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Summary

We introduce LASSO-type regularization for large-dimensional realized covari-
ance estimators of log-prices. The procedure consists of shrinking the
off-diagonal entries of the inverse realized covariance matrix towards zero. This
technique produces covariance estimators that are positive definite and with
a sparse inverse. We name the estimator realized network, since estimating a
sparse inverse realized covariance matrix is equivalent to detecting the partial
correlation network structure of the daily log-prices. The large sample consis-
tency and selection properties of the estimator are established. An application
to a panel of US blue chip stocks shows the advantages of the estimator for
out-of-sample GMV asset allocation.

1 INTRODUCTION

The covariance matrix of the log-prices of financial assets is a fundamental ingredient in many applications ranging from
ass et allocation to risk management. For more than a decade now the econometric literature has made a number of
significant leaps forward in the estimation of covariance matrices using financial high-frequency data. This new gener-
ation of estimators, commonly referred to as realized covariance estimators, measure precisely the daily covariance of
log-prices using intra-daily price information. The literature has proposed an extensive number of procedures that allow
us to estimate the covariance efficiently under general assumptions, such as the presence of market microstructure noise
and asynchronous trading in the data-generating process (DGP).

Despite the significant leaps forward, the estimation of large realized covariance matrices has a number of hurdles.
First, as it has been put forward by Hautsch, Kyj, and Oomen (2012) and Hautsch, Kyj, and Malec (2015), it is hard to
estimate precisely the covariance matrix when the number of assets is large. Second, in large systems it is challenging
to synthesize effectively the information contained in the covariance matrix and unveil the cross-sectional dependence
structure of the data. In this work we propose a realized covariance estimation strategy that tackles simultaneously both
of these challenges. The estimation approach consists of using LASSO-type shrinkage to regularize realized covariance
estimators. The LASSO procedure detects and estimates the nonzero partial correlations among the daily log-prices. The
set of nonzero partial correlations can then be represented as a network. Our proposed estimation approach has different
highlights. If the partial correlation structure of the daily log-prices is sufficiently sparse, then the regularized estimator
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can deliver substantial accuracy gains over its unregularized counterpart. Moreover, detecting the network of intercon-
nections among the daily log-prices is interesting in the light of the recent strand of research on networks in economics
by, among others, Acemoglu, Carvalho, Ozdaglar, and Tahbaz-Salehi (2012), which shows that in highly interconnected
systems the most highly interconnected entities influence the aggregate behavior of the entire system.

In its more general version, the framework we work in makes a number of fairly common assumptions on the dynamics
of the asset prices (cf. Aït-Sahalia, Mykland, & Zhang, 2005; Bandi & Russell, 2006; Fan, Li, & Yu, 2012). We assume that
observed log-prices are equal to the efficient log-prices, which are Brownian semi-martingales, plus a noise term that is
due to market microstructure frictions. Prices are observed according to the realization of a counting process driving the
arrival of trades/quotes of each asset and are allowed to be asynchronous. The target estimation of interest is an integrated
covariance matrix of the efficient daily log-prices.

We introduce a network definition built upon the integrated covariance, which we call the integrated partial correlation
network. Assets i and j are connected in the integrated partial correlation network if and only if the partial correlation
between i and j implied by the integrated covariance is nonzero. As is well known, the network is entirely characterized
by the inverse of the integrated covariance matrix, which we call the integrated concentration matrix. In fact, it has been
known since at least Dempster (1972) that if the (i, j)th entry of the inverse covariance matrix is zero, then variables i
and j are partially uncorrelated—that is, are uncorrelated conditional on all other assets. Thus the sparsity structure of
the integrated concentration matrix determines the partial correlation network dependence structure among the daily
log-prices.

We use LASSO to obtain a sparse integrated concentration matrix estimator. The procedure consists of regularizing
a consistent realized covariance estimator. Several realized covariance estimators have been introduced in the litera-
ture in the presence of market microstructure effects and asynchronous trading. In this work we focus in particular on
the two-scales realized covariance estimators (TSRC) and the multivariate (generalized flat-top) realized kernel (MRK)
based on pairwise refresh sampling (Aït-Sahalia et al., 2005; Barndorff-Nielsen, Hansen, Lunde, & Shephard, 2011; Fan
et al., 2012; Varneskov, 2016). These estimators are then regularized using the GLASSO Friedman, Hastie, and Tibshirani
(2011), which shrinks the off-diagonal elements of the inverse of the covariance estimators entries to zero. The procedure
allows us to detect the nonzero linkages of the integrated partial correlation network. Moreover, the sparse integrated
concentration matrix estimator can be inverted to obtain an estimator of the integrated covariance.

We study the large-sample properties of the realized network estimator, and establish conditions for consistent estima-
tion of the integrated concentration and consistent selection of the integrated partial correlation network. We develop the
theory for the TSRC and MRK estimators based on pairwise refresh-sampling built upon the general asymptotic theory
developed by Ravikumar, Wainwright, Raskutti, and Yu (2011). The MRK estimator results are obtained by developing
a novel concentration inequality, while for the TSRC estimator we apply a concentration inequality derived in Fan et al.
(2012). Results are established in a high-dimensional setting; that is, we allow for the total number of parameters to be
larger than the number of observations available, to the extent that the proportion of nonzero parameters is small relative
to the total. Other realized covariance estimators satisfying an appropriate concentration assumption lead to regularized
estimators with similar properties.

A simulation study is used to investigate the finite-sample properties of the procedure. Different specifications of the
integrated covariance matrix of the efficient price process are used to assess the precision of the realized network estima-
tor. The procedure is also benchmarked against a set of alternative regularization techniques proposed in the literature,
including shrinkage (Ledoit & Wolf, 2004) and factor-based approaches. Among others results, simulations show that
when the integrated concentration matrix is indeed sparse the realized network achieves the best performance among
the set of candidate regularization procedures we consider.

We apply the realized network methodology to analyze the network structure of a panel of US blue chip stocks through-
out 2009 using the TSRC, MRK, as well as the classic realized covariance (RC) estimators. More precisely, we use the
realized network to regularize what we call idiosyncratic realized covariance matrix—that is, the residual covariance
matrix of the assets after netting out the influence of the market factor. Results show that after controlling for the market
factor assets still exhibit a significant amount of cross-sectional dependence. The estimated networks are indeed sparse,
with the number of estimated links being roughly 5% of the total possible number of linkages. The distribution of the
connections of the assets exhibits power law behavior; that is, the number of connections is heterogeneous and the most
interconnected stocks have a large number of connections relative to the total number of links. The stocks in the indus-
trial and energy sectors show a high degree of sectoral clustering; that is, there is a large number of connections among
firms in these industry groups. Technology companies, and Google in particular, are the most highly interconnected
firms throughout the year. We investigate the usefulness of our procedure from a forecasting perspective by carrying out
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a Markowitz-type global minimum variance (GMV) portfolio prediction exercise. We run a horse race among different
(regularized) covariance estimators to assess which estimator produces GMV portfolio weights that deliver the minimum
out-of-sample GMV portfolio variance. Results show that the realized network significantly improves prediction accuracy
irrespective of the covariance estimator used.

We build upon the literature on realized volatility and realized covariance estimation. Important contributions
in this area include the work of Andersen, Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard
(2004), Aït-Sahalia et al. (2005), Bandi and Russell (2006); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008),
Barndorff-Nielsen et al. (2011), Zhang (2011), and Fan et al. (2012). More precisely, our work is related to the strand of
the literature concerned with the estimation and regularization of possibly large realized covariances. Important research
in this field includes Wang and Zou (2010), Hautsch et al. (2012; 2015), Tao, Wang, and Zhou (2013); Corsi, Peluso, and
Audrino (2014); Kim, Wang, and Zou (2016), and Lunde, Shephard, and Sheppard (2016). This paper also relates the net-
work modeling literature in statistics and econometrics, which includes Meinshausen and Bühlmann (2006), Diebold
and Yilmaz (2014), Hautsch, Schaumburg, and Schienle (2014a; 2014b), Barigozzi and Brownlees (2013), and Banerjee
and Ghaoui (2008). Last, this paper is related to the literature on covariance matrix regularization. Contributions in this
area include the work of Ledoit and Wolf (2004; 2012), Fan, Liao, and Mincheva (2011; 2013). Pourahmadi (2013) pro-
vides an introduction to high-dimensional covariance regularization, which includes several of the recent developments
of the area.

