—a /ft—sa“ S>’
Dy f(t) = Fgl_i)jy)(b_t /fs—ta+1 S)'

We refer to [12] and [16] and the references therein for a detailed account about this
generalized integral and the fractional calculus.

Let Q = Cy([0,T];R™) be the Banach space of continuous functions, null at time 0,
equipped with the supremum norm. Let P be the unique probability measure on {2 such
that the canonical process {W/ t € [0,T]} is an m-dimensional fractional Brownian
motion with Hurst parameter H > %

We denote by & the space of step functions on [0, 7] with values in R™. Let H be the
Hilbert space defined as the closure of £ with respect to the scalar product

((Loags -+ s Ljotn])s (Lossi]s - -+ Lossm] )1 = Z Ru(ti, si),

=1

where .
RH(t, S) = / KH(t,T)KH(S,T)dT,
0

and Kpy(t,s) is the square integrable kernel defined by
t
Ky(t,s) = CHSI/Q_H/ (u — )32 H=12qy, (2.3)

H(2H—1)

FE A A3 [ denotes the Beta function and t > s. For ¢t < s, we set

where ¢y =
KH<t, S) =0.
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The mapping (Ljos]s - - o)) = 2oing T/VtHz can be extended to an isometry between
H and the Gaussian space H; associated to W#. We denote this isometry by ¢ — WH ().
Consider the operator Kj; from & to L*(0,T;R™) defined by

(K0)'(s) = / (D (1, 5.
From (2.3), we get

H-1/2
O Kg(t,s)=cy (;) (t — S)H’S/Q.

Notice that
Ky(Lowgs - o) = (Ka(te, o), .o, Ku(tm, ).
For any ¢, ¢ € &,
(o, V) = (Ko, Kjyth) 12 0.mmmy = E(W 7 (o)W ()

and K7, provides an isometry between the Hilbert space H and a closed subspace of
L*(0,T;R™).

Following [13], we consider the fractional version of the Cameron-Martin space Hpy :=
Ku(L?(0,T;R™)), where for h € L*(0, T;R™),

t
(Kgh)(t) = / Ky (t, s)hsds.
0
We finally denote by Ry = Ky o K}, : H — Hpy the operator
Rig = [ Kulos)(Kigh)(s)ds.
0

We remark that for any ¢ € H, Ry is Holder continuous of order H. Therefore, for any
1-H<a<1/2

Hy C CH(0,T;R™) C Wy (0, T; R™).
Notice that Rylpsy = Ru(t,-), and, as a consequence, Hy is the Reproducing Kernel
Hilbert Space associated with the Gaussian process W#. The injection Ry : H — Q
embeds H densely into 2 and for any ¢ € Q0* C H,

. 1
B (") = e (~3le1)
As a consequence, (€, H,P) is an abstract Wiener space in the sense of Gross.

3. DETERMINISTIC DIFFERENTIAL EQUATIONS

Fix0<a< % Consider the deterministic differential equation on R?
t t
Ty = Tg +/ b(t,s,xs)ds +/ o(t,s,xs)dgs, t € [0,T], (3.1)
0 0
where g € W, ~*(0, T;R™), 29 € RY, and b and ¢ are as in (1.1).

Consider the following hypotheses on b and o:
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(H1) o : [0,7]? x R? — R? x R™ is a measurable function such that the derivatives
0.0(t,s,x), Qo(t,s,x) and 0 ,0(t,s,x) exist. Moreover, there exist some con-
stants 0 < 3, i, 0 < 1 and for every N > 0 there exists Ky > 0 such that the
following properties hold:

(1) |U(t’ 8,1‘) - U(t757y)| + ’atg(t’ 8,%) o atg(tv 3>y)| <K ‘x o y‘ )
Vz,y € RY, Vs, t € (0,T],

(2) |0n,0(t,5,2) = Dyo(t, 5,y)| + |02 o (t,5,2) — 2 0(t,5,9)] < Ky |z —y|°,
V|z|, ly] < N, Vs, t €[0,T], i—1. .d,

(3) |o(ty,s,x) — U(t27 s,x)| + |3xi0(t1,s,x) — Oy, 0(ty, s,2)| < K |t1 — tao]",
Vo € Rd7 th,tg,s S [O,T], 1= ]_d,

(4) |o(t, sl,x) — (L, 89, 2)| + |90 (L, 51, ) — Do (t, s9,2)| < K |51 — 59|,
Vo € R Vsl, So, 1 € [O,T]

5) |02 ,o(t,s1,2) — 02 ,0(t, s2,2)|+]0s,0(t, 51,2) — Oy,0(t, 52,2)| < K |51 — sq|”,

VxER VSI,SQ,tE[O,T] 1=1,...,d.

(H2) b : [0, T x RY — R? is a measurable function such that there exists by €
Lr([0,T)*RY) with p > 2,0 < p < 1 and VN > 0 there exists Ly > 0 such

that:

( ) |b(t s 33) (t S y)‘ <LN|$_y| V\x|,]y| < N, Vs, e [ ) ]>
( ) |b<tla8 .’L') - b(t27s x)| < L’tl _tQ‘ Vi € Rd? vs7t17t2 € [ ) ]
(3) |b(t,s,x)| < Lolx| + bo(t,s), Vze Rd, Vs,t € [0,T7,

( ) |b<t1,8 1’1) — b(tl,S 1’2) — b(tQ,S,gjl) + b(tg,S,Ig)’ < LN’tl — t2||271 — ﬂ?gl,
V|I1‘, |$2‘ < N, th,tg,s S [O,T]

Remark 3.1. Actually, we can consider ¢ and b defined only in the set D x R? with
D ={(t,s) € [0,T)?s < t}.
The following existence and uniqueness result holds.

