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Abstract

This work proposes a credit risk model for large panels of financial institutions in which

default intensity interdependence is induced by exposure to common factors as well as de-

pendence between entity specific idiosyncratic shocks. In particular, the idiosyncratic shocks

have a sparse partial correlation structure that we call the bank credit risk network. A lasso

estimation procedure is introduced to recover the network from CDS data. The methodol-

ogy is used to study credit risk interdependence among European financial institutions. The

analysis shows that the network captures a substantial amount of interconnectedness in

addition to what is explained by common factors.
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1. Introduction

One of the lessons learnt in Europe in recent years is the systemic relevance of the financial

sector and the potential risks of excessive interconnectedness. In Germany, several banks

suffered a sharp increase in their CDS prices in January 2009 following financial turmoil at

Commerzbank surrounding their take over of Dresdner Bank. In Italy, a scandal about secret5

derivative trading to conceal losses conducted by Monte dei Paschi di Siena lead to a surge

in CDS prices of the entire Italian banking sector in January 2013. In both cases, cross-

border linkages with banks in the Eurozone propagated the distress throughout Europe. As

a result, several European countries introduced costly rescue packages for banks perceived

as “too big to fail” or “too interconnected to fail” in order to mitigate the crises in their10

banking sectors. In response to these events, current bank regulation focuses on systemically

relevant institutions. However, the detection of the network of credit risk interconnections

between financial institutions and the identification of highly interconnected firms is still to

this date an empirically challenging task.

The finance literature identifies two broad channels that induce dependence in the de-15

fault risk of financial institutions: common exposure to a systematic shock and dependence

between the idiosyncratic shocks of individual banks. As explained in Ang and Longstaff

(2013), the systematic channel is associated with both macroeconomic or financial shocks.

The effect of macroeconomic or financial shocks on the financial system has been the scope

of extensive research, such as Calomiris and Mason (2003), Kritzman et al. (2011) and Stein20

(2012). At the same time, dependence can arise among the idiosyncratic shocks to banks,

both through direct and indirect connections. Direct counterparty exposures between banks

stem from the interbank market or obligations such as syndication and have been studied in

Allen and Gale (2000), Mistrulli (2011), Tian et al. (2013) or Hale et al. (2016). Additionally,

banks can be linked indirectly when holding similar portfolios, as shown in Gai et al. (2011),25

and Caballero and Simsek (2013).

Ang and Longstaff (2013) introduce a credit risk model that focuses on systematic shocks.
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The authors build upon the standard reduced form models for pricing credit derivatives used

in the finance literature (e.g. Duffie and Singleton, 1999) and propose a multifactor affine

model in which defaults of individual financial institutions can be triggered by systematic30

or idiosyncratic shocks. Their empirical analysis forcefully shows the relevance of systematic

factors.

Despite the undisputed relevance of the systematic channel, in a study of forty three

financial crises Alfaro and Drehmann (2009) find that only half of them occurred before

the macroeconomy experienced adverse economic shocks. This motivates us to focus on35

studying the dependence among the default intensities of financial entities conditional on

the systematic factor. In particular, we assume that, conditional on the systematic factors,

the idiosyncratic shocks of the financial entities have a sparse partial correlation structure.

The set of non-zero partial correlation relations among financial entities is then used to define

a network that we name the bank credit risk network. We assume that the econometrician40

does not know which financial institutions are partially correlated among each other and the

key problem of interest of this work consists in recovering such network from the data.

We develop an estimation strategy to recover the bank credit risk network of large panels

of financial entities from CDS data. The global systematic default intensity of each entity is

identified as the one of the German sovereign, whereas the country-specific systematic default45

intensity is identified as the one of the respective sovereign. Standard pricing formulas for

single-name Credit Default Swap (CDS) contracts derived in Ang and Longstaff (2013) are

applied to bootstrap risk neutral idiosyncratic default intensities from CDS data. Next

we apply a LASSO procedure to determine which bank idiosyncratic default intensities

are partially correlated with each other. In particular, in our framework we have that50

network detection can be cast as the problem of estimating a covariance matrix subject to

sparsity constraints on its inverse and in this work we rely on the Adaptive Graphical LASSO

(Adaptive GLASSO) algorithm to carry out this task (Yuan and Lin, 2007, Friedman et al.,

2011, Banerjee and Ghaoui, 2008, Fan et al., 2009).
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Our modeling approach has a number of highlights with respect to the literature on factor55

and network (credit) risk models. In relation to factor models such as Ang and Longstaff

(2013) and Oh and Patton (2018) we remark that while there is evidence that these models

are able to capture a large amount of co-variability in the data, they typically do not capture

all interdependence. In this strand of the literature, it is also sometimes the case that the

analysis is silent about the degree of interdependence in the data not explained by the factors.60

This may be a concern as ignoring residual idiosyncratic dependence may lead to substantial

underestimation of the probability of joint defaults. In relation to network models based on

the Connectedness Tables a là Demirer et al. (2017) we point out that our bank credit risk

network can be naturally embedded in standard reduced form credit risk models, whereas

the Connectedness Tables is based on a Gaussian VAR that is harder to justify for this65

specific type of data. We also point out that unlike Demirer et al. (2017), our model controls

for the variability explained by the factors, thus it provides an assessments on the degree of

interconnectedness conditional on systematic factors. Another highlight of the approach put

forward here in relation to reduced form approaches proposed in the literature is that through

bootstrapping intensities rather than working with CDS spreads directly we can make use70

of the entire term structure of CDS contracts, and interpret obtained partial correlations

as interconnections between the default probabilities of two entities rather than their CDS

prices.1

We apply this methodology to study a sample of 71 top financial institutions from 10

selected Eurozone countries in between 2006 and 2013. The sample includes two dramatic75

periods for Eurozone financial institutions: the financial crisis of 2007–2009 and the European

sovereign debt crisis of 2010–2012. A number of empirical findings emerge from our analysis.

First of all, we find that the network channel captures a substantial amount of (positive)

cross sectional dependence. The important implication of this is that the probability of joint

1It is also important to emphasize that the bootstrapped intensity adjusts for the yield curve, which
indeed changed dramatically throughout the sample period of our analysis.
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defaults can be severely underestimated when one does not take into account the network80

channel. Estimation results reveal that the channel is more relevant for core countries. We

interpret this as a consequence of the sovereign debt crisis. As the crisis widens and credit

risk increases, banks in Greece, Italy, Ireland, Portugal and Spain become more tightly

interrelated with their respective sovereigns.