It is important to highlight the differences between this work and the contributions of Wang and Zou (2010), Tao
et al. (2013), and Kim et al. (2016). These papers propose realized covariance regularization procedures based on the
assumption that the integrated covariance is sparse, whereas in this paper we impose sparsity assumptions on its inverse.
Note that in our framework the integrated covariance matrix is allowed to be nonsparse. Second, the aforementioned con-
tributions are based on thresholding whereas in this paper we rely on LASSO regularization. Last, the LASSO technique
used in this work allows us to recover the partial correlation structure of the log-prices, which may give insights into the
dependence structure of the assets in the panel.

The rest of the paper is structured as follows. In Section 2 we introduce the base framework and the realized network
estimator. The theoretical properties of the estimation procedure are analyzed in Section 3. Section 4 introduces a number
of important extensions to the baseline framework. Section 5 contains a simulation exercise to study the properties of
the realized network estimator. Section 6 presents an application to a panel of US blue chip stocks. Concluding remarks
follow in Section 7.

2 METHODOLOGY

In this section we introduce the baseline framework and estimation approach. Important extensions of the baseline
methodology, including allowing for market microstructure frictions, are considered later in Section 4.

2.1 Model
Let y(t) = (y1(t), … , yn(t)) denote the n-dimensional log-price vector of n assets at time t ∈ [0, 1]. We assume that the
dynamics of y(t) are given by

𝑦(t) = ∫
t

0
b(u)du + ∫

t

0
Θ(u)dB(u), t ∈ [0, 1], (1)

where B(t) is an n-dimensional Brownian motion. We assume that y(t) is defined on a filtered probability space
(Ω, , (t)t∈[0,1],P), wheret ⊆  is an increasing family of𝜎-fields satisfying P-completeness and right continuity. We also
denote by  (i,𝑗)

t the restriction of t excluding the ith and jth log-prices. The drift b(t) is an n-dimensional t-predictable
process, and the spot covolatility process Θ(t) is an n × n positive definite random matrix, whose entries are t-adapted
and càdlàg. Both processes b(t) and Θ(t) are assumed to be uniformly bounded on [0, 1]. Similarly to other papers on real-
ized covariance estimation, we do not consider jumps in the y(t) process and we leave this important development for
future work.

We consider the y(t) process over a fixed time interval of length 1, which typically represents a day, and we set y = y(1).
One of the main estimands of interest in this work is the quadratic covariation matrix of y, that is

Σ∗ = ∫
1

0
Σ(t)dt = (𝜎∗

i𝑗), (2)
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where Σ(t) = Θ(t)Θ(t)′ = (𝜎ij(t)) is the spot covariance matrix. Throughout the paper we refer to Σ∗ as the integrated
covariance matrix.

In this work we introduce a network definition for y based on the partial correlation structure implied by the integrated
covariance matrix Σ∗. We define the partial correlation 𝜌ij between yi and yj (conditional on  (i,𝑗)

1 ) as the correlation
between 𝜖i and 𝜖j, where 𝜖i and 𝜖j are the prediction errors of the best linear predictors for, respectively, yi and yj based on
{yk ∶ 1 ≤ k ≤ n, k ≠ i, j} (Peng, Wang, Zhou, & Zhu, 2009). It is well known that if y has covariance Σ∗ then we have
(Dempster, 1972; Pourahmadi, 2013)

𝜌i𝑗 =
−k∗

i𝑗√
k∗

iik
∗
𝑗𝑗

,

where k∗
i𝑗 denotes the (i, j)-element of the inverse integrated covariance matrix K∗ = (Σ∗)−1, which we call hereafter the

integrated concentration matrix. Partial correlation is one of the standard measures of dependence used to define networks
in the literature (Meinshausen & Bühlmann, 2006; Peng et al., 2009). In this paper a network is defined as an undirected
graph  = ( , ), where  is the set of vertices  = {1, 2, · · ·,n} and  is the set of edges  ⊂  ×  . In particular, we
define the network for y as an undirected graph where the set of vertices corresponds to the set of assets and a pair of assets
is connected by an edge iff the corresponding partial correlation is nonzero; that is,  = {(i, 𝑗) ∈  ×  , k∗

i𝑗 ≠ 0, i ≠ 𝑗}.
We call this network the integrated partial correlation network. Note that our network definition synthesizes the partial
correlation structure of the daily returns of the assets in the panel. It is important to emphasize that the integrated partial
correlation network definition captures a particular correlation relation among the daily log-prices. Obviously enough,
the absence of correlation between the log-daily prices of two assets does not necessarily imply that the spot prices are
also uncorrelated.

2.2 Estimation
We are interested in (i) estimating the integrated covariance and concentration matrices of the daily log-prices, and
(ii) detecting the nonzero entries of the integrated concentration matrix. The estimation strategy we follow consists of
applying LASSO-type regularization on the standard realized covariance estimators proposed in the literature.

We assume that the log-prices yi(t) of all assets i = 1, … ,n, are discretely observed at a same time grid T =
{t1, t2, … , tm} where t0 = 0 < t1 < · · · < tm = 1. We consider a generic estimator of the integrated covariance Σ∗

denoted Σ = (𝜎i𝑗) based on the observations yi(t𝓁), i = 1, … ,n, 𝓁 = 1, … ,m. We assume that this estimator satisfies
the following concentration inequality.

Assumption 1. There exist positive constants a1, a2 and a3 such that for all i, j ∈ {1, … ,n}, x ∈ [0, a1], and m large:

P
(|||𝜎i𝑗 − 𝜎∗

i𝑗
||| > x|1

) ≤ a2m𝛼0 exp(−a3(m𝛽x)a), (3)

for some positive exponents 𝛽, a and 𝛼0 ∈ {0, 1}.

A natural estimator of the integrated covariance of y in this setting is the so-called realized covariance (RC) estimator.
This estimator is the multivariate extension of the realized variance, whose working mechanism is that the quadratic
variation of the univariate price process can be approximated by the sum of squared returns over small intervals.

2.2.1 Realized covariance estimator
The realized covariance estimator ΣRC is defined as

𝜎RC,i𝑗 =
m∑

k=1
(𝑦i k − 𝑦i k−1)

(
𝑦𝑗 k − 𝑦𝑗 k−1

)
,

where yik = yi(tk).
Assume that the time grid satisfies

sup
𝓁∈{1,· · ·,m}

|t𝓁 − t𝓁−1| ≤ 𝜅

m
, (4)

for some constant 𝜅 > 0. Then Barndorff-Nielsen and Shephard (2004) show that the difference between 𝜎 RC,i𝑗 and
𝜎∗

i𝑗 is asymptotically mixed normal with mean zero and variance of order O
(

m−1). Also, it is proved in Fan et al. (2012,
Lemma 3) that under the conditions of this section the estimator satisfies Assumption 1 with 𝛼0 = 0, a = 2 and 𝛽 = 12.

Given an estimator of the integrated covariance Σ satisfying Assumption 1, we use the graphical LASSO procedure
(GLASSO) to estimate the integrated concentration matrix K∗.
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2.2.2 Realized network estimator
Let Σ be an estimator of the integrated covariance, then we define the realized network estimator of the integrated
concentration matrix as

K̂𝜆 = arg min
K∈n

{
tr(ΣK) − log det(K) + 𝜆

∑
i≠𝑗

|ki𝑗|} , (5)

where 𝜆 ≥ 0 is the GLASSO tuning parameter and n is the set of n × n symmetric positive definite matrices. The entries
of K̂𝜆 are denoted by (k̂𝜆 i𝑗). The corresponding realized covariance estimator based on the realized network is Σ̂𝜆 = K̂−1

𝜆
.