Theorem 3.2. |5, Theorem 4.1] Assume that o and b satisfy hypotheses (H1) and (H2)
with p = 1/a, min{p, %M} >1—p and

(6] Qp = min .
0 2a 3 1 ;)-
Then, equation (31) has a UTLZ(]U@ solution x - Cl (0, T, Rd)

The first aim of this section is to obtain estimates for the supremum norm of the
solution to (3.1). We first consider the case where o is bounded and the bound on b does
not depend on x.

Theorem 3.3. Assume the hypotheses of Theorem 5.2 with p =1 and (H2)(3) replaced
by
b(t,s,2)| < Lo+ bo(t,s), Voe€R: Vs, tel0,T]. (3.2)

Assume that o is bounded. Then, there exists a constant Co g > 0 such that

1/(1-a)
folle < ool + 147 (K2 + K glalha) ™ vavT) o 39)
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where Kél) =4(L(T'V 1)+ Lo+ By,) and Kglﬁ = Cop(T+ 1+ ||0||eo), L, Lo are the

,

constants in Hypothesis (H2), and By = Supco (fot |bo(t,u)]1/adu) .

Remark 3.4. The techniques used in the proof do not seem to extend to the case 0 < p < 1,
thus it is left open for future work. More specifically, if ;1 < 1, the first term in equation
(3.14) is of order iA*T17% Then, when dividing by (¢ — s)'~* we obtain a term of order
1A* which cannot be bounded by T.

Proof. We divide the interval [0, 7] into n = [T'/A] + 1 subintervals, where [a] denotes the
largest integer strictly bounded by a and A <1 will be chosen below.

Step 1. We start studying [|z]jo.a1-a- For s, t € [0,A], s <,

s t
/ (b(t,r,z,) — b(s,r,x,.))dr| + / b(t,r, x,)dr
0 s

t
/ o(t, 1 2,)dg,

Using the Hypothesis (H2)(2), the term A is easy to bound
A < Ls(t — s). (3.5)

For the second term we use (3.2) to obtain

Z%%+%@ﬂﬂr

(3.4)

|zy —xs| <

+ —A+B+C+D.

/OS(O'(t,T’, x.) —o(s,r x,.))dg.| +

B < < Lo(t = 8) + Boal(t —s)' ™. (3.6)

For the next term, we use [5, Lemma A.2| to get
N K(it—s) (1 "(r—u)? + |1, — 2y
‘D0+ [O'(t,-7$.)—0'(8,-,$.)] (’I“)‘ < F(l——Oé) (?”_O‘ +Oé/0 (T—U)O‘Jrl du
< Copt—s) (r*+r"* + [|z]josi-ar' ).

Putting together the previous estimate, equation (2.2) and the estimate in [9, (3.5)] we
conclude that

C

IN

Capllglli-alt = s)

S
| e aoamar ) dr
0

< Cupllgllizalt —s) (8" + 77 + 82722 51— - (3.7)

For term D, we obtain, proceeding similarly as for term C,
N 1 r—uﬁ+\xr—xu|
D% ot ) 0] < g (ol =) o [ E= g,

S Caﬂ (HO-HOO(T — 3) @ + (7’ — 3)5 e’ + ||x|’s,t,1—a(r o S)l—Qa) )

Therefore,

t
D < Casllghioe [ (Iollelr =174 (= 9" & fielaoalr = ) i

< Cagllglh-alt =)' (lollee + (¢ = 8)” + l|zllsta-alt = $)'77). (3-8)
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Next, introducing (3.5), (3.6), (3.7) and (3.8) into (3.4), we obtain
|xt _ x8| « «a
m S LS(t—S> +L0(t—8) +B0’a
+Capllglh-a (¢ = 5)" (s + 770 4+ 72 |2]lg,51-a)
Hlolloo + (8 =) + [|2]ls1-alt = 5)'7%) .
Thus,
|zllo.a1-a < LAY+ LoA% + By,
+Capllglli—a (A + A + A%+ [|o]loo + |2]lo,a,1-a (A% + A7)
< L+ Lo+ Boa+ Capllglhia (1 + [lolle + |2]l0,a1-0A ),

as A < 1. Choosing A such that

1
Ao — — (3.9)
2Casll9lli-a
we obtain that
[#]lo.a0-a < 2(L+ Lo+ Boa + Cagllglli-a(l + o)) - (3.10)
Therefore,
[2]l0,8,00 < [2o] + [[#]lo,a,1-a A7 < [ao] + 3 (3.11)
if A is such that
A7 < L . (3.12)
~ 4(L+ Lo+ Boa + Cagllglli-a(l + [[o]ls))
Step 2. We next study ||z||s11-a for s,t € [iA, (i + 1)A], s < t. We write
s t
|z —xs] < / (b(t,r,z,) — b(s,r,x,.))dr| + / b(t,r, z,)dr
0 s
A s
- / (o(t,r,x.) —o(s,r,x,.)) dg.| + / (o(t,r,z.) — o(s,7,x,)) dg,
0 iA
t
+ / o(t,r,r,)dg,| = A+ B+ C! +C:+ D. (3.13)

The terms A, B, and D can be bounded exactly as in Step 1. Thus, it suffices to bound
the terms C] and C5. We start with C]. We write

7

i<y

/=1

N
/ (o(t,r,x,) —o(s,r,x,))dg,| .