As far as the structure of the network is concerned, we find evidence of both intra- and85

inter-country linkages between banks in Europe. The network reveals that the most central

banks are typically large financial institutions from the largest European economies. The

network is also fairly concentrated, with the top 10 most interconnected entities accounting

for roughly 40% of total interconnectedness of the system, signaling the presence small world

effects in credit risk interdependence.90

A rolling-window analysis shows that during crisis periods, heavily affected financial

institutions become hubs in the center of the bank credit risk network. This is relevant from

a contagion perspective, since otherwise healthy institutions in core countries can be affected

by idiosyncratic shocks to troubled banks in the periphery. In crisis periods, these hubs can

quickly spread adverse shocks and lead to major downturns, such that their identification95

and monitoring is crucial for the health of the financial system.

Finally, an out-of-sample validation exercise is used to backtest our methodology. We

use our model to construct forecasts of the covariance matrix of the idiosyncratic default

intensities as well as forecasts of the degree of interdependence of the financial entities in

the panel. Results show that our network based estimator provides accurate forecasts that100

perform favourably relative to a number of alternative benchmarks.

This research is related to a number of contributions in the literature. First, this work

is related to the literature on credit risk through CDS in finance and financial economet-

rics which includes, among others, the work of Duffie and Singleton (1999), Lando (1998),

Longstaff et al. (2005) and Oh and Patton (2018). Second, our paper is related to the lit-105

erature on network estimation, in particular using LASSO based techniques. The list of
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contributions in this area includes, among others, the work of Diebold and Yılmaz (2014),

Demirer et al. (2017), Hautsch et al. (2014), Brownlees et al. (2018), Barigozzi and Brown-

lees (2018). In the finance literature, LASSO techniques have successfully been applied,

for instance, in Rapach et al. (2013). Last, our paper relates to the literature on market110

based measures of risk for financial institutions, see Adrian and Brunnermeier (2016) and

Brownlees and Engle (2017),

The rest of the paper is structured as follows. Section 2 introduces the model and the

estimation procedure. Section 3 contains the empirical analysis of the paper. Concluding

remarks follow in Section 4.115

2. Methodology

We introduce a reduced form credit risk model in which default dependence among fi-

nancial entities arises through three channels: a global factor, a country factor and a bank

network channel. The model is a variant of standard affine multifactor models used in the

credit risk literature.120

2.1. Credit Risk Model

Credit events are modelled as jumps of a Poisson process with stochastic intensity. The

global shock is modelled as the jump of a Poisson process MG(t) with intensity parameter

λG that follows a standard square root process,

dλG(t) = aG(mG − λG(t))dt+ bG
√
λG(t)dWG(t) ,

where aG, mG and bG are positive with 2aGmG > b2G, and WG(t) denotes a Brownian motion.

Next, we consider a set of s different sovereigns. The default of sovereign ` can be

triggered by two different types of credit events: The first type is a systematic global shock,

affecting all sovereigns simultaneously. Conditional on each global shock, the probability

that sovereign ` defaults is denoted as γ`,G ∈ (0, 1). The second type is a country-specific
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shock that triggers default of the respective sovereign with certainty. It is modelled as the

jump of a Poisson process M`(t) with intensity parameter λ` that follows a standard square

root process,

dλ`(t) = a`(m` − λ`(t))dt+ b`
√
λ`(t)dW`(t) ,

where a`, m` and b` are positive with 2a`m` > b2` , and W`(t) denotes a Brownian motion

independent of WG(t).

Last, we consider a panel of m financial entities each belonging to one of the s sovereigns,

and observed over a period of n days. The default of institution i can now be triggered by

three different types of credit events: a systematic global shock, a systematic sovereign shock

and an entity-specific idiosyncratic shock. The probability that entity i defaults following a

systematic global shock is denoted as γi,G ∈ (0, 1), while the probability of default following

a systematic sovereign shock is denoted as γi,` ∈ (0, 1). The idiosyncratic shock of firm i is

modelled as the first jump of a Poisson process Ni(t) with intensity parameter ξi that follows

a standard square root process,

dξi(t) = αi(µi − ξi(t))dt+
√
ξi(t)dBi(t) ,

where ai, mi and bi are positive with 2aimi > b2i , and Bi(t) denotes an entity specific125

Brownian motion independent of WG(t) and W`(t). Following an idiosyncratic shock, firm

i defaults with certainty. Finally, we denote by Ft the natural σ-algebra generated by the

Brownian motions Bi(t), WG(t) and W`(t).

The Brownian motion vector driving the idiosyncratic default intensities has a positive

definite instantaneous covariance matrix Σ = [σij], that is B(t) = (B1(t), . . . , Bm(t))′ ∼

N (0,Σt). Rather than charactering the interdependence structure of the Brownian motion

B(t) using the instantaneous covariance Σ in this work we rely on partial correlations. The

partial correlation between Bi(t) and Bj(t) measures the linear dependence between the

two variables after partialling out the influence of the remaining variables in the panel. We
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formally define it as ρij = Corr(ei(t), ej(t)), where ei(t) and ej(t) are the prediction errors of

the best linear predictors of Bi(t) and Bj(t), respectively, based on {Bs(t) : 1 ≤ s 6= i, j ≤

m}. It is well known that the linear partial dependence structure of the system is embedded

in the concentration matrix (Dempster, 1972). In fact, we have that the instantaneous

concentration matrix K = Σ−1 is related to the partial correlations through the identity

ρij = − kij√
kiikjj

, i 6= j , (1)

where kij denotes the i, j-th entry of the instantaneous concentration matrix K. A key

assumption of this work is that the partial correlation structure of the innovation process130

driving the idiosyncratic intensities is sparse. In other words, we assume that the Brownian

motion driving the idiosyncratic default intensity of a given financial entity is not partially

correlated with all the Brownian motions of the other financial entities but only a subset.

The set of nonzero partial correlation relations among the financial entities can be used to

define a network. Notice that it follows from the identity in (1) that our sparsity assumption135

on the partial correlations is equivalent to assuming that the concentration matrix K is

sparse. As we shall detail precisely in what follows, this property turns out to be extremely

useful for estimation.

It is straightforward to check that the idiosyncratic intensity vector ξ(t) = (ξ1(t), . . . , ξm(t))′

has the same network conditional dependence structure of the Brownian motion vector B(t).

The instantaneous covariance matrix Σξ(t) of the intensity vector ξ(t) is given by

(Σξ(t))ij =
√
ξi(t)ξj(t)σij.