Observe that Equation 5 defines a shrinkage type estimator. If we set 𝜆 = 0 in Equation 5, we obtain the normal
log-likelihood function of the covariance matrix, which is minimized by the inverse realized covariance estimator (Σ)−1.
If 𝜆 is positive, Equation 5 becomes a penalized likelihood function with penalty equal to the sum of the absolute values of
the nondiagonal entries in the estimator. The important feature of the absolute value penalty is that, for 𝜆 > 0, some of the
entries of the realized network estimator are going to be set to zero. The highlight of this estimator is that it simultaneously
estimates and selects the nonzero entries of K∗, thus providing an estimate of the linkages in the network. For this reason
we dub the estimator the realized network estimator. Banerjee and Ghaoui (2008) show that the optimization problem in
Equation 5 can be solved through a series of LASSO regressions, which motivates an iterative algorithm to solve Equation 5
given in Friedman, Hastle, Hofling, and Tibshirani (2007). For completeness, we provide a description of the algorithm
in the Supporting Information Appendix. The highlight of the procedure is that it is straightforward to carry out the
minimization of Equation 5 even when the number of series is large. Importantly, the algorithm is also guaranteed to
provide a positive definite estimate of the concentration matrix provided that the initial value of the algorithm is a positive
definite matrix. Moreover, the algorithm only requires the Σ estimator to be positive semidefinite (provided that 𝜆 is larger
than zero). In order to apply the estimator in empirical applications we need to use a selection criterion to pick the value
of the tuning parameter 𝜆. In this work we resort to a Bayesian information criterion (BIC)-type criterion defined as

BIC(𝜆) =m ×
[
− log det K̂𝜆 + tr

(
K̂𝜆Σ

)]
+ log m × #{(i, 𝑗) ∶ 1 ≤ i ≤ 𝑗 ≤ n, k̂𝜆 i𝑗 ≠ 0},

as suggested in Yuan and Lin (2007), among others.

3 THEORY

In this section, we apply the theory of Ravikumar et al. (2011) to our particular case of an exponential concentration
inequality to establish the large sample properties of the realized network estimator defined in Equation 5.

In order to state the results we need to adopt the following notations. Given a matrix U = (ui𝑗) ∈ R𝓁×m, we
set ||U||∞, ||U||1, and |||U|||∞ to denote max

i,𝑗
|ui𝑗|,∑i,𝑗|ui𝑗|, and max

𝑗

∑m
k=1 |u𝑗k|, where i ∈ {1, 2, … ,𝓁} and j ∈

{1, 2, … ,m}. If A = (aij) is a p × q matrix and B is an m × n matrix, the Kronecker product of matrices A and B is the
pm × qn matrix given by

A ⊗ B =

[ a11B · · · a1qB
⋮ ⋱ ⋮
ap1B · · · apqB

]
.

We index the pm rows of A ⊗ B by

 = {(1, 1), (2, 1), · · ·, (m, 1), (1, 2), (2, 2), · · ·, (m, 2), · · ·, (1, p), · · ·, (m, p)}

and the qn columns by

 = {(1, 1), (2, 1), · · ·, (n, 1), (1, 2), (2, 2), · · ·, (n, 2), · · ·, (1, q), · · ·, (n, q)}.

For any two subsets ̄ ⊂  and ̄ ⊂ , we denote by (A ⊗ B)̄̄ the matrix such that (A⊗B)(i,j)(c,d) is an entry of (A ⊗ B)̄̄
iff (i, 𝑗) ∈ ̄ and (c, d) ∈ ̄.

Assumption 2. Consider the n2 × n2 matrix Γ∗ = Σ∗ ⊗ Σ∗. There exists some 𝛼 ∈ (0, 1] such that

max
e∈c

||Γ∗
e

(
Γ∗

)−1||1 ≤ 1 − 𝛼,

where  =  ∪ {(i, i)|i ∈ } and c =
{
(i, 𝑗) ∈  ×  , k∗

i𝑗 = 0
}

.
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Assumption 2 limits the amount of dependence between the nonedge terms (indexed by c) and the edge-based terms
(indexed by ). The limit is controlled by 𝛼: The bigger the 𝛼, the smaller is the dependence. In other words, if we set

X( 𝑗,k) = 𝑦𝑗𝑦k − E
(
𝑦𝑗𝑦k

)
, for all 𝑗, k ∈  ,

then the correlation between X(j,k) and X(𝓁,m) is low for any ( 𝑗, k) ∈  and (𝓁,m) ∈ c.
In the following, Theorem 2 shows (a) the rate at which the realized network estimator converges to the true value as the

sample size m increases, and (b) a lower bound on the probability of correctly detecting the nonzero partial correlations
(as well as their signs) as a function of the sample size m. In particular, the estimator is model selection consistent with
high probability, when n is large.

Theorem 1. Assume Assumptions 1 and 2 hold, and choose 𝜆 = 8
𝛼

m−𝛽
(

log(a2m𝛼0 n𝜏 )
a3

) 1
a in Equation 5, where 𝜏 > 2 is

arbitrary.

a. Assume that

m >

{
2𝛼0

a3
log

[
a2n𝜏

(
a
− 1

a𝛽
3 c

1
𝛽

0

)𝛼0
]} 1

a𝛽

c
1
𝛽

0 , (6)

where

c0 ∶= max
⎡⎢⎢⎣ 1

a1
, 6(1 + 8𝛼−1)2d max

(
CΣ∗CΓ∗ ,C3

Σ∗C2
Γ∗

)
,

a
1
a
3

a𝛽

2

exp
(

2
a2𝛽

)
1{𝛼0=1},

1
𝜎n

⎤⎥⎥⎦ . (7)

Here, 𝜎n = mini𝜎
∗
ii , d is the maximum degree of the network—that is, the maximum number of edges that include

a vertex—and we have set CΓ∗ = |||(Γ∗
SS)

−1|||∞ and CΣ∗ = |||Σ∗|||∞.
Then,

P

[||K̂𝜆 − K∗||∞ ≤ 2
(
1 + 8𝛼−1) CΓ∗m−𝛽

(
log(a2m𝛼0 n𝜏)

a3

) 1
a |1

]
≥ 1 − 1

n𝜏−2 . (8)

b. Define c0 = max
(

c0,
2CΓ∗ (1+8𝛼−1)

kn

)
, where kn is the minimum absolute value of the nonzero entries of K∗. Assume that

m >

{
2𝛼0

a3
log

[
a2n𝜏

(
a
− 1

a𝛽
3 c

1
𝛽

0

)𝛼0
]} 1

a𝛽

c
1
𝛽

0 .

Then,
P
[

sign(k̂𝜆 i𝑗) = sign(k∗
i𝑗), ∀i, 𝑗 ∈ |1

] ≥ 1 − 1
n𝜏−2 .

Let us give the intuition behind the proof of this result. The assumption in Equation 6 implies that m is sufficiently large,
so that the estimation error |𝜎ii−𝜎∗

ii| is not larger than 𝜎n = mini𝜎
∗
ii with high probability for all i and, consequently, Σ will

have positive diagonal entries. In this case, the optimization problem of Equation 5 is convex and has a unique solution.
Let K̃𝜆 = (k̃𝜆 i𝑗) be the solution of Equation 5 under the constraint k̃𝜆 i𝑗 = 0 if k∗

i𝑗 = 0 (see Equation A-1 in the Supporting
Information Appendix). Based on the primal–dual witness construction (see, e.g., Ravikumar et al., 2011), we have that
K̃𝜆 = K̂𝜆 when ||K̃𝜆 −K∗||∞ and ||Σ−Σ∗||∞ are not larger than an appropriately defined constant. After straightforward
computations we show that for an appropriate choice of 𝜆 and m large enough we have that ||Σ−Σ∗||∞ and ||K̃𝜆 −K∗||∞
satisfy this condition. Therefore, with high probability we have that K̃𝜆 = K̂𝜆. In part (b) of Theorem 1 we introduce the
parameter kn, which is a lower bound on the smallest nonzero entries of K∗ in absolute value. We then show that for m
sufficiently large we have that with high probability |k̂𝜆 i𝑗 − k∗

i𝑗| is smaller than kn. This in turn is used to establish that
the signs of k̂𝜆 i𝑗 and k∗

i𝑗 are equal. Observe that when Assumption 1 holds with 𝛼0 = 0, Theorem 1 is a direct application
of Theorems 1 and 2 of Ravikumar et al. (2011). We give the proof of Theorem 1 for the case 𝛼0 = 1 in the Supporting
Information Appendix.

The parameter d, the maximum degree in the network, determines the precision of the estimator. It ranges from 0
(empty network) to n. To explore its effects, let us assume that the parameters CΣ∗ ,CΓ∗ , 𝛼 and 𝜎n in Theorem 1 remain con-
stant as a function (n,m, d). In this case, when d = 0, Condition 6 means that m should not be smaller than O

(
(log n)

1
a𝛽

)
.

When d = n, Condition 6 means that m should not be smaller than O
(
(log n)

1
a𝛽 n

1
𝛽

)
, since in this case c0 = O(n). In

other words, the more sparse the network is, the fewer observations are required to estimate the concentration matrix
accurately.
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4 EXTENSIONS

4.1 Microstructure noise and asynchronicity
Rather than the efficient price, it is customary to assume that the econometrician observes the transaction (or midquote)
price. This differs from the efficient price because trades (quotes) are affected by an array of market frictions that go under
the umbrella term of market microstructure. Moreover, it is common to assume that the trades (quotes) of different assets
are executed (posted) asynchronously. In this section we extend the baseline framework of Section 2 and introduce a
number of realized covariance estimators designed to handle microstructure noise and asynchronous trading.

