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1 Introduction

The volatility of asset prices is a fundamental ingredient for asset pricing, risk management

and portfolio allocation. Over the last decade, the financial econometrics literature has

developed a new generation of estimators of the daily volatility of asset prices based on

intra-daily data typically referred to as realized volatility estimators. The classic realized

volatility (RV) estimator of Andersen and Bollerslev (1998) for example is defined as the

sum of the squares of high-frequency intra-daily returns. Under appropriate assumptions,

this estimator provides a consistent estimate of the quadratic variation of asset prices when

prices follow a continuous stochastic model and are directly observed (see e.g. Barndorff-

Nielsen and Shephard 2002 and Andersen, Bollerslev, Diebold, and Labys 2003).

It is well acknowledged in the literature that asset prices exhibit discontinuities in

their sample paths and are also contaminated by market microstructure noise (see e.g.

Barndorff-Nielsen and Shephard 2006 and Hansen and Lunde 2006). Allowing for a jump

component makes it more challenging to estimate the quadratic variation of the continuous

part, which is commonly modeled as the integral of the spot volatility and referred to as

the integrated volatility (IV). However, it is of strong economic interest to disentangle

the integrated volatility from the whole quadratic variation. For example, Andersen,

Bollerslev, and Diebold (2007) and Corsi, Pirino, and Reno (2010) showed that it is more

accurate to predict future volatility with the integrated volatility and the jump variation

than with only the whole quadratic variation. The results in Zhang, Zhou, and Zhu

(2009) indicated that both integrated volatilities and the jump variations of equity prices

have substantial effects on the spreads of the credit default swaps. On the other hand,

the market microstructure noise also poses challenges to the estimation of the quadratic

variations. In fact, in the presence of the noise the standard RV estimator is inconsistent

as the sampling frequency of the data increases (see e.g. Hansen and Lunde 2006 and

Bandi and Russell 2008).

These two important stylized facts of asset prices have motivated the development of

a number of estimators which are consistent when there are jumps, noise or both. This

paper aims to review such estimators, which are typically derived by the combination of
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the mechanism of the RV estimator and other techniques such as the truncation and the

pre-averaging methods.

The first realized volatility estimators that appeared in the literature that are ro-

bust to price jumps are the power and multipower variation estimators. In general, the

construction of this type of estimators relies on products of certain powers of adjacent

intradaily-returns, since it is possible to make the effects of jumps on such products di-

minish as sampling frequency increases, see e.g. Barndorff-Nielsen and Shephard (2004)

and Corsi, Pirino, and Reno (2010) for the case of finite activity jumps, and Barndorff-

Nielsen, Shephard, and Winkel (2006b), Woerner (2006), Jacod (2008), and Jacod and

Todorov (2014) for infinite activity jumps.

Mancini (2008, 2009) introduced a truncation technique that consists of excluding the

intra-daily returns larger than a threshold (in absolute value) from the estimation of the

quadratic variation, as these are likely to contain a realization of a jump. This leads to the

truncated RV estimator which deals with both finite and infinite activity jumps. Andersen,

Dobrev, and Schaumburg (2012) applied the nearest neighbor truncation method to the

RV estimator by truncating the squared intra-daily returns that are larger than their

adjacent ones. This technique can also make the estimator immune to jumps by removing

the intervals where there are jumps. However, the truncated IV estimators in Mancini

(2008, 2009) and Andersen, Dobrev, and Schaumburg (2012) are not consistent in the

presence of market microstructure noise, since they are based on the RV estimator which

is not robust to the noise.

The first realized volatility estimator introduced in the literature that is consistent

when constructed with noisy data is the two-scales realized volatility (Zhang, Mykland,

and Aı̈t-Sahalia 2005). This estimator takes the average of many RV estimators to par-

tially eliminate the effects of the noise, and the remaining noise effects are debiased by

an estimator on the noise variance. An extension of the two-scales estimator is the multi-

scales estimator proposed by Zhang (2006), which converges to the quadratic variation in

probability at a faster rate than the two-scales estimator. Other estimators include e.g.

the realized kernels (Barndorff-Nielsen, Hansen, Lunde, and Shephard 2008, 2011, Var-
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neskov 2016, 2017) and realized pre-averaging estimator (Jacod, Li, Mykland, Podolskij,

and Vetter 2009, Jacod, Podolskij, and Vetter 2010), using respectively kernel functions

and pre-averaged data in order to smooth away the noise impact.