The integrated covariance matrix Σ∗ξ of the intensity vector ξ(t) over the time interval [0, n−

1], which measures the total covariation over the entire sample, is given by

(
Σ∗ξ
)
ij

= σij

∫ n−1

0

√
ξi(t)ξj(t) dt,
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and the corresponding integrated concentration matrix is K∗ξ = (Σ∗ξ)
−1. It can be shown that

if K is sparse then K∗ξ is also sparse. Indeed, since the trajectories of the intensities ξi are

a.s. continuous, we can apply the mean value theorem for integrals, and we get the existence

of a point s ∈ (0, n− 1) such that

∫ n−1

0

√
ξi(t)ξj(t) dt = (n− 1)

√
ξi(s)ξj(s) a.s.

Therefore, we have that

Σ∗ξ = (n− 1)DsΣDs,

where Ds is the diagonal matrix with the vector (
√
ξ1(s), . . . ,

√
ξn(s)) on the diagonal. In

particular, the integrated concentration matrix can be written as

K∗ξ =
1

n− 1
D−1s KD−1s ,

which proves that if K is sparse so will be K∗ξ (almost surely). Observe that in our argument

we have also used the fact that ξi(s) > 0 almost surely.140

We define the bank credit risk network as the sparse partial correlation network implied

by the integrated concentration matrix K∗ξ of the idiosyncratic intensity vector ξ(t), and we

use the squared partial correlations implied by the integrated concentration matrix K∗ξ as a

measure of the strength of the relationship between the idiosyncratic intensities. The partial

correlation between entity i and j is defined as

ρij =
−k∗ij√
k∗iik

∗
jj

,

and measures the correlation between the idiosyncratic intensities of bank i and j obtained

after netting out the influence of the other intensities. The squared partial correlation

coefficient can then be interpreted as the proportion of the variance of the idiosyncratic

intensity of bank i explained by bank j after netting out from i and j the influence of the
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remaining intensities, and is a natural measure of the strength of a link in this context.2145

In order to bring the model to the data, in this work we make a number of identification

assumptions that are similar to the ones made in Ang and Longstaff (2013). In particular,

in our application to a panel of Eurozone institutions we assume that the global intensity is

identified with the intensity of the German sovereign whereas the sovereign intensities are

identified with the intensity of the corresponding sovereigns of each entity. We also point out150

here that in our framework systematic and sovereign defaults can cause bank default, but not

the other way round. While this makes the estimation of the model fairly straightforward it

is important to highlight that such an assumption may be quite restrictive in practice from

a structural perspective. Overall, it is important to emphasize that our model estimates

reduced form interdependence among the financial entities in the panel that a structural155

interpretation is more challenging.

2.2. CDS Pricing

One of the key quantities of interest for credit derivative pricing is the Ft-conditional

probability of survival to a future time T for a financial entity. In our framework, the prob-

ability that entity i has not defaulted by time T equals the probability that no idiosyncratic

shock occurs until time T times the probability that the entity does not default following

any of potentially many global shocks (with probability 1−γi,G each) and systematic shocks

2We point out that while it is natural to use the squared partial correlation coefficient as a measure
of the strength of a link, other choices are also possible. For example, one could opt for the absolute
partial correlation. This measure will also typically exhibit a lower degree of cross-sectional concentration
in comparison to the squared partial correlation.
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(with probability 1− γi,` each). In terms of conditional probabilities, this writes as

pi(t, T )

= P (Ni(T )−Ni(t) = 0 | Ft)E
(
(1− γi,G)MG(T )−MG(t) | Ft

)
E
(
(1− γi,`)M`(T )−M`(t) | Ft

)
= E

(
exp

(
−
∫ T

t

ξi(s) ds

)
×
∞∑
g=0

1

g!
exp

(
−
∫ T

t

λG(s) ds

)(
(1− γi,G)

∫ T

t

λG(s) ds

)g

×
∞∑
j=0

1

j!
exp

(
−
∫ T

t

λ`(s) ds

)(
(1− γi,`)

∫ T

t

λ`(s) ds

)j ∣∣Ft)

= E

(
exp

(
−
∫ T

t

(γi,GλG(s) + γi,`λ`(s) + ξi(s)) ds

) ∣∣Ft) ,
where we are assuming that all computations are done under a risk-neutral probability

measure. It follows from the last equation that the standard reduced form framework can

be applied for valuing credit derivatives by setting the instantaneous probability of default160

for entity i proportional to γi,GλG(s) + γi,`λ`(s) + ξi(s). Also notice that in this modelling

framework the instantaneous firm default intensity has a factor type representation.

A Credit Default Swap (CDS) is a financial swap agreement through which the CDS seller

compensates the CDS buyer in case of a credit event (e.g. default). We denote by ski t the

CDS spread of entity i = 1, . . . ,m on day t with maturity k equal to 1, . . . , 5 corresponding165

to the maturities of 2, 3, 5, 7 and 10 years. We assume the spread to be paid continuously.

Next to the CDS spread, we assume that there exists a risk-free asset, and we denote the

associated (continuously compounded) risk-free rate by rt and the price at time t of the zero-

coupon bond with maturity T by D(t, T ), so that D(t, T ) = E
[
exp

(
−
∫ T
t
r(s)ds

) ∣∣ Ft]. We

assume that the risk-less rate is independent of all intensity processes.170

The CDS contract consists in two legs, the spread leg and the protection leg. The value

of the CDS spread leg at time t of entity i is given by

ski t

∫ T

t

D(t, s)E

[
exp

(
−
∫ s

t

(γi,GλG(u) + γi,`λ`(u) + ξi(u))du

) ∣∣ Ft] ds.
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with T equal to t+ 2, t+ 3, t+ 5, t+ 7 and t+ 10 for k equal respectively to 1, . . . , 5. The

value at time t if the CDS protection leg of entity i is given by

CDS(protection leg)t = ω

∫ T

t

D(t, s)E

[
(γi,GλG(s) + γi,`λ`(s) + ξi(s))

× exp

(
−
∫ s

t

(γi,GλG(u) + γi,`λ`(u) + ξi(u))du

) ∣∣ Ft]ds, (2)

where 1 − w is the recovery rate. To meet the no arbitrage condition, the protection leg

and the premium leg of a CDS contract must be equal, and we can get out the value of the

premium payments,

ski t =
CDS(protection leg)t∫ T

t
D(t, s)E

[
exp

(
−
∫ s
t

(γi,GλG(u) + γi,`λ`(u) + ξi(u))du
) ∣∣ Ft] ds.