We assume that the log-prices of each asset i are observed asynchronously on different time grids Ti = {ti1, · · ·, ti mi},
i = 1, … ,n. For each asset i = 1, … ,n the econometrician observes the transaction (or midquote) prices xi(ti𝓁)
defined as

xi(ti𝓁) = 𝑦i(ti𝓁) + ui(ti𝓁), (9)

where ui(ti𝓁) denotes the microstructure noise associated with the 𝓁th trade. Precise assumptions on the noise are spelled
out in what follows.

A standard technique used to handle asynchronous trading for realized covariance estimation is refresh time sampling,
which was introduced by Martens (2004). Several variants of this technique exist, like the pairwise and groupwise refresh
time approaches, used in Fan et al. (2012), Lunde et al. (2016) and Hautsch et al. (2012). In this work we use pairwise
refresh time sampling. Pairwise refresh time sampling-based covariance estimation consists of estimating each entry of
the covariance separately. The i, j-entry of the matrix is computed by first synchronizing the observations of assets i and j
using refresh time and then estimating the covariance between assets i and j using the synchronized data. We provide an
exact definition of the pairwise refresh time sampling procedure in the Supporting Information Appendix. Note that this
approach does not guarantee that the covariance estimator is positive definite, as each covariance entry is estimated using
different subsets of observations. Let xr

i = {xi(tr
i 1), · · ·, xi(tr

i m)} and xr
𝑗
= {x𝑗(tr

𝑗 1), · · ·, x𝑗(tr
𝑗 m)} denote the pairwise refresh

time sampling prices for assets i and j, where tr
i k and tr

𝑗 k are the synchronized timestamps. We use the shorthand notation
xr
𝓁 k, 𝑦r

𝓁 k and ur
𝓁 k to denote x𝓁(tr

𝓁 k), 𝑦𝓁(t
r
𝓁 k) and u𝓁(tr

𝓁 k), respectively. Also, we define M0 as the minimum pairwise refresh
sample size across all pairs of assets.

After the data have been opportunely synchronized, a number of market microstructure noise robust estimators can
be applied. In this work we focus on two leading robust estimators proposed in the literature: the two-scales realized
covariance estimator (TSRC) and the multivariate (generalized flat-top) realized kernel estimator (MRK).

In this work the noise process ui(ti𝓁) is assumed to be independent of 1 and normally distributed with mean zero and
variance 𝜂2. As far as its dependence properties are concerned, we consider two different settings: The propositions for the
TSRC estimator assume that each (i, j) refreshed pair (ur

i k,ur
𝑗 k) is i.i.d., whereas the propositions for the MRK estimator

assume that (ur
i k,ur

𝑗 k) is multivariate -dependent for some constant  > 0.1

4.1.1 Two-scales realized covariance estimator
The two–scales realized covariance estimator (TSRC) proposed in Zhang (2011) is a multivariate extension of the
two-scales estimator introduced by Aït-Sahalia et al. (2005). The TSRC estimator Σ TS based on pairwise refresh time is
defined as

𝜎TS,i𝑗 =
1
K

m∑
k=K+1

(
xr

i k − xr
i k−K

) (
xr
𝑗 k − xr

𝑗 k−K

)
− mK

mJ

1
J

m∑
k=J+1

(
xr

i k − xr
i k−J

) (
xr
𝑗 k − xr

𝑗 k−J

)
,

where mK = m−K+1
K

and mJ = m−J+1
J

.

Zhang (2011) shows that the optimal choice of K has order K = O(m
2
3 ), and J can be taken to be a constant such as

1. The first component of this estimator is the average of K realized variances, and it converges to 𝜎∗
i𝑗 in the absence of

noise. The second component is set to correct the bias caused by the noise. Under the optimal choice of K and J, the
estimation error is asymptotically mixed normal with zero mean and variance of order O

(
m− 1

3

)
. If we further assume

that 1
2

m
1
3 ≤ mK ≤ 2m

1
3 , then, under the condition that the synchronized observation times satisfy Condition 4, Fan et al.

(2012) show that this estimator satisfies Assumption 1 with 𝛽 = 1
6
, a = 2 and 𝛼0 = 0, and thus Theorem 1. Observe that

1In other words, we assume that ur
i k1

is independent of ur
𝑗 k2

when |k1 − k2| > .



8 BROWNLEES ET AL.

since M0 is defined as the minimum pairwise refresh sample size across all pairs of assets, we should replace m with M0
when applying Theorem 2 to TSRC.

In the simulation and empirical studies, for each pair of assets we choose J as 1 and K as the average number of trades
in 1 minute.2

4.1.2 Multivariate generalized flat-top realized kernel estimator
The MRK is proposed in Varneskov (2016), and builds upon the realized kernel estimators introduced in Barndorff-Nielsen
et al. (2008) and Barndorff-Nielsen et al. (2011). The MRK estimator Σ K based on pairwise refresh time is defined as

𝜎K i𝑗 = 𝛾0
(

xr
i , xr

𝑗

)
+ 1

2

H(1+H−𝜈 )∑
h=1

k
(

h
H

)[
𝛾h

(
xr

i , xr
𝑗

)
+ 𝛾−h

(
xr

i , xr
𝑗

)
+ 𝛾h

(
xr
𝑗 , xr

i
)
+ 𝛾−h

(
xr
𝑗 , xr

i
)]

, (10)

where for each h ∈ {−H(1 + H−𝜈), … ,H(1 + H−𝜈)} we have 𝛾h(xr
i , xr

𝑗
) =

∑m
p=1(xr

i p − xr
i p−1)(x

r
𝑗 p−h − xr

𝑗 p−h−1). The flat-top
kernel function k is defined as

k(x) = 1{|x|≤H−𝜈} + 𝜇(|x| − H−𝜈)1{|x|>H−𝜈},

where 𝜈 ∈ (0, 1) and the function 𝜇 satisfies the regularity conditions in Definition 3 of Varneskov (2016). Note that in
Equation (10) we are implicitly assuming that H−𝜈H is an integer. Under fairly general assumptions on the noise process
(which allow, for instance, for 𝛼-mixing dependence) Varneskov shows that for a choice of H of O(m

1
2 ), the estimation

error is asymptotically mixed normal with zero mean and variance of order O
(

m− 1
2

)
.

In order to apply Theorem 1 to this estimator, we establish an appropriate concentration inequality. We emphasize that
our result is proven under different conditions on the kernel function and the noise in comparison to those in Varneskov
(2016). As far as the kernel function is concerned we assume that (i)𝜇(0) = 1; (ii)𝜇(x) is twice differentiable with bounded
derivatives on [0, 1]; (iii) 𝜇(1) = 𝜇′ (0) = 𝜇′(1) = 0.

Theorem 2. If the synchronized observation times satisfy condition (Equation (4), then there exist positive constants
a1, a2 and a3 such that for all i, j ∈ {1, … ,n}, x ∈ [0, a1], and M0 large,

P
(|||𝜎K i𝑗 − 𝜎∗

i𝑗
||| > x|1

) ≤ a2M0 exp
(
−a3M1∕4

0 x
)
.

Therefore, the MRK satisfies Assumption 1 with 𝛽 = 1
4
, a = 1, and 𝛼0 = 1. Hence, we can apply Theorem 1, and we

obtain that the estimation error of K̂𝜆 converges to zero at rate M
− 1

4
0

√
log n (assuming that all other parameters including

𝛼, d,CΓ∗ and CΣ∗ are constants). Thus, in this case, M
1
2
0 is required to be large compared to log n to make the error small

in probability. Note that this result is analogous to that obtained in Tao et al. (2013), where the same convergence rate

M
− 1

4
0

√
log n is obtained for a multi-scale realized covariance estimator. Moreover, according to Tao et al., this rate is the

optimal rate for the estimation of the integrated covariance matrix when noise is present.
In the simulation and empirical studies, for each pair of assets we follow closely the implementation procedure

described in Varneskov (2016). In particular, in our MRK implementation we use the Parzen kernel and we choose the
parameters H and 𝜈 using the plug-in approach detailed in that paper using refreshed time sampled prices, sampled on
average every 20 seconds.