(e—1)A
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Using [5, Lemma A.2], we get
‘D&—I)A—F [O'(t, ) J]) - U(‘S? K .I‘)] (T)|

K(t—s) 1 oI ((r—u)5+|$r—xu])du)
< ( o

TP =) \(r=(t=1)A) 1A (r —u)ot

< Cagp (r — ((tg__i))A)a (1 +(r— (- 1)A)ﬁ +(r—(— 1)A)1_aHx”(ffl)A:fA’l*a) ‘

Then, by the estimate in [9, (3.5)], we obtain

Ct < Capllglh-alt =) Y (A7 4+ A7 4 AP |g]| _p)arai—a) (3.14)

=1
Similarly, for the term C} we obtain

. ’ 1
(I — T Ao
C5 < Cagllgli-alt — s) /m (r —iA)e (

< Casllglh-a(t =) (s —iA)' 7 + (5 —iA) 7% 4 (s —iD)* 7 |z[|ia 1 -a) -
(3.15)

1 + (T' — ZA)B + (T' — iA)liaHQZHz‘A’S’l,a) dr

Hence, from (3.5), (3.6), (3.8), (3.14) and (3.15), and using the fact that A < 1,t—s < A
and i{A < T, we obtain

M < Ls(t — $)* + Lo(t — 5)* + Bo.a
(t —s)l—@

%

+ Casllglli-o [(t =) ) (AT AN AP | pyaean-a)

=1
+ (t— )" ((3 — AT 4 (s — iA)Hﬁ_O‘ + (s — iA)2_2°‘||$||Z-A7371_a)

+(t=5)" + llolloo + [[2llsta-alt =)'~

< LT + Lo + Boo 4 Casllgli—a {T + 14 [loloo

+ATe Z ”mH(f—l)AJA,l—a + Al_a”xHiA,(H-l)A,l—a] .
(=1

Choosing A such that

Al-> < 1

< (3.16)
2Ca,ll9ll1-a

we obtain that

lzllin,i+1)a0-a < A1+ Ay A Z 2zl e-1)aa1-a; (3.17)
=1



FRACTIONAL STOCHASTIC INTEGRAL VOLTERRA EQUATIONS 9

where
Ar = 2(LT+ Lo+ Boa + Capllgli-o(T + 1+ [lofl)),
Ay = 2ugllglio.
Step 3. We now use an induction argument in order to show that for all ¢ > 0,
Al_a||$||ZA,(¢+1)A,1—Q <L

For i = 0 it is proved in Step 1. Assuming that it is true up to ¢ — 1 and using (3.17), we
get that

AliaHxHiA,(i-&-l)A,l—a < AJATY 4 A AP Z lz|le-1yaai—a < AT(Ay + AT).
=1
Finally, it suffices to choose A such that

Al—a < 1

_— 1
- A+ AT (3.18)

to conclude the desired claim.
Therefore, we have that

z]lin,(i+1)A00 < [Tial + Al_a||x||iA7(i+1)A,l—a < |wal + 1. (3.19)
Applying this inequality recursively, we conclude that

sup |z| < sup  [a[+ 1< <aof +n,
0<t<T 0<t<(n—1)A
and the desired bound follows choosing A such that
1

A= ALAT,
(A(L(TV 1)+ Lo + Boo + Capllgli—a(T + 1+ [|o]|s0))) /=)

where C, g is such that (3.9), (3.12), (3.16) and (3.18) hold. O

The next result is an exponential bound for the supremum norm of the solution to (3.1)
under more general hypotheses than the previous theorem:.

Theorem 3.5. Assume the hypotheses of Theorem 3.2 with ;= 1. Then, there exists a
constant Co 3 > 0 such that

1/(1—a)
2]l < (Jzo| + 1) exp (2T ((K;?jg + K;‘gﬁugul,a) V1V T)) ,

where K}SL =6(Lo+ L(T+ 1)+ Bo,a), K%Lﬁ = Cop(T'+1), and L, Ly, and By, are as
in Theorem 3.3.

Proof. The proof follows similarly as the proof of Theorem 3.3. We divide the interval
[0,7] into n = [T/A] 4+ 1 subintervals, where A < 1 will be chosen below.

Step 1. We start bounding ||z||o.a1—o- We can use the same bound for |z; — x| obtained
in (3.4). Then, terms A and C can be bounded as in (3.5) and (3.7) respectively. For
term B, using (H2)(3), we get that

B < Lo(t = s)||2||st.00 + Boalt —s)' 7. (3.20)
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For term D, we obtain
D < Cagllglh-alt = )7 [[[2lls 00 + (t = )7 + (¢ = 5)' " |2]ls61-0] - (3.21)
Thus, we get that

|xt B xé” @ «a
=gy = Ls(t — 8)* 4+ Boa + [|7|ls,6,00 [Lo(t = 8)* + Capllglli-al
+Capllglh-alt — ) [s"7 + s 4 2722|051 0]
+Capllglh-a [(t = 5)" + (t = )" |2]ls1-a] -
Hence, as A <1,

lzllo.a1-a < Bo+ Billz|lo,a00 + Ballz|0.a1-a;

where
BO = L+BO,a+Ca7,B”g”l—om
By = Lo+ Casllgli-a,
By = A"Cogllgllia.
Thus,

|2flo.a1-a < Bo(1 = B2)™" + Bi(1 — B2) ™' [[z]lo,a00- (3.22)
Therefore, using the fact that

sup || < [xo| + [|z]o,a1-a AT,
te[0,A]

we conclude that

sup |z;| < By'ao| + By ' Bo(1 — By) 'AYT?, (3.23)
te[0,A]

where B; =1 — Bl(l — Bg)ilAlia.
Step 2. We next study ||z||ia,+1)a,8, for i > 0. For s, t € [iA, (i +1)A], s <, |2, — a4

can be bounded as in (3.13). Then using (3.5), (3.14), (3.15), (3.20), and (3.21), we get
that
% < Ls(t - 5)a + LO(t - S)a”st,t,oo + Boo
+ Copllglliza |t —9)” i (Al_a + ATy A2_2a||x”(£—1)A,£A,1—a)
=1
+(t—5)" ((s =A™ + (s —iA) TP 4 (s —iA) 7|2 |ins,1-a)

+(t=5)" + |2 ]lso0 + l2llsea-alt =)'