As shown in the Online Appendix, we can rewrite the CDS spread for each entity i as

ski t =
CDS(protection leg)t∫ T

t
D(t, s)F i,G

s,t (λG)F i,`
s,t (λ`)Gs,t(ξi)ds

, (3)

with

CDS(protection leg)t = ω

∫ T

t

D(t, s)

((
γi,GI

i,G
s,t (λG)F i,`

s,t (λ`)

+ γi,`I
i,`
s,t(λ`)F

i,G
s,t (λG)

)
Gs,t(ξi) + F i,G

s,t (λG)F i,`
s,t (λ`)Hs,t(ξi)

)
ds,

where λG = λG(t), λ` = λ`(t) and ξi = ξi(t), and the functions F,G, I,H are standard

and defined in the Online Appendix. It is important to stress that despite the idiosyncratic

shocks network dependence assumption, the pricing of single–name CDS carries through

unaltered.

2.3. Estimation175

We carry out inference on the bank credit risk network by combining standard estima-

tion techniques based on CDS prices (Duffie and Singleton, 1999, Ang and Longstaff, 2013)
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together with LASSO-type estimation (Tibshirani, 1996, Friedman et al., 2011).

First, we estimate the bank credit risk model parameters αi, µi, σi for each bank in the

panel by minimizing the squared pricing errors between the model implied CDS prices ŝki t

and the observed CDS price ski t, that is

θ̂i = arg min
θi

n∑
t=1

5∑
k=1

(ski t − ŝki t)2 ,

where θi = (αi, µi, σi, γi)
′. We assume a constant recovery rate and fix the value of the

recovery fraction at 50%, which is in line with Ang and Longstaff (2013). Since we apply180

the recovery rate symmetrically to both the protection leg and the premium leg of the CDS

contract, its magnitude does not play a role for estimation results. Note that the evaluation

of this objective function requires performing a series of intermediate optimizations. For a

given value of θi we “bootstrap” the corresponding idiosyncratic intensity ξi for each day.

That is, for each day we find the ξi which minimizes the squared CDS pricing error across185

all maturities keeping the value of the parameters fixed to θi. This is not available in closed

form but can be easily computed by nonlinear least squares. Then, the value of the objective

function is computed as the sum the squared CDS pricing errors corresponding to θi and the

sequence of bootstrapped idiosyncratic intensities ξi. The CDS mispricing error objective

function is then minimized using a gradient based algorithm. As Ang and Longstaff (2013)190

point out, note that ξ captures the level of the CDS term structure while the αi, µi, σi capture

its shape. In order to estimate the bank credit risk model we need to identify the global and

sovereign intensities λG and λ`. The global intensity is bootstrapped from the factor credit

risk model using German sovereign CDS prices following the same estimation strategy used

for the bank credit risk model. Analogously, the sovereign intensity is bootstrapped from195

the factor credit risk model using sovereign CDS prices.

Next, using the bootstrapped idiosyncratic default intensity ξ̂(t) obtained in the previous
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step, we estimate the integrated covariance matrix Σ∗ξ as

Σ̂∗ξ =
n∑
t=2

(ξ̂(t)− ξ̂(t− 1))(ξ̂(t)− ξ̂(t− 1))′ .

Realized covariance estimators have a long tradition in finance (cf Merton, 1980) in the esti-

mation of equity volatility, and have recently been rediscovered in the financial econometrics

literature (cf Andersen et al., 2003) which has thoroughly analysed the properties of these

type of estimators.200

Finally, we use the Adaptive Graphical LASSO procedure (Adaptive GLASSO) to esti-

mate the integrated concentration matrix K∗ξ and the bank credit risk network. The estima-

tor is defined as

K̂∗ξ = arg min
K∈Sn

{
tr(Σ̂ξK)− log det(K) + κwij

∑
i 6=j

|kij|

}
, (4)

where κ ≥ 0 is the LASSO tuning parameter, wij ≥ 0 is an adaptive penalty weight which is

proportional to the reciprocal of the (i, j)-the entry of a pilot estimate of the concentration

matrix K∗ξ , and Sn is the set of n × n symmetric positive definite matrices. We denote by

k̂ij the entries of the realized network estimator K̂∗ξ . The bank credit risk network estimator

is a shrinkage type estimator. If we set κ = 0 in (4), the estimator is equal to the inverse205

realized covariance estimator (Σ̂∗ξ)
−1. If κ is positive, (4) becomes a penalized objective

function with penalty equal to the sum of the absolute values of the non-diagonal entries in

the estimator. The important feature of the absolute value penalty is that for κ > 0 some

of the entries of the realized network estimator are going to be set to exact zeros. Thus, the

highlight of LASSO estimation is that it simultaneously estimates and selects the nonzero210

entries of K∗ξ . The effect of the adaptive weights wij is to penalise more severely coefficients

that are close to zero while penalising less large coefficients. It is well know that the standard

(G)LASSO (i.e. the estimator corresponding to wij = 1 for each i, j) generate biases in large

coefficients. The Adaptive and SCAD GLASSO algorithms are alternative procedures that
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have been introduced in the literature to overcome the limitation of the standard estimator.215

We refer to Fan et al. (2009) for more details on such procedures. Numerically, Friedman

et al. (2011) and Fan et al. (2009) show that minimizing the objective function in (4) is

equivalent to carrying out a series of LASSO regression. An appealing feature of this LASSO

estimator is that it is guaranteed to provide a sparse positive definite matrix estimate of the

concentration matrix. Moreover, the algorithm is suitable for the analysis of sparse large220

dimensional systems containing, say, hundreds of series. Note that the estimator depends on

the choice of the tuning parameter κ which determines the sparsity of the K∗ξ . It is chosen

in a data driven way using the BIC model selection criterion, which is widely used in the

literature (cf Yuan and Lin, 2007, Peng et al., 2009). We point out that the theoretical

properties of this procedure have been studied in an analogous setting in Brownlees et al.225

(2018). The implementation details of the algorithm are detailed in the Online Appendix.

3. Empirical Analysis

We use the methodology introduced in Section 2 to study the bank credit risk network

of our sample of Eurozone financial institutions. We carry out both static and dynamic

network analysis. The static analysis consists in estimating the network over the full sample230

period while in the dynamic analysis we use a rolling window estimation scheme to obtain

a time series of networks. Last, we carry out a forecasting exercise to assess if our network

methodology is able to produce accurate predictions of the future degree of interdependence

among the institutions in the panel.