4.2 Factor structure
Classic asset pricing theory models like the CAPM or APT imply that the unexpected rate of return of risky assets can
be expressed as a linear function of few common factors and an idiosyncratic component. Factors induce a fully inter-
connected partial correlation network structure. In this case, it is natural to carry out network analysis on the partial
correlation structure of the assets after netting out the influence of common sources of variation. In this section we propose
a modification of our network definition for such systems. Also, we propose a modified covariance estimation strategy
analogous to that put forward in Fan, Fan, and Lv (2008) and Fan et al. (2011) that is based on the particular structure of
the system.

2In the previous version of the paper we choose K as the optimal bandwidth for the realized two-scale volatility estimator of the two assets, following
the procedure detailed in Aït-Sahalia et al. (2005). Results are roughly analogous to those presented here.



BROWNLEES ET AL. 9

We augment the y process with additional k components representing factors. The dynamics of the augmented system
are assumed to be the same as that described in Equation (1). Moreover, the factors are assumed to be observed, as is
commonly done in the empirical finance literature and also as in Fan et al. (2008). The integrated covariance of the
augmented system can then be partitioned as an (n + k) × (n + k) matrix

Σ∗ =
[ Σ∗

AA Σ∗
FA

Σ∗
AF Σ∗

FF

]
, (11)

where A and F denote, respectively, the blocks of assets and factors.
The covariance of the assets can be expressed as the sum of the systematic and idiosyncratic components, that is:

Σ∗
AA = BΣ∗

FFB′ + Σ∗
I ,

where
B = Σ∗

AF
[
Σ∗

FF
]−1 and Σ∗

I = Σ∗
AA − Σ∗

AF
[
Σ∗

FF
]−1Σ∗

FA.

If the factors are pervasive (B is not sparse), then the concentration matrix of the assets cannot be sparse. In these cases,
rather than proposing a network definition on the basis of the partial correlations of the system, we propose a network
definition based on the idiosyncratic partial correlations—that is, the partial correlations implied by the idiosyncratic
covariance matrix Σ∗

I . Precisely, we define the idiosyncratic integrated partial correlation network as the network whose
set of edges is given by

I =
{
(i, 𝑗) ∈  ×  , k∗

I i𝑗 ≠ 0, i ≠ 𝑗
}
,

where k∗
I i𝑗 is the i, j-entry of the matrix K∗

I = (Σ∗
I )

−1.
Let Σ be an appropriate estimator of the integrated covariance of the augmented system and consider partitioning the

estimated covariance matrix analogously to Equation (11):

Σ =
[
ΣAA ΣFA
ΣAF ΣFF

]
.

Then, a natural estimator of the idiosyncratic realized covariance estimator ΣI = (𝜎I i𝑗) is

ΣI = (𝜎I i𝑗) = ΣAA − ΣFA

[
ΣFF

]−1
ΣAF . (12)

The following corollary establishes the concentration inequality of the estimator ΣI using the one for Σ.

Corollary 1. If Assumption 1 holds, then there exist positive constants b1, b2 and b3 such that for all i, j ∈ {1, … ,n},
x ∈ [0, b1], and M0 large:

P
(|||𝜎I i𝑗 − 𝜎∗

I i𝑗
||| > x|1

) ≤ b2M𝛼0
0 exp(−b3(M𝛽

0 x)a),

where 𝛽, a and 𝛼0 are the constants from Assumption 1.

The realized network estimator can thus be applied to regularize the idiosyncratic realized covariance matrix and
estimate the idiosyncratic partial correlation network. Moreover, the covariance matrix of the assets can be estimated as

Σ̂AA = BΣFF B
′
+ Σ̂I 𝜆,

where Σ̂I 𝜆 denotes the realized covariance estimator implied by the realized network. Note that this estimation strategy
is analogous to that proposed in Fan et al. (2011).

5 SIMULATION STUDY

In this section we carry out a simulation study to assess the finite-sample properties of the realized network estimator.
The simulation exercise consists of simulating 1 day of high-frequency data and to apply the realized network estimator
to estimate the integrated covariance and the integrated concentration matrices. Different specifications of the covariance
matrix of the efficient price process are used to assess the usefulness of the realized network estimator depending on the
underlying cross-sectional dependence structure of the data. The realized network estimator is also benchmarked against
a set of alternative covariance regularization procedures proposed in the literature.
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In our simulation study we employ a DGP analogous to that used in the study of Kim et al. (2016). The efficient log-price
is generated according to a zero-drift version of the model in Equation 1, that is:

𝑦(t) = ∫
t

0
Θ(u)dB(u),

where B(t) is an n-dimensional Brownian motion and Θ(t) is the Cholesky factor of the spot covariance matrix Σ(t). In
our numerical implementation, a trading day is 6.5 hours long and the simulation of the continuous time process is
carried out using the Euler scheme with a discretization step of 5 seconds. In our simulation study we consider different
cross-sectional sizes n equal to 25, 50 and 100.

The spot covariance matrix is defined as
Σ(t) = 𝜅(t)V(t)DV(t),

where 𝜅(t) is a scalar generated as

𝜅(t) = e2𝑓 (t) − 1
e2𝑓 (t) + 1

, 𝑓 (t) = ∫
t

0
a𝜅[b𝜅 − 𝑓 (u)] + c𝜅𝑓 (u) dW𝜅(u),

where W𝜅(t) is a standard one-dimensional Brownian motion and (a𝜅, b𝜅, c𝜅)′ = (1, 0.4, 0.64)′; V(t) is a diagonal n × n
matrix whose ith diagonal entry vi(t) is

vi(t) = ∫
t

0
av

[
bv − vi(u)

]
+ cv

√
vi(u)dWvi (u),

where Wvi(t) is a standard one-dimensional Brownian motion and (av, bv, cv)′ = (0.000042, 0.8, 0.0058)′; and D is an n × n
positive definite matrix that determines the cross-sectional dependence structure of the assets and that is specified below.
The processes W𝜅(t), Wvi (t), and B(t) are independent among each other.

Three different specifications of the matrix D are adopted. In the first simulation design (Design 1), we pick a specifi-
cation for D which induces a sparse partial correlation structure among the assets in the panel. In particular, we choose
D as a function of a realization of an Erdös–Renyi random graph. The Erdös–Renyi random graph  = ( , ) is an undi-
rected graph defined over a fixed set of vertices  = {1, · · ·,n} and a random set of edges  ⊆  ×  , where the existence
of an edge between any pair of vertices is determined by an independent Bernoulli trial with probability p. We generate
D by first simulating an Erdös–Renyi random graph  and then setting D equal to

D = [In + E − F]−1,

where In is the n-dimensional identity matrix, and E and F are respectively the degree matrix and the adjacency matrix
of the random graph . The model for D is such that the underlying random graph structure determines the sparsity
structure of the integrated concentration matrix. Also, note that D is symmetric positive definite by construction. In the
simulation we set p equal to 2∕n. In this scenario (i.e., when np is greater than one) the Erdös–Renyi random graph will
almost surely have a giant component—that is, a connected component containing a constant fraction of the entire set
of network vertices. Thus the highlight of the model is that the generated concentration matrix is sparse whereas the
corresponding covariance matrix is not.

In the second simulation design (Design 2), we pick a specification for D based on a factor model. We set D as

D = GIk G′ + In,

where G is an n × k matrix whose entries are i.i.d. normal Gaussian draws with mean zero and unit variance. In the
simulation we set the number of factors k to 2. Note that this scenario is challenging for the realized network estimator
in that the inverse covariance matrix implied by the model is not sparse.

Last, in the third simulation design (Design 3), we set the D matrix as

[D]i𝑗 =
{

𝜌 + 𝜌|i−𝑗| if i ≠ 𝑗
1 otherwise,

and set 𝜌 equal to 0.25. Note that also in this scenario the inverse covariance matrix is not sparse and the covariance matrix
does not have a factor representation.

We assume that the econometrician observes asynchronously a contaminated version of the efficient price, as specified
in Equation 9. Prices are observed according to the realization of a Poisson process with a constant intensity calibrated to
have 20 trades per minute on average. The market microstructure contamination ui(ti𝓁) consists of a zero-mean MA(1)
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process ui(ti𝓁) = 𝜀i(ti𝓁) − 0.5𝜀i(ti𝓁 − 1) where 𝜀i(ti𝓁) is drawn from a Student t-distribution with 10 degrees of freedom
which is further rescaled to have a standard deviation of 0.05.