< LT + Lo|||lia 11800 + Boa + Capllglli—a {T + 1+ [[z]lia 41800

+Are Z 2l e-1)a 8,10 + A1a||$||z'A,(i+1)A,1—a] :
=1
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Therefore, we obtain that

% ][iai+181-0 < C5 ' |C1 + Calzllia i41)a,00 + C3A* Z [zl —yaeai—al, (3.24)

=1
where
Co = 1-Capllglh-ad'™,
Cir = LT+ Boa+ Capllglh-a [T +1],
Co = Lo+ Capllgli-a
Gy = Cagllglhe.
Thus,

[#][ia 41800 < Cf Haial + Co ' CTTAYT (O + C3A* Z 2/l e-1)aeai—a), (3.25)
=1

where 04 =1- OO_IOQAl_a.
We next show by induction that for all ¢ > 0,

A fiais1an-a < 1+ [[2]lo6r1)A,00-
For i = 0 it is proved in (3.22) that
|llo,a1-a < Bo(1 = B2)™" + Bi(1 — Ba) ™! [[z]|o,a,00-
Then, it suffices to choose A such that By < % and

1/1 1
Al—a < | = A=
-2 (BO Bl) ’
to conclude the claim for 7 = 0.

Assuming that it is true up to i — 1 and using (3.24), we get that
zllini41)a1—a < Cgt [C1 + C3T + ||2]lo,(i+1)8,00(Ca + C3T)] -
Finally, it suffices to choose A such that Cy > 2 and

Al—oc < 1 A 1
—CL+CT Cy+CsT’

to conclude the desired claim.
By (3.25), we conclude that

7][ia 41800 < Cf Hwial + C CTTAYT (C1 + TC3(1 + [|2]]0,ia,00)) - (3.26)

Step 3. Using (3.26), we get that

sup |zl < sup |z +  sup |24
0<t<(i+1)A 0<t<iA IA<E<(i+1)A
< sup |zy| + O wial + Co ' C T AT (Cy + TC3(1 + ||2]|oia00)
0<t<iA

< Ky sup || + Ko,
0<t<iA
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where

K, = 1+C/H1+TC CsA),
K2 - 00_104_1(01 + TCg)Al_a.

Iterating, we obtain that

n—2
sup |z| < Ky sup x| + Ky <o < K osup |$t]+KQZKf.
0<t<T 0<t<(n—1)A 0<t<A —

We next choose A such that CoAI™ < % and Cgl < % Then, C’;l < 2. Moreover, we
choose A such that TCgCo_lA“a < %. This implies that K; < %. Thus,

n—2 n—2 7 n—1
, 10 3 (10 3
Kt < § - N M < = Q(n—l).
Lo i=0 ( 3 > 7 ( 3 ) N 76

1=0

In order to bound K, it suffices to choose A such that ;A= < % Then, we easily
obtain that Ky < 1. We finally bound supy<,< |7:| using (3.23). Again we choose A
such that (1 — By)™! < % and BiAlT* < % so that B3 < 2. We also choose A such that
Al72B, < i so that

3 1 3
sup |z¢| < 2|xo| +2- = - = = 2|z + = < 2]zo| + 1.
0<t<A 2 4 4

Finally, we conclude that

>~

sup |z:| < (2lzo| + 1)e2™ D < (Jzo| + 1)el],
te[0,T7]

which implies the desired estimate choosing A such that

1
A= ALAT,
(Capllglli-a(l +T) +6(Lo + L(1 + T) + Bya))/0-)

O

The next result provides a supremum norm estimate of the solution z; of the following
system of equations

t t
Ty =X —i—/ b(t,r, x,)dr —i—/ o(t,r,x,)dg,
0 0
t t
2 :wt—i—/ h(t,r, xr)zrdr—l—/ f(t,r,z,)z.dg,, (3.27)
0 0
where g belongs to W, (0, T;R™), w belongs to C'=*(0, T;R%), b : [0,T]> x R? — R,

o:[0,T]? x R - R x R™, h: [0,T]> x R — R? x R%, and f: [0,T]*> x R? = R¥ x R™
are measurable functions, and z, € R
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We will use the following hypotheses on h, f and w:

h is Lipschitz continuous with respect to ¢ and bounded.
(H3) f is bounded and satisfies (H1).

w is Lipschitz continuous and bounded.

Theorem 3.6. Assume that b and o satisfy the hypotheses of Theorem 3.3 and that h, f
and w satisfy hypothesis (H3). Then there exists a unique solution z € C1=%(0, T;R?) to
equation (3.27). Moreover, there ezists a constant Cop > 0 such that

1/(1-a)

ol <200+ ol exp (7 (K + K lallea) vV ),

where Ky, = 16 (K + ||hl|o + L + Lo + Boo) €™(T + 1) and
6
it = Cos (I o + ll7]loc + 1) €7(T 4 1).
Proof. The existence and uniqueness of the solution follows similarly as [12, Theorem 5.1].

We next prove the estimate of the supremum norm of the solution. We divide the interval
[0,T] into n = [T/A] 4+ 1 subintervals, where A < 1 will be chosen below.