3.1. Data235

We consider a sample of 71 large Eurozone financial institutions from January 1st, 2006

until December 31st, 2013. Note that, for simplicity, in what follows we refer to all of our

financial institutions as banks. We focus on financial firms headquartered in Austria (AT),

Belgium (BE), Germany (DE), Spain (ES), France (FR), Greece (GR), Ireland (IE), Italy

(IT), Netherlands (NL) and Portugal (PT). For each of these countries we select all financial240
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institutions for which CDS data is available for the entire sample period. The complete

list of banks included in the sample is reported in Table 1. For each bank in the sample

we obtain daily mid-market spreads for one-year, two-year, three-year, five-year, seven-year

and ten-year CDS contracts. Additionally, we include spreads for sovereign CDS contracts

of the same maturity for all ten countries. The data used in this study are obtained from245

Markit, who collects CDS quotes from more than thirty market participants on a daily

basis, and provides a composite spread only if on a given date observations from at least

two different participants are available. As outlined in Fontana and Scheicher (2016), while

sovereign CDSs in the euro area can be denominated both in Euro and in USD, USD-

denominated CDSs might be traded with a premium to hedge for a depreciation risk arising250

in case of a credit event, which might be accompanied by a depreciation of the bond’s

currency. Furthermore, as outlined in for example De Santis (2015), the size of quanto

CDS spreads, the spread between euro and USD-denominated CDS, varies over time and

according to different sovereigns, which could introduce potential distortions in our model.

To avoid any issues arising from this, we focus the analysis on CDS contracts for which the255

notional is denominated in Euro whenever available, and enhance our sample with Markit

composite spreads for the notional denominated in US dollars otherwise. Since the CDS

spreads themselves are denominated in basis points, we do not face the challenge of currency

conversion and whenever both series are available, we can see that their correlation, both in

levels and in first differences, is close to one. In order to calculate the values for zero-coupon260

bonds in the CDS pricing formulas, we refer to the Nelson-Siegel-Svensson curves estimated

by Deutsche Bundesbank with daily frequency. Descriptive statistics on the CDS series are

reported in the Online Appendix (Tables A-1 and A-2).

In the presentation of the empirical results we shall often consider four sub-periods cap-

turing different phases of the recent history of the Eurozone financial system. The first265

period runs from January 1st, 2006 until August 1st, 2008 and is what we refer to as the

pre financial crisis period preceding the bankruptcy filing of Lehman Brothers on September
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15th, 2008. We let the pre financial crisis period end some weeks before the actual filing

for Chapter 11 protection to avoid including a period of anticipation in the first subsample.

The second period runs from August 1st, 2008 until April 1st, 2010 and is what we refer270

to as the financial crisis period. April 2010 is chosen as a breaking point, since it coincides

with the official filing for financial help by Greece on April 23rd. We take this as a starting

point for our third subsample, which we refer to as the sovereign debt crisis. This third

period finishes on September 1st 2012, reflecting the initiation of the legal framework for

Outright Monetary Transactions (OTM) by the ECB to face the European debt crisis. Our275

fourth subsample accordingly runs from September 2012 until the end of our sample period

on December 31st, 2013.

3.2. Default Intensities

We begin by estimating the credit risk model introduced in Section 2 and bootstrap-

ping the risk-neutral default intensities of each sovereign and bank in the panel. We report280

the full set of estimates in the Online Appendix (Tables A-3 and A-4). Figure 1 plots the

bootstrapped sovereign/systematic risk–neutral default intensities, divided into core (Aus-

tria, Belgium, France, Germany, Netherlands) and periphery (Spain, Greece, Ireland, Italy,

Portugal) countries. The scale of the plot is such that an intensity level of one corresponds

approximately to a 1% probability of default over the next year. The time series profiles285

of the sovereign default intensities are similar but there are clear differences in the levels

of the series for core and periphery countries. A principal component analysis on the first

differences of the sovereign intensities shows that the amount of variability explained by

the first principal component is 40%. The mean default intensity for core and periphery

countries amounts to, respectively, 71 and 424 basis points. Note that through the height290

of the sovereign debt crisis, CDS spreads for Greek sovereign debt increased up to more

than 23’000 basis points (or 230 percentage points) for 5-year CDS contracts, implying an

instantaneous default probability higher than 100% for the period from September 21, 2011
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to June 6, 2013.3 Inspection of the bank idiosyncratic default intensity (reported in the On-

line Appendix in Figure A-1) shows that there is a moderate degree of heterogeneity in the295

dynamics of idiosyncratic intensities. A principal component analysis on the first differences

of the bank intensities shows that the amount of variability explained by the first principal

component is less than 20%.

FIGURE 1 ABOUT HERE

3.3. Static Analysis300

We estimate the bank credit risk network over the full sample. We use the BIC to select

the optimal level of shrinkage κ, which delivers a degree of sparsity of roughly 25%.4 We point

out that in order to get insights on the network estimation sensitivity, in the Online Appendix

we report the so called trace plot in Figure A-2, that is the plot showing the estimated partial

correlations as a function of the amount of shrinkage used in the estimation. Albeit being305

sparse, the estimated network is too interconnected for visualization purposes. To this extent

we construct a network plot using a shrinkage parameter κ that delivers a degree of sparsity

equal to 10%. We plot this network in Figure 2. In the plot, financial entities correspond

to vertices and edges correspond to non-zero partial correlation relations. The vertex size is

proportional to the weighted degree of each financial entity, which is defined as the sum of310

the square partial correlations relative to that entity, and the vertex color is set according to

the bank’s country of origin. The edge width is proportional to its weight, which is defined

as the square of the corresponding partial correlation. The network layout algorithm5 chosen

to create the plot is such that the most interconnected banks in the network correspond to

the most central vertices in the plot.315

FIGURE 2 ABOUT HERE

3In our analysis we truncate the default intensities at 100%.
4That is, the number of non-zero partial correlation is 25% of the total.
5We use the Fruchterman & Reingold (1991) force-direct graph drawing algorithm.
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The analysis of the network provides interesting insights on the interdependence structure

of Eurozone financial institutions. First, we use the partial correlation and weighted degree

distributions, which are reported in Figure 3, to summarize the global properties of the

network. The partial correlation distribution shows that the vast majority of the dependence320

in the network is positive. This facilitates the interpretation of the graph in Figure 2 in that

the presence of an edge almost always signals that the idiosyncratic default intensity of a

bank is positively related to the one of its neighbours. Turning to the weigheted degree

distribution, we note that there is strong heterogeneity in the degree of the banks in the

network. In particular, we have that the weighted degree of the top 10 most interconnected325

institutions in the panel accounts for roughly 40% of the total. The network literature

typically emphasies that networks with higher concentration exhibit “small world effects”,

that is the distance (i.e. the smallest number of connecting edges) between any two nodes

is proportional to the log of the total number of vertices. Small world effects imply that

even if the network is large and sparse, all banks in the system are strongly interrelated.330

More specifically in our context small world effects imply a non-negligible probability of

joint distress of a substantial number of institutions following the idiosyncratic shock to an

individual entity.