Different approaches are used to estimate the integrated covariance and integrated concentration matrices. First,
we estimate the integrated covariance using the 1-minute frequency RC, the pairwise-refreshed time TSRC and the
pairwise-refreshed time MRK. For the RC we employ a 1-minute sampling frequency rather than the classic 5-minute fre-
quency so that we have enough intra-daily observations to obtain a positive definite estimator when the cross-sectional
dimension n is 100. The bandwidth parameters of the TSRC and MRK are computed using the plug-in rules previously
described. It is important to stress that the TSRC and MRK estimators are not guaranteed to be positive definite. When
the estimators are indefinite we apply an eigenvalue cleaning algorithm used in Hautsch et al. (2012) (reported in the
Supporting Information Appendix) to obtain a positive definite estimator.3 For each realized covariance estimator, we
consider a number of different regularization procedures. First, we use the realized network estimator defined in Section
2 using the BIC to determine the optimal amount of shrinkage to apply. Note that one of the inputs of the BIC is the
number of observations used to compute the estimator. When using pairwise-refresh sampling, however, this number is
different for each entry of the covariance matrix. Similarly to Hautsch et al. (2012), we opt for a conservative choice of
this quantity, and we set it to the minimum number of refresh time observations across all pairs. The next regularized
estimator we consider is based on a factor approximation of the covariance matrix (Fan et al., 2013). It is defined as

Σ̂F =
k∑

i=1
𝜉iêiê′i + R̂k, (13)

where 𝜉i and êi denote the eigenvalues (in increasing order) and corresponding eigenvectors obtained from the spectral
decomposition of the unregularized realized estimator Σ, and R̂k is diag(Σ −

∑k
i=1 𝜉iêiê′i). Last, we consider the shrinkage

estimator proposed by Ledoit and Wolf (2004). Let Σ denote the unregularized realized covariance (computed using either
the RC, TSRC or MRK estimators). The shrinkage estimator is defined as

Σ̂LW = 𝛼1In + 𝛼2Σ, (14)

where 𝛼1 and 𝛼2 are two tuning parameters chosen to minimize the risk of the estimator that we set following Ledoit and
Wolf (2004) and Hautsch et al. (2015).4

Different metrics can be used to evaluate the performance of covariance estimators (Laurent, Rombouts, & Violante,
2011). Here we rely on two classic loss functions: The Kullback–Leibler and root mean square error (RMSE). A classic
loss function used for the evaluation of covariance matrix estimators is the Kullback–Leibler loss proposed by Stein (1956)
and Pourahmadi (2013), which is defined as

KL
(
Σ̂
)
= tr(Σ̂K∗) − log |Σ̂K∗| − n.

Following Hautsch et al. (2012), we also consider an RMSE-type loss based on the Frobenius norm of the covariance
matrix, which is defined as

RMSE
(
Σ̂
)
=

√√√√ n∑
i,𝑗=1

(𝜎i𝑗 − 𝜎∗
i𝑗)2.

We perform 10,000 Monte Carlo replications of the simulation exercise for each simulation design and report summary
statistics on the performance of the estimators in Table 1. The table reports the average of the KL and RMSE losses of the
estimators in the three simulation designs.

A number of comments are in order. First, using regularization is always advantageous with respect to the unregu-
larized estimator even when the regularization scheme does not match the characteristics of the DGP. Gains are more
pronounced when the dimension of the system is larger. Second, we note that using a regularization technique whose
shrinking target is closer to the true underlying structure of the DGP produces the largest gains. In particular, it is easy
to see that when the partial correlation structure of the data is sparse (Design 1) the realized network estimator is the

3It is important to emphasize that this procedure is designed for the sample covariance estimator of independent data. Nevertheless, we found the
performance of this procedure in the version proposed by Hautsch et al. (2012) to work satisfactorily in both the simulations and the empirical
application.
4More precisely, we compute values of 𝛼1 and 𝛼2 using the formulas provided in Ledoit and Wolf (2004) using the panel of equally spaced differences at
the 1-minute frequency.
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TABLE 1 Simulation study

KL RMSE
DGP Est. No regular. Network Factor Shrinkage No regular. Network Factor Shrinkage

n = 25
D1 RC 2.867 2.207 2.355 2.472 1.048 0.794 0.937 0.986

TSRC 1.947 1.874 2.537 2.416 1.055 0.816 0.898 1.041
MRK 1.594 1.257 1.552 1.482 0.857 0.647 0.621 0.595

D2 RC 2.364 0.601 0.335 0.727 1.098 0.915 0.728 1.145
TSRC 1.783 0.421 0.577 0.740 1.310 1.155 0.727 1.451
MRK 1.553 0.427 0.328 0.711 0.899 0.711 0.582 0.895

D3 RC 2.374 0.443 0.674 0.286 1.043 0.969 1.130 0.992
TSRC 1.594 0.568 0.936 0.374 1.040 1.089 1.015 0.977
MRK 1.463 0.547 0.530 0.309 0.864 0.807 0.784 0.742

n = 50
D1 RC 5.330 3.924 4.668 5.245 2.061 1.216 1.450 1.867

TSRC 3.886 3.307 3.791 3.610 1.947 1.158 1.399 1.895
MRK 3.738 2.401 3.241 3.554 1.708 1.127 0.957 1.121

D2 RC 4.865 1.360 0.537 0.839 2.156 1.703 1.330 2.255
TSRC 3.568 1.144 0.852 0.964 2.372 2.012 1.340 2.652
MRK 3.542 1.226 0.483 0.963 1.742 1.324 1.059 1.725

D3 RC 5.055 1.643 1.789 0.511 2.058 1.857 1.515 1.154
TSRC 3.095 1.947 2.536 0.629 1.948 1.772 1.372 1.210
MRK 3.263 2.140 1.435 0.579 1.697 1.567 1.102 0.864

n = 100
D1 RC 23.638 8.588 10.389 11.389 4.080 2.125 2.184 2.587

TSRC 22.396 7.372 10.762 11.586 3.720 1.953 2.069 2.628
MRK 24.570 5.877 6.410 6.834 3.381 1.141 1.413 1.552

D2 RC 22.490 3.515 0.803 3.495 4.306 3.379 2.428 4.469
TSRC 18.183 2.960 1.232 4.699 4.897 4.146 2.709 4.394
MRK 21.723 3.492 0.732 5.054 3.554 2.716 2.022 3.529

D3 RC 24.061 6.609 2.776 1.969 4.096 3.657 2.297 2.121
TSRC 13.599 7.281 3.899 2.286 3.780 3.379 2.348 1.963
MRK 16.971 9.038 2.245 2.218 3.395 3.129 1.713 1.645

Note. The table reports the KL and RMSE average losses of the unregularized RC, TSRC, and MRK estimators (No regular) as well as their
regularized versions (Shrinkage, Factor, Network) in the three simulation designs of Section 5.

best-performing regularization technique. Analogously, the factor-based regularization performs best in Design 2 and
shrinkage regularization in Design 3. It is also interesting to report how many times we resort to the eigenvalue clean-
ing procedure for the TSRC and MRK estimators: In our simulations we had to apply the cleaning step on average 84.3%
of the times for the TSRC and 72.8% for the MRK estimator. Overall, results convey that the gains by using the realized
network estimator when the partial correlation structure is sparse can be substantial when the system is large.

6 EMPIRICAL APPLICATION

We use the realized network estimator to analyze the dependence structure of a panel of US blue chip stocks from the
NYSE throughout 2009. We then engage in a Markowitz-style global minimum variance portfolio prediction exercise.