Step 1. We first estimate ||z]|g 5 .- Let ¢,# € [0, A] with t < ¢ We write
|Zt/ — Zt| S |wtl — wt| +

¢ ¢
/ h(t',r, x,)zdr| + / (h(t',r,z,) — h(t,r, z,)) z.dr
¢ 0

+ / F(t'r,2)zdg, | + / (s ra) — fltir, ) zdg,

=F+F+G+H+ I
The first three terms are easily bounded as
E <K' —1t),

F < |[hlloo(t" = D) 2l17.00, and
G < L(t' = t)t]|2]le
We next bound H and I. Using (2.2) and the estimate in [9, (3.5)], we get

1< Klglho [ D80 2)2] )] dr
where
D2y [f (- ) 2] (r)]
1 |t r a2, lf(t r x)ze — [, u,m,) 2]
(X o )

Il -« r—t)” (r —u)ot!
S Ca(Hl + HQ):

Hl S Ca”f“oo”'z“t,t’,oo(r - t)iaa
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and
Hy < Cogllllowoo(r =) + Capllllipcollzllewi—alr — )72
+Capll fllosllzllepra—alr — )72

Therefore, we obtain

H < Coplt' —=1)glh-a [I2llee00 (1flloo + (& = 8)7 + |2l 1-alt’ — )7

H fllsoll2llea—all(t = 8)' =]

Similarly,

1< Cogllglhalt = [zlloroo (142 + el azat' ™) + [2llornat ]

Hence, we conclude that

% < K+ Di||2]lt4 00 + D2l 2|t 1-a;
where
Dy = oo+ L+ Cagllglia (I flloo + 1+ llloa,-aA ).
Dy = Cagllglh-a([lflle+1) A
Thus,
I#ll0,51-o < (1= Do) (K + Dallzllo 5.0)
Moreover,

200,400 < llwllse + A [(1 = Do) (K + Dill2llo 5 00)] -

Choosing A satisfying (3.12), we obtain by (3.11) that ||x|\07571_aA1_°‘ < 1 <1. We next
choose A such that A"*K <1, A'=2D; <1, and Dy < 5. Then, we obtain that

12]l0,4,00 < 2lwlloo + 1. (3.28)

Step 2. We next estimate [[2[[; ;41)a00 for e =1,...,n. Fix t,¢' € liA, (i + 1)A] with
t < t'. Similar bounds can be obtained for the corresponding terms E, I, G and H as in
Step 1. Thus, we just need to bound the term I* := I, that is,

€A
Z /(4—1)5 (f(t,r,z) — f(t, 7 2,)) 2dg,

/=1

I'< +

/ (F(trx) — f(t 1)) zedgs)

i A

Following the same computations as for I, we get

(A
/( B (f(t/,T', l’) - f(tara x?‘)) Zrdgr

< Cagllglhalt = A (12l -2 can-aB]
—1)A

HV”(@QA,MW (1 + Al 4 ||$||(671)A,4A,17QA17°{>} .
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Therefore, the term I* is bounded by

Casllglh—alt — A1 [Hzm,@mm (14 lelia ezl ™)

+ ”ZHiA,(i—&-l)A,l—aAl_a

+ Z [HZH(E—I)A,M,oo <1 + HxH(z_UA,eAJ_aAl*O‘) + HZH(Z—l)A,zA,l_aAlaH-
=1

Hence, we obtain that

||Z”iA,(1;+1)A,1—a < K+ EIHZHiA,(iH)A,l—a + E;HZ||2'A,(1‘+1)A,OO

+ 37 B8l enyainme) + Ballzll-aenia) -
/=1

where
Er = Callglh-a (Ifllo + 1) AT,
By = b+ L+ Capllghoa (Iflle + 14 lolis ras o),

Ef = Capligl-od (14 7] ¢-paiai-ad™).
By = Copllglioad®™.
Choosing A such that FE; < %, we obtain that

||Z||iA,(i+1)A,1—a < 2K + QE;HZ“iA,(H-l)A,OO

i (3.29)
+ 37 2B acane) + 2Ball2llmnaaia) -
(=1

Choosing A satisfying (3.18), we obtain by the Step 3 in Theorem 3.3 that for all ¢ =
17 . e ,7:7 ||x||€A7(£+1)A71_O¢Alia S 1 Thus,
Ey < Ep:=|lhllo + L+ Cagllglh-a (Ifllo + 1)
By < Eyi=Cuglgllioad.
Applying expression (3.29) recurrently we obtain that
”Z||Z‘A,(z‘+1)5,1—a <2K(1+ 2E4)i_1 + 2E2||Z||¢A,(z‘+1)A,oo
i—1

+ (2B3 + 4E4Ey) Z(l +2E0) Mzl oy & (i (- 1)) & 00
—1

This implies that

12llia g11aee < l2ial + 12lha ginar—ad™
< E;'lzal+ Ki+ E5 '(2E3 + 4E,Ey)(1+ 2E4)i_1i||ZHO,iA,ooAl_a’

where F5 = 1 — 2E,A'"* and K; = E; '2E,(1 + 2E,)'Al-*.
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Step 3. Using the result of Step 2 yields that

sup |z < L; sup ||+ K, (3.30)
te[0,(i4+1)A] te[0,iA]

where L = B5 ' (14 Al*(2E, + 4B, By)(1 + 2E;) ).

We finally bound L; and K;. We choose A such that 2E,Al~ g 1 so that E;' < 2.
We also choose A such that 2E, < A so that

(1+2E) ' <14+ A< (14+A < (14+A)T/2 < T,

H~ence, choosing A such that 4E16TA1_"‘ < 1 we conclude that K; < 1. Moreover, as
iA < T, we have that

L <2 (1 + (Al—aoaﬁngnl_a + 2Al—aE2) eTT> .

We finally choose A such that that A™C,, 5/|g|li_ae”T < % & and AT < 5, S0
that L; <e.
Iterating (3.30) and using (3.28), we conclude that

sup |z <e sup |zl +1<--- <™t osup ]zt]—l—Ze
0<t<T 0<t<(n—1)A 0<t<A
< 268 (Jlw]los + 1),
which implies the desired result. [l

We end this section by showing the Fréchet differentiability of the solution to the
deterministic equation (3.1), which extends |13, Lemma 3 and Proposition 4.