FIGURE 3 ABOUT HERE

A number of interesting country clustering patterns also emerge from the network. To335

investigate these in more detail, in Table 2 we report the sum of edge weights among Eurozone

countries in the network. The table shows that there is a high proportion of within-country

linkages: after controlling for the global and country factor, banks belonging to the same

country still exhibit a high degree of interdependence. This phenomenon is referred to as

national fragmentation and has been documented by, among others, Betz et al. (2016). As far340

as between-country linkages are concerned, we observe that banks headquartered in France,

Germany, Italy and Spain have the highest number of connections. It is interesting to note

that the number of cross-border linkages is correlated with banks’ international exposures. In
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the Online Appendix in Table A-5 we report the ranking of countries by number of linkages

and by the BIS estimate of the total foreign claims of each country computed as of the end of345

the sample. We note that the two rankings are similar, especially for top ranked institutions.

TABLES 2 ABOUT HERE

Last, we study which banks are most central in the network using the page-rank algorithm

and report rankings of the top ten banks in Table 3. Central banks in the network can

be interpreted as yellow canaries of distress in the system, that is highly interdependent350

institutions whose distress correlates with distress in a large fraction of the entire system.

We analyse centrality using two different versions of the eigenvector centrality algorithm: one

for unweighted networks and the other for weighted networks. The unweighted eigenvector

centrality algorithm computes centrality on the basis of whether entities are connected or

not, whereas the weighted algorithm also takes into account the edge weight, which in our355

case is the square partial correlation coefficient. Inspection of the rankings reveals that size

is an important determinant of interconnectedness: the most central banks in the network

correspond to the largest banks in the sample. Different pictures however arise depending the

choice of the algorithm. When considering the unweighted network, the most interconnected

banks are typically headquartered in core countries, especially in France and Germany. On360

the other hand, when considering weighted rankings, we see that the top ten includes a

large number of troubled entities in periphery countries (Spain, Portugal and Italy) and

in particular the Spanish Banco Santander (SAN) turns out to be the most interconnected

institution in the Eurozone system.

TABLE 3 ABOUT HERE365

The results above raise the question about which underlying channels of bank intercon-

nectedness could be driving the observed patterns. Among others, potential candidates for

actual channels are direct channels such as interbank lending and loan syndication as well
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as indirect channels such as asset commonality. While we are unable to perform a com-

parison of observed correlations with different channels of interconnectedness for the entire370

sample of banks due to unavailability of data, two of the authors have performed an anal-

ysis to answer the question for a subsample of German banks. The results of this analysis

have been published in the paper Abbassi et al. (2017). In that paper we identify direct

channels of interconnectedness through bilateral exposures in the wholesale funding market.

Indirect channels are measured through asset allocations, decomposed into banks’ securities375

investments and loans granted to the real economy. We show (for the restricted sample

of banks considered) that observed correlations strongly reflect both direct and indirect

channels. On the funding side, we find that bank pairs show higher observed correlations

whenever both counterparties have higher Tier 1 capital-weighted interbank exposures. For

indirect channels, we document that both banks’ exposure to the real economy and their380

securities investments are linked to higher observed correlations. Bank pairs show up as

more interconnected whenever their lending practices to the real economy are more similar

or whenever both counterparties have higher exposures to risky securities. Lastly, we show

that the relation between observed correlations and actual channels of interconnectedness

varies over time and in the cross-section. While interbank lending is a relevant driver of385

observed correlations mainly during crisis times as other sources of financing become hard

to obtain, banks’ securities investments show asymmetric effects in the cross-section. Bank

pairs with higher exposures to troubled security classes exhibit higher observed correlations,

while commonality in securities investments related to security classes which were unaffected

by the crisis does not induce higher dependence.390

3.4. Time-Varying Analysis

In this section we carry out a time-varying analysis to study the evolution of the bank

credit risk network throughout the sample. The network time series is obtained by estimating

the model at the end of each month from January 2008 until the end of the sample using

the last two years of observations available. The BIC is used to select the optimal amount395
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of shrinkage.

Figure 4 shows the time series plot of the average weighted degree in the panel together

with the time series plot of the 5% an 95% quantiles of the weighted degree distribution.

We observe that the amount of interconnectedness exhibits substantial time series variation

throughout the sample. The degree of interconnectedness builds up during the great financial400

crisis and it peaks in April 2010 as the first signs of the Europe sovereign crisis become

apparent. Interestingly, we see a sharp decline in the degree of interconnectedness in the

correspondence of Mario Draghi’s announcements about the Outright Monetary Transaction

program of the ECB.

FIGURE 4 ABOUT HERE405

In order to quantify the amount of dependence captured by the factor and network

components of the model, we define R2 type goodness of fit indices that we call factor and

network R2. The factor R2 of a bank is defined as the R2 of the regression of its log-CDS

spread difference on the log-CDS spread difference of its respective sovereign. The network

R2 of a bank is defined as the additional R2 obtained by adding as explanatory variables of the410

previous regression all the log-CDS spread differences of all the neighbouring banks detected

in the bank credit risk network. The factor and network R2 are computed on the basis of

rolling estimates in order to have a time series of values. Figure 5 shows the plot of the factor

and network R2 averages by country. The left and right panels show respectively the plots

for the core and periphery countries. For core countries we note that the network channel415

is more relevant than the factor one and that the time series profile of the R2s is roughly

stable over time. Periphery countries exhibit a rather different behaviour. At the beginning

of the sample, the network channel dominates the factor. However, as the sovereign debt

crisis unwinds, banks progressively become more dependent on their respective sovereign

and the relevance of the interconnectedness with other banks declines. This trend stops420

in the second half of 2012 in correspondence with the beginning of the Outright Monetary

Transactions program of the ECB. Overall, the plots convey that both the factor and the
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network channel explain a significant amount of comovement and exhibit different time series

evolution throughout the sample.