Finally, contributions that propose estimators that are consistent in the presence of

both finite activity jumps and noise include, among others, Podolskij and Vetter (2009a,b),

Christensen, Oomen, and Podolskij (2014), Christensen, Hounyo, and Podolskij (2018),

Fan and Wang (2007), Barunik and Vacha (2015), Christensen, Oomen, and Podolskij

(2010), Jing, Liu, and Kong (2014) and Bibinger and Winkelmann (2015). The estima-

tors considered in Podolskij and Vetter (2009a,b) and Christensen, Oomen, and Podolskij

(2014) were derived by the combination of pre-averaged data and bipower variations which

belong to the family of multipower variations, and Christensen, Hounyo, and Podolskij

(2018) further imposed the truncation indicators on the pre-averaged bipower variations.

Fan and Wang (2007) and Barunik and Vacha (2015) employed the wavelet technique to

detect jumps. Then they adjusted the data to remove jump effects, and used the adjusted

data to construct the two-scales and multi-scales estimators. The estimator proposed in

Christensen, Oomen, and Podolskij (2010) is based on intra-daily quantile ranges which

are immune to the extreme intra-daily return values due to jumps. The truncated pre-

averaging estimator considered in Jing, Liu, and Kong (2014) is derived by truncating

the local average returns with large absolute values from the pre-averaging estimator,

since such returns are likely to be affected by jumps. The truncated spectral estimator

proposed in Bibinger and Winkelmann (2015) employs similar truncation methodology as

in Mancini (2008, 2009) and Jing, Liu, and Kong (2014), but it relies heavily on spectral

analysis, and in this sense, its mechanism is fundamentally different from the estima-

tors we review in this paper. The medium blocked realized kernels in Varneskov (2017)

are constructed by associating the realized kernels with the nearest neighbor truncation

method, so this estimator can be robust to jumps and the noise at the same time.

Besides reviewing existing estimators, this paper introduces two novel truncated es-

timators, which are the truncated two-scales realized volatility and truncated flat-top

realized kernel estimators. Like the truncated pre-averaging estimator, the proposed es-
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timators here are also obtained by truncating noise-robust volatility estimators, so the

truncated two-scales and kernel estimators are consistent in the presence of both jumps

and the noise. Moreover, the simulation results presented in this paper suggest that the

truncated estimators in general have good estimation accuracy when there are noise and

jumps, which is in line with the results shown in Jing, Liu, and Kong (2014). We observe

that the methodology of the wavelet-based estimators is essentially similar to the trun-

cated estimators proposed here. In fact, the truncated two-scales estimator has the same

asymptotic distribution as the wavelet-based two-scales estimator proposed in Fan and

Wang (2007). The truncated estimators however are in general easier to compute than

the wavelet-based ones. Moreover, the truncated pre-averaging and truncated two-scales

estimators are robust to infinite activity jumps, while to the best of our knowledge, the

consistency of the wavelet-based realized volatility estimators has not been theoretically

justified in the presence of infinite activity jumps.

Other related contributions are Jacod and Protter (2012) and Aı̈t-Sahalia and Jacod

(2014) that proposed truncated estimators on volatilty functionals, including the trun-

cated bipower and multipower estimators. These estimators however do not consistently

estimate the quadratic variation in the presence of the noise. Besides volatility estimation,

truncation techniques are widely used, for instance, to explore the relationship between

jumps and spot volatility (Jacod and Todorov, 2010) and to estimate the covariation be-

tween asset returns and changes in volatility (Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang,

2017). Another strand of the literature relevant to this paper is the one that concerns

testing for the presence of price jumps and cojumps (with or without noise), which in-

cludes, e.g., Jacod and Todorov (2009), Jacod, Podolskij, and Vetter (2010), Aı̈t-Sahalia,

Jacod, and Li (2012), Lee and Mykland (2012) and Li, Todorov, Tauchen, and Lin (2018).

These papers have inspired the jump detection indicator based on local averages used in

this work.