Lemma 3.7. Assume the hypotheses of Theorem 3.2. Assume that b(t,s,-),o(t,s,-) be-
long to C? for all s,t € [0,T] and that the partial derivatives of b and o satisfy (H2) and
(H1), respectively. Then the mapping

F Wm0, T;R™) x W0, T; R — W0, T;RY)
defined by

(h,x) = F(h,z) :=x — x¢ — /0. b(-,s,x5)ds — /0. o (-8, xs)d(gs + hs) (3.31)

is Fréchet differentiable. Moreover, for any (h,x) € Wy *(0,T;R™) x W&(0,T;R9),
ke W, 0, T;R™), v € W&0,T;R?), and i = 1,...,d, the Fréchet derivatives with
respect to h and x are given respectively by

Dy F(h, Z/ I(t, s, z)dk?, (3.32)

DQF(h ‘T - o Z/ 893ka t,S,ZES kds - ZZ/ asz' t,S,ZL’S> kd(gs +h])

k=1 j=1
(3.33)
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Proof. For (h,z) and (h,Z) in WL=2(0,T;R™) x W&(0,T;R?) we have

t
F(h,x),— F(h,Z)y = 2y — & — / (b(t,s,xs) — b(t,s,Zs))ds
0
¢ t
— / (o(t,s,xs) —a(t,s,Ts))d(gs + hs) — / o(t,s, &s)d(hs — hs).
0 0
Using [5, Proposition 2.2(2)|, we get that

v /0'(17(-, 6, 25) — ble, 5, 34))ds

S Ca,TH:E - i”a,l-

a,l

From [5, Proposition 3.2(2)], we obtain

/0.(0-('7 ‘97:58) - U('v 57i8>)d<gs + hs)

< carllr = Tllanllg + hlli-a2(1 + Alz) + A(T)),

a,l

where
U
2 — ]

and similarly A(%) < co57|7(|3_,,. Finally, [5, Proposition 3.2(1)] yields to

| [ oteszan i

< Car(L+ Ellaa)llh = Rl 1o

a,l

Therefore, F is continuous in both variables (h, x). We next show the Fréchet differentia-
bility. Let v,w € W(0,T;R?). By |5, Proposition 2.2(2) and 3.2(2)], we have that

D2 F(h, 2)(v) = Do (hy ) (w) oy < Carllv = wllaa(1+lg + hlli-az2)-
Thus, Do F'(h,x) is a bounded linear operator. Moreover,

F(h,x +v); — F(h,x); — DoF(h,x)(v),
t
= / (b(t,s,xs) — b(t,s,xs + vs) + 0:b(L, s, x5)v5)ds

0

t

+ / (o(t,s,x5) — o(t,s,xs + vs) + 0,0(, 8, T5)vs)d(gs + hs).
0
By the mean value theorem and |5, Proposition 2.2(2)],

H / (b(+,s,25) — b(+, 8,25 + vs) + Opb(+, 5, xs)vs)ds
0

< carlvllas-

a,l

Similarly, using [5, Proposition 3.2(2)|, we obtain

/ (U<'> S, :L‘S) - O'(-, S, Ts + Us) + aﬂcg('v S, :vs)vs)d(gs + hs)
0

a,l

< casrllvlaallg + hlli-az:
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This shows that DyoF' is the Fréchet derivative with respect to = of F'(h,x). Similarly,
we show that it is Fréchet differentiable with respect to h and the derivative is given by
(3.32). O

Proposition 3.8. Assume the hypotheses of Lemma 3.7. Then the mapping
g € Wy=(0,T3R™) — x(g) € W (0, T;RY)
is Fréchet differentiable and for any h € W, ~%(0, T;R™) the derivative in the direction h

15 given by
Dyl = Z / D (s)dh,

where fori=1,...,d, j=1,...,m, Ogsgt

Y (s) = o (t, s, x4 —1—22/ D, 0 (t, u, 1, ) DM (5)dg!,

k=1 (=1

+Z/ Op b (1, 1, 2,) @M (5)du,
k=1"%

and ®7(s) =0 if s > t.
Proof. The proof follows similarly as the proof of [13, Proposition 4] once we have extended
[13, Proposition 2 and 9]. We proceed with both extensions below. O

The next propositions are the extensions of [13, Proposition 2 and 9], respectively.

Proposition 3.9. Assume the hypotheses of Lemma 3.7. Fiz g € W,;*(0,T;R™) and
consider the linear equation

¢ ¢
vy = wy + / 0:b(t, s, z4)vsds + / 0,0(t, s, x5)vsdgs.
0 0

where w € C1=(0,T;R?). Then there exists a unique solution v € C1=%(0,T;R?) such
that

[ollon < el llwllon exp (Zpllglh 52> | (3.35)

(1) (2)

for some positive constants ¢, and c,

Proof. Existence and uniqueness follows from [5] and the estimate (3.35) follows from |5,
Proposition 4.2] with v = 1. O

Proposition 3.10. Assume the hypotheses of Lemma 3.7. Then the solution to the
linear equation (3.34) is Hélder continuous of order 1 — « in t, uniformly in s and Hélder
continuous of order B A (1 — «) in s, uniformly in t.

Proof. By the estimates in [5], we get

sup || ®.(s)[l1—a < car(1+ (1 + [|glli-a2) sup [[®.(s)]la,1)-
s€[0,7] s€[0,7]
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which is bounded by Proposition 3.9. Therefore, ®,(s) is Holder continuous of order 1 —«
in ¢, uniformly in s. On the other hand, appealing again to Proposition 3.9, for s’ < s < t,
we have

[@.(5) = @)t < clipllw. (5, )l exp (Zpllgl 52> )

where

wi(s,s") = a(t,s,xs) —o(t, s, xy) / 0p0 (t,u, )Py (8")dg,

/thuxu ., (s")du.