FIGURE 5 ABOUT HERE425

Last, we summarise the degree of interconnectedness of two banks in our panel, Com-

merzbank and Monte dei Paschi di Siena, by displaying their weighted degree as well as the

number of non-zero partial correlation through the sample. We point out that despite the

fact that we use two fairly different measures to summarise the degree of interconnectedness

of these two entities, the overall time series pattern that emerge are fairly similar. Com-430

merzbank was facing major difficulties in the times surrounding the acquisition of Dresdner

Bank starting from December 2008. In May 2009, Commerzbank received a liquidity injec-

tion by the government effectively constituting a partial nationalization of the bank. These

events are reflected in the number of linkages as we see a sharp fall in mid 2009 following

the nationalization. For Monte dei Paschi di Siena, in January 2013 news on the scandal435

surrounding derivative deals to conceal previous losses materialized, leading to a large drop

in stock prices. Accordingly, the plot shows that the number of connections of this entity

peaks around the same time.

3.5. Predictive Analysis

We carry out a predictive analysis to assess if the bank credit risk network methodology440

provides advantages for forecasting. In particular, we carry out two different evaluation

exercises. In the first exercise we evaluate the performance of our network estimator in

terms of covariance forecasting whereas in the second we evaluate the estimator in terms of

providing useful rankings of the most interconnected institutions in the panel.

From an estimation perspective, the network methodology we propose can be interpreted445

as a regularization procedure of a moderately large dimensional covariance matrix. As force-

fully put forward, among others, by Ledoit and Wolf (2004), precise estimation of a covariance
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matrix is challenging when the number of series considered is large, and in these cases co-

variance regularization can provide substantial gains. Accordingly, we design our predictive

evaluation exercise as follows. On each day from the 1st of January 2008 to the end of the450

sample, we compute the bank credit risk network concentration matrix estimator and then

use the corresponding covariance estimator as a forecast of the covariance of the bootstrap

idiosyncratic intensities changes of the following day. We estimate the network using a two

year rolling window and we use the BIC to choose the shrinkage parameter κ. We use the

multivariate QLIKE loss function of Patton (2011) (see also Patton and Sheppard, 2009)455

using the first differences of the bootstrap idiosyncratic default intensities for the next day

to measure forecast accuracy. The network estimator is compared against two alternatives:

the in-sample realized covariance estimator based on the ξ differences; and the in-sample

realized covariance estimator with all its off-diagonal entries truncated to zero.6

The second predictive exercise consists in assessing whether our methodology is successful460

in identifying highly interconnected institutions. We design this second predictive evaluation

exercise as follows. On the last day of each month from January 2008 to the end of the sample,

we compute the bank credit risk network concentration matrix estimator as well as the out-

of-sample realized covariance of the idiosyncratic intensities over the following 12 months.

We estimate the network using a two year rolling window and we use the BIC to choose465

the shrinkage parameter κ. Next, we compute the weighted degree (sum of squared partial

correlations) of each entity based on the in-sample network estimator and out-of-sample

realized covariance matrix. Finally, we compute Spearman’s rank correlation between the

in-sample and out-of-sample degree. As an alternative to the network estimator we consider

the degrees computed on the basis of the in-sample realized covariance.470

We report the results of the two predictive analysis in Table 4 where we show the average

prediction losses and the average rank correlation over the full out-of-sample period as well

6Additionally in the Online Appendix we compare the performance of the rolling network estimation
strategy considered here against a simple time-varying covariance model based on exponential smoothing.
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as different subsamples. The ranking between the different estimators is clear. The realized

network estimator produces more accurate forecasts over the entire sample as well as all the

different subsamples. In particular we note that the average QLIKE loss is higher in periods475

of larger distress and that in particularly it drops substantially in the last subsample, the

one that corresponds with the initiation of the OMT program of the ECB. In the covariance

forecasting exercise we point out that a Diebold-Mariano predictive ability tests conveys that

the realized network out-performs the diagonal covariance estimator at the 1% significance

level. On the other hand, there is no evidence of out-performance of the unconstrained480

estimator. We remark that further refinements on the predictive ability of these different

methodologies may be obtained by using a proper time-varying parameter model and this

may be explored in future research.

TABLE 4 ABOUT HERE

Overall, results convey that the bank credit risk network methodology is not only useful to485

represent the dependence structure of idiosyncratic shocks but it also provides more precise

estimates of the covariance of the idiosyncratic shocks when the conditional dependence

structure of these shocks is sufficiently sparse.

4. Conclusions

The recent financial crisis in Europe has forcefully shown the potential impact of high490

levels of interconnectedness in the financial system and brought forward a renewed interest in

monitoring the current state of interconnections in the financial sector as well as identifying

its most central institutions. However, in the absence of regulatory data, this remains a

challenging task empirically.

In this work we introduce a new approach to estimating interconnectedness through ex-495

tending the standard reduced form credit risk model commonly used in finance. In our

proposed model, interdependence in credit risk stems from two components: common expo-

sure to a systematic factor and pairwise dependence among idiosyncratic shocks. We then
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use this methodology to study credit risk interdependence in a sample of financial institutions

located in ten selected Eurozone countries over an eight-year period from 2006 to 2013.500

We find that the network channel captures a substantial amount of interdependence on

top of what is explained by systematic factors. A cross-sectional analysis shows that the

large financial institutions from the largest Eurozone economies are the most interconnected

institutions in the panel. We find evidence of linkages both intra- and inter-country even

after controlling for each respective sovereign. Furthermore, the structure of the credit risk505

network is fairly concentrated, implying that the correlation between the idiosyncratic shocks

of any two institutions may be non-negligible and adverse shocks may spread rapidly through

the network.

A time-varying analysis reveals that distressed financial institutions become hubs in the

credit risk network during crisis times. These hub institutions can spread negative shocks510

within the network through an increased number and strength of their linkages, making their

monitoring an important task for financial stability.