6.1 Data and estimation
We consider a sample of 100 liquid US blue chip stocks that have been part of the S&P 100 index for most of the 2000s.
We also include in the panel the SPY ETF: the ETF tracking the S&P 500 index. We work with tick-by-tick transaction
prices obtained from the NYSE-TAQ database. Before proceeding with the econometric analysis, the data are filtered
using standard techniques described in Brownlees and Gallo (2006) and Barndorff-Nielsen, Hansen, Lunde, and Shephard
(2009). The full list of tickers, company names and industry groups is reported in Table 2.
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TABLE 2 Tickers, company names and sectors

Ticker symbol Company name GICS sector Ticker symbol Company name GICS sector

AMZN Amazon.com Consumer discretionary ABT Abbott Laboratories Healthcare
CMCSA Comcast Consumer discretionary AMGN Amgen Healthcare
DIS Walt Disney Consumer discretionary BAX Baxter International Healthcare
F Ford Motor Consumer discretionary BMY Bristol-Myers Squibb Healthcare
FOXA Twenty-First Century Fox Consumer discretionary GILD Gilead Sciences Healthcare
GM General Motors Consumer discretionary JNJ Johnson & Johnson Healthcare
HD Home Depot Consumer discretionary LLY Lilly & Co. Healthcare
LOW Lowes Consumer discretionary MDT Medtronic Healthcare
MCD McDonalds Consumer discretionary MRK Merck Healthcare
NKE NIKE Consumer discretionary PFE Pfizer Healthcare
SBUX Starbucks Consumer discretionary UNH United Health Group Healthcare
TGT Target Consumer discretionary BA Boeing Company Industrials
TWX Time Warner Inc. Consumer discretionary CAT Caterpillar Industrials
CL Colgate-Palmolive Consumer staples EMR Emerson Electric Industrials
COST Costco Co. Consumer staples FDX FedEx Industrials
CVS CVS Caremark Consumer staples GD General dynamics Industrials
KO The Coca Cola Company Consumer staples GE General Electric Industrials
MDLZ Mondelez International Consumer staples HON Honeywell Intl Industrials
MO Altria Group Inc. Consumer staples LMT Lockheed Martin Industrials
PEP PepsiCo Inc. Consumer staples MMM 3M Company Industrials
PG Procter & Gamble Consumer staples NSC Norfolk Southern Industrials
PM Philip Morris Consumer staples RTN Raytheon Co. Industrials
WAG Walgreen Consumer staples UNP Union Pacific Industrials
WMT Wal-Mart Stores Consumer staples UPS United Parcel Service Industrials
APA Apache Energy UTX United Technologies Industrials
APC Anadarko Petroleum Energy AAPL Apple Information technology
COP ConocoPhillips Energy ACN Accenture Information technology
CVX Chevron Energy CSCO Cisco Systems Information technology
DVN Devon Energy Energy EBAY eBay Information technology
HAL Halliburton Co. Energy EMC EMC Information technology
NOV National Oilwell Varco Energy FB Facebook Information technology
OXY Occidental Petroleum Energy GOOG Google Inc. Information technology
SLB Schlumberger Ltd. Energy HPQ Hewlett-Packard Information technology
XOM Exxon Mobil Energy IBM IBM Information technology
AIG AIG Financials INTC Intel Information technology
ALL Allstate Financials MA Mastercard Information technology
AXP American Express Co. Financials MSFT Microsoft Information technology
BAC Bank of America Financials ORCL Oracle Information technology
BK Bank of New York Financials QCOM QUALCOMM Inc. Information technology
BRK.B Berkshire Hathaway Financials TXN Texas Instruments Information technology
C Citigroup Inc. Financials V Visa Inc. Information technology
COF Capital One Financial Financials DD Du Pont Materials
GS Goldman Sachs Group Financials DOW Dow Chemical Materials
JPM JPMorgan Chase & Co. Financials FCX Freeport-McMoran Materials
MET MetLife Inc. Financials MON Monsanto Co. Materials
MS Morgan Stanley Financials T AT&T Inc. Telecommunications
SPG Simon Property Group Financials VZ Verizon Communications Telecommunications
USB U.S. Bancorp Financials AEP American Electric Power Utilities
WFC Wells Fargo Financials EXC Exelon Utilities
ABBV AbbVie Health Care SO Southern Co. Utilities

Note. The table reports the list of company tickers, company names, and industry sectors.
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We estimate the integrated covariance for each trading day of 2009. On each of these days, we only consider the tickers
that have at least 1,000 trades. Exploratory analysis (non reported in the paper) confirms the well-documented evidence
of a CAPM-type factor structure in the panel. To this extent, our realized covariance estimation strategy consists of first
decomposing the realized covariance in systematic and idiosyncratic covariance components and then regularizing the
idiosyncratic part with the realized network. More precisely, we compute the realized covariance of the assets in the panel
together with the SPY ticker (the proxy of the market), and then obtain the systematic and idiosyncratic components of
the realized covariance of the assets on the basis of Formula 12. Finally, we apply the realized network regularization
procedure to the idiosyncratic realized covariance. On each trading day of 2009, we estimate the realized network using
three (idiosyncratic) realized covariance estimators: the RC, the TSRC, and the MRK.

6.2 Realized network estimates
In this section we present the realized network estimation results. We first provide details for one specific date only that
roughly corresponds to the middle of the sample (June 26, 2009) and then report summaries for all estimated networks
in 2009. In the interest of space we report the TSRC estimator results only. The RC and MRK provide similar evidence.

We begin by showing in Figure 1 the heatmap of the idiosyncratic correlation matrix associated with the idiosyncratic
realized covariance estimator on June 26. Note that the heatmap is constructed by sorting stocks by industry group and
then by alphabetical order. The picture clearly shows that after netting out the influence of the market factor a fair amount
of cross-sectional dependence is still present across stocks. Inspection of the heatmap reveals that the majority of estimated
correlation coefficients are positive. The correlation matrix exhibits a block diagonal structure, hinting that correlation
is stronger among firms in the same industry. On this date, the intra-industry group correlation is particularly strong for
energy companies.

We estimate the realized network using the GLASSO and use the BIC to choose the optimal amount of shrinkage.
The estimated network corresponding to the optimal 𝜆 has 244 edges, which correspond to approximately 5% of the
total number of possible edges in the network on this date. The number of companies that have interconnections are 84
(roughly 90% of the total) and are all connected in a unique giant component.

FIGURE 1 Idiosyncratic correlation heatmap on 2009-06-26. Notes: The figure shows the heatmap of the idiosyncratic realized correlation
matrix on June 26, 2009, estimated using the TSRC estimator. Darker shades indicate higher correlations in absolute value [Colour figure can
be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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It is useful to provide details on the amount of variability explained by the systematic and idiosyncratic components of
the covariance matrix of the panel. To this extent, we introduce the systematic coefficient of determination, defined as

R2
F i =

B
′
iΣFFBi

B
′
iΣFFBi + �̂�I ii

,

which measures the amount of variability of asset i explained by the market factor. We also introduce the idiosyncratic
coefficient of determination, defined as

R2
I i =

�̂�I ii − 1∕k̂I ii

�̂�I ii
,

which measures the amount of variability of asset i explained by the remaining assets conditional on the market factor.
On June 26, the average of the systematic R2

F is equal to 27.1%, whereas the average of the idiosyncratic R2
I (for those assets

with at least one neighbor) is 12.5%. Overall, the systematic component is the most relevant one in terms of explained
variability; however, the idiosyncratic component captures a nonnegligible portion of variability as well.

Figure 2 displays the idiosyncratic partial correlation network. A number of comments on the empirical characteris-
tics of the network are in order. First, on this date, Google (GOOG) emerges as a particularly highly interconnected firm,
with linkages spreading to several other industry groups. The estimated network also shows some degree of industry
clustering; that is, linkages are more frequent among firms in the same industry group. In order to obtain better insights
into the industry linkages in Table 3, we report the total number of links across industry groups. The table shows that
firms in the energy and technology groups are particularly interconnected among each other. On the other hand, con-
sumer discretionary, consumer staples and healthcare have few intra-industry linkages. In Figure 3 we report the degree
distribution of the estimated network and the distribution of the nonzero partial correlations. As far as the degree distri-
bution is concerned, the network exhibits the typical features of power law networks; that is, the number of connections

FIGURE 2 Idiosyncratic partial correlation network on 2009-06-26. Notes: The figure shows the optimal realized network estimated on
June 26, 2009 [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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TABLE 3 Links on 2009-06-26

Disc Stap Ener Fin Heal Ind Tech Mat Tel Util

Disc 7 4 6 11 1
Stap 3 13 3
Ener 7 29 7 1 17 20 11 2
Fin 4 3 7 7 2 5 13 4 1
Heal 1 2 7
Ind 6 17 5 4 31 6
Tech 11 13 20 13 7 31 15 8 2 3
Mat 3 11 4 6 8 1
Tel 2
Util 1 2 1 3

Note. The table reports the number of estimated links among industry groups on June 26,
2009.

FIGURE 3 Degree and partial correlation distribution on 2009-06-26. Notes: The figure shows the degree distribution and the distribution
of partial correlations on June 26, 2009 [Colour figure can be viewed at wileyonlinelibrary.com]

is heterogeneous and the most interconnected stocks have a large number of connections relative to the total number
of links. The histogram of the partial correlation shows that the majority of the partial correlations are positive and that
positive partial correlations are, on average, larger than the negative ones.