We next bound the || - ||51-norm of w.(s, s"). For the first term, by the definition of the
| - ||la,;-norm, we have
HO‘<.’ S xS) - U('? 5/7 xs’) Ha,l < Ca,THO-(U S, 173) - 0'('7 5/7 SL’S/)HI—Q
< Capr(s— )7,

where we have used [5, Lemma A.2] in the last inequality.
For the second term, as 0,0 is bounded, we obtain

H/ o0 (-, u, 1) Dy (") dg, /@u(s')dgu

< Car(s =)' 7glli-az sup [[.(s)]la1,
s€[0,T]

S Ca, T

a,l

where the last inequality follows from |12, Proposition 4.1].
Finally, for the last term, as 0,0 is bounded, we get

’/@Cb(t,u,xu)@u(s’)du /Q)u(s’)du

< car(s—5") sup [|D.(8)]|a1-
Therefore, we conclude that

s€[0,T7]
[@.(s) = @.(8")[la1 < Capr(s — Sl)ﬁ/\(l_o‘) exp (c (2) ”gul/ (1-2a) ) ’

7

S Ca,T

a,l

which implies that ®,(s) is Holder continuous of order S A (1 — ) in s uniformly in ¢t. O

4. STOCHASTIC VOLTERRA EQUATIONS DRIVEN BY FBM

In this section we apply the results obtained in Section 3 to the Volterra equation (1.1).
Recall that WH = {WH t € [0,T]} is an m-dimensional fractional Brownian motion with
Hurst parameter H > % That is, a centered Gaussian process with covariance function

B(W W) = Ri(t,5) = 5 (£ + 827 — [t = ") 6.

Fix a € (1 — H,3). As the trajectories of W# are (1 — a + ¢)-Hélder continuous for all
€ < H + a — 1, by the first inclusion in (2.1), we can apply the framework of Section 3.
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In particular, under the assumptions of Theorem 3.5, there exists a unique solution to
equation (1.1) satisfying

1/(1—)
sup 0 < (1% + ) esp (2 ( (04 60 ) vav ).
0<t<T

Moreover, under the further assumptions of Theorem 3.3, we have the estimate
1/(1—«

/(
sup | X < |Xo| +1+7T ((K;{g + K W)

0<t<T

)
\/1\/T>.

As a consequence of these estimates we can establish the following integrability prop-
erties of the solution to (1.1).

Theorem 4.1. Assume that E(|Xo|?) < oo for all p > 2 and that o and b satisfy the
hypotheses of Theorem 3.5. Then for all p > 2

E ( sup |Xt\p) < 00.

0<t<T

Moreover, if for any A > 0 andy < 2H, E (exp(A\| Xo|")) < oo, then under the assumptions

of Theorem 3.3, we have
E (exp <)\ ( sup ]XW))) < 00,
0<t<T

for any A >0 and v < 2H.

We next proceed with the study of the existence and smoothness of the density of the
solution to (1.1). From now on we assume that the initial condition is constant, that is,
Xo = z9 € RY We start by extending the results in [13] in order to show the existence
of the density of the solution to the Volterra equation (1.1) when o is not necessarily
bounded. We first derive the (local) Malliavin differentiability of the solution.

Theorem 4.2. Assume the hypotheses of Lemma 3.7. Then the solution to (1.1) is
almost surely differentiable in the directions of the Cameron-Martin space. Moreover,
Jor any t > 0, X} belongs to the space }D)llo’z and the derivative satisfies for i = 1,...,d,
j=1...,m,

d m t
DIX]=0o"(t,s, X))+ > / By, 0 (t, 7, X,) DI X Faw

k=1 ¢=1""5

(4.1)
d t
+) / By b (t,7, X, ) DI X ¥dr,

k=1"9%

if s <t and 0if s > t.

Proof. By Proposition 3.8, the mapping
w € Wy *0,T;R™) — X (w) € W0, T;R)
is Fréchet differentiable and for all o € H and ¢ = 1,...,d, the Fréchet derivative

i d
DRy Xt = %Xt (W + €RH90)|EZO
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exists, which proves the first statement of the theorem. Moreover, by [10, Proposition
4.1.3.], this implies that for any ¢t > 0 X} belongs to the space ]D)loc

The derivative Dy, ,X; coincides Wlth (DX}, )3, where D is the usual Malliavin
derivative. Furthermore, by Proposition 3.8, for any p € Hand 1 =1,...,d,

Dy Xi = i / B () (R (5)
_ i i ) ([ 0.0 i ) s

-y / (K32 (3)(Kjy0) (s)ds

J=1

3

= (2}, 0)n
and equation (4.1) follows from (3.34). This concludes the proof. O

We next derive the existence of the density.

Theorem 4.3. Assume the hypotheses of Lemma 3.7. Assume also the following nonde-
generacy condition on o: for all s,t € [0,T], the vector space spanned by

{(Jlj(t,s,xo), . ,Udj(t,s,xo)), 1<j<m}

is RY. Then, for any t > 0 the law of the random vector X, is absolutely continuous with
respect to the Lebesque measure on RY.

Proof. By Theorem 4.2 and [10, Theorem 2.1.2] it suffices to show that the Malliavin
matrix ['; of X; defined by

Iy = (DX{, DX])n
is invertible a.s., which follows along the same lines as in the proof of [13, Theorem 8|. O

We finally consider the case that ¢ is bounded and show the existence and smoothness
of the density. As before, we first study the Malliavin differentiability of the solution.