Our results have important implications from a systemic risk perspective. First, we find

that frequently used models which do not account for idiosyncratic dependence can severely

underestimate the joint default probability of two institutions. Second, our time-varying515

analysis shows that the network potential for spreading contagion of single institutions can

vary over time, creating the need for constant monitoring of systemic importance which is

not just defined by more stable characteristics such as bank size.
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ü

n
ch

n
er

R
ü
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ü

rt
te

m
b

er
g

W
E

N
W

en
d

el
S

N
S

S
N

S
B

an
k

N
V

B
L

B
B

ay
er

is
ch

e
L

an
d

es
b

an
k

S
O

C
S

o
ci

ét
é
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Table 2: Network Summary

Austria Belgium Germany Spain France Greece Ireland Italy Netherlands Portugal Links

Austria 70.4 2.0 11.2 6.6 0.9 0.7 1.5 1.0 5.0 0.6 24.95
Belgium 12.8 17.4 7.2 2.0 31.8 0.1 2.7 6.8 15.9 3.5 3.92
Germany 3.7 0.4 59.3 2.2 12.2 0.0 0.4 6.4 12.3 3.1 76.44
Spain 1.8 0.1 1.9 83.4 2.3 0.0 0.7 4.1 1.1 4.6 89.78
France 0.2 1.3 9.5 2.1 69.6 0.1 1.2 3.8 11.5 0.8 98.80
Greece 17.0 0.2 0.7 1.9 8.4 42.6 0.3 14.6 12.0 2.3 1.10
Ireland 2.9 0.8 2.5 4.7 9.5 0.0 65.5 2.5 4.4 7.0 12.87
Italy 0.4 0.4 6.5 4.9 5.0 0.2 0.4 76.2 3.4 2.6 74.76
Netherlands 2.6 1.3 19.7 2.1 23.8 0.3 1.2 5.4 41.5 2.1 47.68
Portugal 0.3 0.3 5.5 9.5 1.7 0.1 2.1 4.4 2.3 73.7 43.23

The (i, j) entry of the table reports the sum of the edge weights between country i and j relative to the total

sum of weights of country i. The last column of the table reports the sum of edge weights of each country.

The edge weights are defined as the squared partial correlation coefficients implied by the network estimator

introduce in Section 2 estimated using the Adaptive GLASSO algorithm over the entire sample.
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Table 3: Centrality

Weighted Unweighted

1 SAN (es) AGR (fr)
2 BBV (es) COM (de)
3 SAN (pt) SOC (fr)
4 BCO (pt) ING (nl)
5 AGR (fr) SAN (es)
6 BNP (fr) DBA (de)
7 LYO (fr) LYO (fr)
8 SOC (fr) BBV (es)
9 MRV (de) MRV (de)
10 MPS (it) ALL (de)

The table shows the ranking of the top 10 most central banks by eigenvector centrality. The eigenvector

centrality algorithm is based on the adjacency matrix implied by the bank credit risk network estimator

estimated over the entire sample period using the Adaptive GLASSO procedure presented in Section 2. Two

different versions of the adjacency matrix are used to construct the rankings. The weighted rankings are

based the weighted version of the adjacency matrix of the bank credit risk network where the squared partial

correlation coefficients are used as link weights. The unweighted rankings are based on the unweighted

version of adjacency matrix of the bank credit risk network.
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Table 4: Out-Of-Sample Evaluation

QLIKE Rank Corr
Sample Network Sample Cov Diag. Network Sample Cov

2008-01-01 – 2008-08-01 12.147 12.504 39.604 0.251 0.200
2008-08-01 – 2010-04-01 51.674 52.779 139.408 0.392 0.392
2010-04-01 – 2012-09-01 9.486 11.539 95.626 0.278 0.205
2012-09-01 – 2013-12-31 -20.058 -16.095 49.046 0.012 0.012
2008-01-01 – 2013-12-31 14.197696 15.822 78.852 0.295 0.254

The left panel of the table shows the out-of-sample QLIKE of the network covariance estimator, realized

covariance and diagonal realized covariance estimator over different subsamples. The right panel of the table

shows Spearman’s rank correlation between the in-sample and out-of sample weighted degree of the financial

entities in the panel over different subperiods. The in-sample weighted degree distribution is estimated using

the network covariance estimator and the sample covariance estimator.
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Figure 1: Systematic Default Intensity

Systematic Default Intensity, Core Systematic Default Intensity, Periphery

The figure shows the time series of sovereign risk-neutral default intensities for core countries bootstrapped

from CDS prices of 1-year, 3-year, 5-year, 7-year and 10-year maturity on the basis of of the credit risk model

introduced in Section 2 estimated over the full sample. The intensities are rescaled such that the level of one

corresponds to a 1% probability of default over the next year. The figure displays the risk-neutral intesities

for core counties in the left panel (Austria, Belgium, France, Germany, Netherlands) and for periphery

countries in the right panel (Spain, Greece, Ireland, Italy, Portugal) countries.
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Figure 2: Bank Credit Risk Network
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The figure shows the bank credit risk network. The bank credit risk network is defined as the set of non-zero

partial correlation relations implied by the concentration matrix of the idiosyncratic defaul intensities. This

is estimated over the entire sample period using the Adaptive GLASSO procedure presented in Section 2.

The vertex size is proportional to the degree of each financial entity the vertex color is set according to

the bank’s country of origin. The edge width is proportional to the square of the corresponding partial

correlation.
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Figure 3: Degree and Partial Correlation Distribution

Weighted Degree Distribution Partial Correlation Distribution

The figure shows histograms of the weighted degrees (left) and non-zero partial correlations (right). The

weighted degree of a financial entity in the panel is defined as the sum of the square partial correlations relative

to that entity. The partial correlations are the ones implied by the concentration matrix of the idiosyncratic

default intensities estimated over the entire sample period using the Adaptive GLASSO procedure presented

in Section 2.
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Figure 4: Network Density

The figure shows the monthly time-series of the average weighted degree together with the 5% and 95% quan-

tiles of the weighted degree distribution obtained from the rolling estimates of the bank credit risk network

from January 2008 to December 2013. The partial correlations are the ones implied by the concentration

matrix of the idiosyncratic default intensities estimated by the Adaptive GLASSO procedure presented in

Section 2 using a two-year rolling window.
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Figure 5: Factor and Network R Squares

Factor R2, Core Factor R2, Periphery

Network R2, Core Network R2, Periphery

This figure shows the time series of factor and network R squares for core and periphery countries. The factor
R2 of a bank is defined as the R2 of the regression of its log-CDS spread difference on the log-CDS spread
difference of its respective sovereign. The network R2 of a bank is defined as the additional R2 obtained
by adding as explanatory variables of the previous regression all the log-CDS spread differences of all the
neighbouring banks detected in the bank credit risk network. The factor and network R2 are computed on
the basis of two-year rolling estimates. The factor and network R2 are computed on the basis on rolling
estimates in order to have a time series of values.
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Figure 6: Degree for Individual Banks

COM MPS

The figure shows the monthly time-series of the weighted degree (thick line/left y-scale) as well as the

total number of non-zero partial correlations coefficients (thin line/right y-scale) obtained by the rolling

estimates of the bank credit risk network from January 2018 to December 2013 for Commerzbank (COM)

and Monte Dei Paschi (MPS). The partial correlations are the ones implied by the concentration matrix of

the idiosyncratic default intensities estimated by the Adaptive GLASSO procedure presented in Section 2

using a two-year rolling window.
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