Last, we are interested in determining which companies are more interconnected and central in the network. We mea-
sure the degree of interconnectedness of a firm using different approaches: (i) the degree of a company in the network
(i.e., the number of links); (ii) the sum of nonzero square partial correlations of a company; and (iii) the centrality index
of the PageRank algorithm. The PageRank algorithm is a well-known network-based centrality index used by web search
engines to rank web pages (see details in the Supporting Information Appendix). It turns out that the indices provide
markedly close rankings. The rank correlations among the different measures are all above 0.9. We report the top 10 most
central companies in Table 4 according to PageRank. The PageRank algorithm shows that Google is indeed the most
central stock on this date.

We report a number of summary statistics for the sequence of networks estimated in 2009. First, in Figure 4 we report
the proportion of links in the network throughout the year. The picture shows that sparsity is, on average, between 5%
and 10% of the total possible number of linkages throughout the year. The plots show the sparsity rate vis-à-vis the VIX
volatility index. The plot suggests that the network density is correlated to volatility: the higher the level of volatility, the
more dense is the network.

Figure 5 shows the rolling monthly average of the total number of links of each industry group divided by the total
number of possible edges. The plot omits the series for materials, telecom, and utilities due to their small size. Technol-
ogy, energy, financial, and industrials are the most interconnected sectors throughout 2009, with technology being the
most interconnected sector during the entire period. In order to provide more insights into the degree of concentration
within each group, in Figure 6 we report the rolling monthly average of the concentration of links in each industry group

http://wileyonlinelibrary.com
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TABLE 4 Centrality on 2009-06-26

Rank Ticker Sector

1 GOOG Information technology
2 FCX Materials
3 APA Energy
4 UNP Industrials
5 IBM Information technology
6 SLB Energy
7 MA Information technology
8 NOV Energy
9 DVN Energy
10 AMZN Consumer discretionary

Note. The table reports the top tickers according to
page rank on June 26, 2009.

FIGURE 4 Sparsity versus volatility. Notes: The figure shows the sparsity of the estimated network (square) vis-à-vis the level of volatility
measured by the VIX (circle) for each week of 2009 [Colour figure can be viewed at wileyonlinelibrary.com]

measured using the Herfindahl index.5 Again, materials, telecom, and utilities are omitted from the graph. Technology
and consumer discretionary are the most highly concentrated sectors. In particular, the consumer discretionary sector
experiences a surge in the degree of concentration in the last part of the sample. In the case of the technology sector
detailed inspection of the results reveals that this is driven by the fact that in 2009 Google is essentially the most intercon-
nected ticker. For the consumer discretionary sector we have that Amazon progressively becomes more interconnected
relative to the other companies in this sector throughout the sample. Industrials, on the other hand, have the smaller
average concentration, in that the number of links is quite uniformly distributed across firms and no specific hub emerges
among these tickers.

Overall results convey after conditioning on a one-factor structure that data still have a fair amount of cross-sectional
dependence and that networks provide a useful device to synthesize such information. The main empirical features of the
network are stable throughout 2009. Firms in the energy and industrials sectors are strongly interconnected. Technology
companies, and Google in particular, are the most highly interconnected firms throughout the year.

5Let si denote the share of edges in the sub-graph of a given industry sector. Then the Herfindahl concentration index is defined as H =
∑

is2
i .

http://wileyonlinelibrary.com
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FIGURE 5 Sectorial links. Notes: The figure shows the number of linkages of the different industry groups over the total number of
possible linkages for each week of 2009 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 6 Sectorial concentration. Notes: The figure shows the link concentration (measured using the Herfindahl index) of the different
industry for each week of 2009 [Colour figure can be viewed at wileyonlinelibrary.com]

6.3 Predictive analysis
In order to assess the ability of the regularized network methodology to provide precise estimates of the integrated
covariance we carry out an asset allocation prediction exercise (Engle & Colacito, 2006; Hautsch et al., 2012; 2015).

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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TABLE 5 GMV forecasting

No regular. Diagonal Network Factor Shrinkage Block-factor

RC 13.40 13.74 12.09 12.11 12.03 13.24
−0.70 1.41 2.46** 2.65*** 0.26

TSRC 13.05 13.52 11.96 12.34 12.16 12.29
−0.74 1.88* 1.34 1.73* 0.88

MRK 12.95 13.89 11.65 13.03 10.46 11.15
−1.82* 2.17** −0.12 4.19*** 2.30**

Note. The table reports the results of the GMV forecasting comparison exercise. The table reports
the annualized out-of-sample volatilities of the GMV portfolios constructed for the unregularized RC,
TSRC, and MRK estimators (No regular.) as well as their regularized versions (Diagonal, Network, Fac-
tor, Shrinkage, Block-factor), together with the test statistic of the Diebold–Mariano predictive ability
test (asterisks denote significance at the standard significance levels).

The forecasting exercise is designed as follows. For each trading day of 2009, we construct the Markowitz global minimum
variance (GMV) portfolio weights using the formula

ŵ = Σ̂−1𝟏
𝟏′Σ̂−1𝟏

, (15)

where 1 is an n-dimensional vector of ones and Σ̂ denotes some estimator of the integrated covariance over a given day.
The resulting GMV portfolio weights are then used to construct a portfolio that is held until the following trading day.
The exercise is carried out for each trading day from January 2, 2009 to December 31, 2009 (which corresponds to 252
days). The performance of different covariance estimators is evaluated by assessing which estimator delivers the small-
est out-of-sample GMV portfolio variance. Note that we are implicitly relying on a random walk forecasting model to
project the covariance of the assets and that prediction accuracy could be further enhanced by specifying an appropriate
dynamic model.

The set of estimators we consider is based on the systematic/idiosyncratic decomposition of the covariance matrix:

Σ̂ = BΣFF B
′
+ Σ̂I , (16)

and differ on the choice of estimator of the idiosyncratic realized covariance matrix Σ̂I . The set of candidate idiosyncratic
realized covariance estimators contains: (i) unregularized covariance estimator; (ii) constrained covariance estimator,
obtained by setting all the off-diagonal elements of the unregularized covariance estimator to zero; (iii) realized network
estimator; (iv) factor-regularized covariance estimator (see Equation 13) based on three factors; (v) shrinkage covari-
ance estimator of Ledoit and Wolf (2004) (see Equation refeqn:lw); and (vi) block-factor regularized estimator, obtained
by applying factor regularization of Equation 13 based on one factor to each industry block and setting the rest of the
covariance matrix to zero. The exercise is carried out using the MRK, TSRC, and RC estimators.

We report summary results on the forecasting exercise in Table 5. The table shows the average annualized volatility
of the GMV portfolios as well as the Diebold–Mariano test statistic. Asterisks denote significance of a Diebold–Mariano
equal predictive ability test (Diebold & Mariano, 1995; Engle & Colacito, 2006) against the unregularized estimator. The
three different covariance estimators deliver analogous inference. The constrained estimator that ignores cross–sectional
dependence in the idiosyncratic realized covariance matrix performs worst than the baseline unconstrained estimator.
Regularization improves over the unregularized estimator in the vast majority of cases. The shrinkage and realized net-
work regularization schemes provide the best out–of–sample results. The factor and block-factor regularization also
improve out-of-sample forecasting but the significance is weaker. We interpret this as the consequence that after control-
ling for the market factor there is only weak evidence of the presence of additional factors. The limited success of the
block-factor regularization scheme may be due to the fact that, while some sectors exhibit strong dependence (industrials),
a large number of stocks in other sectors do not (consumer discretionary, consumer staples, and healthcare).

7 CONCLUSIONS

In this work we propose a regularization procedure for realized covariance estimators. The regularization consists of
shrinking the off-diagonal elements of the inverse realized covariance matrix to zero using a LASSO-type penalty. Since
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estimating a sparse inverse realized covariance matrix is equivalent to detecting the partial correlation network structure
of the daily log-prices, we call our procedure realized network. The technique is specifically designed for the two-scales
realized covariance (TSRC) and the multivariate realized kernel (MRK) estimators based on refresh time sampling, which
are state-of-the-art consistent covariance estimators that allow for market microstructure effects and asynchronous trad-
ing. We establish the large-sample properties of the procedure estimator and show that the realized network consistently
estimates the inverse integrated covariance matrix and consistently detects the nonzero partial correlations of the net-
work. An empirical exercise is used to highlight the usefulness of the procedure, and an out-of-sample GMV portfolio asset
allocation exercise is carried out to compare our procedure against a number of benchmarks. Results convey that realized
network enhances the prediction properties of classic realized covariance estimators and performs favorably relative to a
set of alternative regularization procedures.
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