Theorem 4.4. Assume the hypotheses of Theorem 8.5, that bi(t,s,-), 0% (t,s,-) belong

to Cp° for all s,t € [0,T] and that the partial derivatives of all orders of b and o satisfy

(H2) and (H1) respectively. Then for any t > 0, X} belongs to the space D> and the nth

iterated derivative satisfies the following equation fori=1,...,d, j1,...,jn € {1,...,m},
Dﬁ . DgZXti :ZDQ ) Dﬁf; ) ..DgZJijz(uSé’Xsé)

q=1

m t
+ Z/ Dt ... Ding™(t,r, X, )dW (4.2)
=15

1V Vsy
+ / D7 DI (t, r, X, )dr,
s1V--Vsp

if s1V---Vs, <t and 0 otherwise. The notation Dgg means that the factor Dl
in the sum. When n =1 this equation coincides with (4.1).

se 18 omitted
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Proof. By Theorem 4.2, for any ¢t > 0 X, belongs to ]D)lloz and the Malliavin derivative

satisfies (4.1). Applying Theorem 3.6 to the system formed by equations (1.1) and (4.1)
we obtain that a.s.

J i (), 76 qyH 1/(1=a)
sup ]D Xyl <2(llofleo + 1) exp ( T Kpg + Kip s W7 110 VIivT]|, (4.3)
which 1mp11es that for all p > 2,
t ot
/ / DIXIDIX!|r — s|*# 2 dsdr
0

s,t€f0,T
m p
sup E Z < Q.
t€[0,T] = 7o

This and [10, Lemma 4.1.2] show that the random variable X; belongs to the Sobolev
space DY for all p > 2. Similarly, it can be proved that X} belongs to the Sobolev space
DFP for all p, k > 2. For the sake of conciseness, we only sketch the main steps. First, by
induction, following exactly along the same lines as in the proofs of [13, Proposition 5 and
Lemma 10| and Proposition 3.8, it can be shown that the deterministic mapping « defined
in Section 3 is infinitely differentiable. Second, by a similar argument as in the proof of
Theorem 4.2, we have that for all ¢ > 0, X} is almost surely infinitely differentiable in the
directions of the Cameron-Martin space and it belongs to the space ]D)loC for all p, k& > 2.
Finally, using equation (4.2), the estimate for linear equations obtained in Theorem 3.6
and an induction argument, we obtain that for all k,p > 2,

sup E (I|IDWX,7,..) < oo,
te[0,7

where D®*) denotes the kth iterated derivative. This concludes the desired claim. O

The next theorem extends and corrects the proof of [9, Theorem 7| as there is a mistake
in the last step of the proof.

Theorem 4.5. Assume the hypotheses of Theorem 4.4 and that o(t,s,-) is uniformly
elliptic, that is, for all s,t € [0,T], x,& € R with |¢| =1,
ZJ” (t,s x)fl) > p? >0,
Jj=1 =
for some p > 0. Then for any t > 0 the probability law of X; has an C*> density.

Proof. By [11, Theorem 7.2.6] it suffices to show that E((det(I';))™?) < oo for all p > 1.
We write

det(T,) > inf (€T

Fix ¢ € R? with |[¢]| = 1 and € € (0,1). Then

d d
T = | DXEIR = 1Y Ki(DX)E N3 0w
=1 i=1
: 1
> || Z KIZ(DXZ)&H%Q(t—e,t;Rm) > §A — B,

i=1
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where
Z/ // 'j<t7“"-iu)akjawaxv)auKH(U,S)auKH(U,S)Sié’kdudvds,
_— k_

Xj:/ (Z/ (ZZ/@M (t,r, X,) DI XEdW

k=1 (=1

d t 2
+) / Oy, bi(t, T, X,)Dindr)&uKH(u, S){idu) ds.
k=1

We next we add and substract the term o (¢, u, X,,)o* (¢, u, X,,) inside A to obtain that
A= A1 + AQ, where

m t t ot d 2
A ::Z/ / / (Za“(t,u,XU)&) OuK g (u, )0, Kp (v, s)dudvds,
j=1 t—eJs s -

A, Z/t% 1// it u, X,) (M9t 0, X,) — 0% (1,0, X))

X 0y K g (u, s)0, Ky (v, $)&&dududs.

By the uniform ellipticity property, we get that

2

t t 2 t t
Ay > p2/ (/ OuK g (u, s)du) ds = CH/ (/ (%)H—l/Q(u _ S)H—gdu> ds
t—e s t—e s

2

¢ ¢
> CH/ (/ (u— S)Hgdu) ds = cye!.
t—e s

Moreover, since o is bounded, using Holder’s inequality and hypothesis (H1), for any
q > 1, we get that

B[ A3t < Chpyéio- 1>/ / / (X, — X,[7) + B(|X,|%)|u — v]*
t—e Jt—e
+ E(| X" Xy — X)) (0uK g1 (u, $)0, K (v, 8)) dudvds

< Cr g€ (4— 1)/ / / ’u 1= a)q+’u_v|ﬂq+|u_v|6q(1—a))
t—e Jt—e Jt—e

(0K g (u,s)0, Ky (v, s))?dudvds
< CTqEq(2H+m1n{1 a,B,6(1— oz)}'
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We are left to bound E|B|?. Since 0,b(t, s,x) is bounded, using Holder’s inequality and
(4.3), we obtain that for all ¢ > 1,

m ¢ d t pt 9
Z/ (Z/ / O, b (L, X, )DL X0, Ky (u, S)&-drdu) ds
j=1 t—e s m

ik=1

q

E

t t
< Ca,T,q€5q_2/ / (0.K g (u, s))*duds
t—e Jt—e

<Cu,r qeq(2H+2) )

Similarly, for all ¢ > 1, we have that

m t d m t t 2
Z/ ( Z Z (/ D, 0 (7, XT)DindWTH’Z) OuKp(u, s)fidu) ds
j=1 t—e u

i,k=1¢=1""%

q

E

t ot
< Ca7T7q63q_2+(1_a)2q/ / (0uK g (u, s))* duds
t—e Jt—e
S Ca T qeq(2H+2(17a)) )
Appealing to |6, Proposition 3.5] we conclude the desired result. 0
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