In the remaining of this paper, section 2 introduces basic notations. Section 3 reviews

some important realized volatility estimators. Section 4 proposes the truncated two-scales

and kernel estimators. Section 5 performs simulation exercises to evaluate the efficiency
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of some estimators reviewed or proposed. Section 6 concludes.

2 Model setup

We denote by (yt, t ∈ [0, 1]) the efficient log-price process of an asset, where 0 typically

represents the opening of the trading day and 1 the closing. The process starts at an

initial value y0 ∈ R and its dynamics are given by

dyt = atdt+ σtdBt + dJt, t ∈]0, 1] (1)

where B is a standard Brownian motion and J is a pure jump process, both defined on

a filtered probability space (Ω, (Ft)t≥0,F ,P). The coefficients a and σ are adapted and

locally bounded. For some estimators, we will assume that σ follows an Itô-semimartingale

process, that is:

σt = σ0 +

∫ t

0

bsds+

∫ t

0

vsdBs +

∫ t

0

nsdWs, (2)

where b, v and n are adapted càdlàg processes, b is predictable and locally bounded, and

W is another standard Brownian motion independent of B. Concerning the jump part J ,

for some results we will assume it has finite activity (FA), and so it can be expressed as

Jt =
∑Nt

i=1 Yi, where Nt < ∞ for finite t. Or more generally, J is allowed to have infinite

activity (IA), and can be expressed as

Jt =

∫ t

0

∫
|x|≤1

x(µ− ν)(ds, dx) +

∫ t

0

∫
|x|>1

xµ(ds, dx),

where µ is the jump measure and ν is its predictable compensator.

Given m as the number of price observations in ]0, 1], and ti as the time point when

we observe the i−th price, many works (e.g. Barndorff-Nielsen, Hansen, Lunde, and

Shephard 2008, Christensen, Oomen, and Podolskij 2010, Varneskov 2016), including this

paper unless stated otherwise, assume that the prices are equally spaced, which means

ti = i
m

for i = 1, . . . ,m for the convenience of technical analysis. This assumption may be
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replaced by the weaker one that the sampling times are independent of y and the noise,

and max
i

(ti − ti−1) = O
(

1
m

)
. This is because under this weaker assumption, typically

the commonly seen estimators still maintain the same desired convergence rates towards

IV, including, among others, the RV, the realized kernels, the pre-averaging, the two-

scales and the multi-scales realized volatilities (see e.g. Wang and Zou 2010, Barndorff-

Nielsen, Hansen, Lunde, and Shephard 2011, Fan, Li, and Yu 2012, Kim, Wang, and Zou

2016). Endogenous sampling, which can be subject to the tick-by-tick data (Robert and

Rosenbaum 2010, 2012) has also been studied in the literature. For example, Li, Mykland,

Renault, and Zhang (2014) showed that the estimation error by the RV estimator without

jumps and the noise is still OP(m−1/2), when the sampling scheme is possibly endogenous

with max
i

(ti − ti−1) = oP(m−2/3−ε) for any fixed ε > 0. Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008) also pointed out the robustness of the realized kernels with respect

to some sampling schemes that can be possibly endogenous.

The efficient log-price is contaminated by market microstructure noise. That is, rather

than the efficient price yt the econometrician observes at discrete times its contaminated

counterpart xt. Specifically, we assume xti is generated as

xti = yti + uti , i = 1, ...,m,

where uti denotes the microstructure noise associated to the i-th observation with expec-

tation 0 and variance ω2. For notational simplicity we will use xi, yi and ui to respectively

denote xti , yti and uti .

A common assumption in the literature is that the ui’s are mutually independent

(e.g. Christensen, Oomen, and Podolskij 2014; Christensen, Hounyo, and Podolskij 2018).

However, the empirical studies in Hansen and Lunde (2006) suggested that this assump-

tion is only reasonable when the sampling frequency is moderately high, e.g. 1 minute,

but not applicable to the ultra-high-frequency data such as the tick-by-tick data, in which

case the noise can be time-dependent. In addition, most works assumed that u is indepen-

dent of the efficient price process y, but Hansen and Lunde (2006) also pointed out that

this assumption can be violated when the sampling frequency is high. Some relaxations
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Table 1: Constants

Constant Definition

K c1m
2/3

H c2m
1/2

K0 c3m
1/2

K c4m
1/2

M0 c5m
1/2

K1 c6m
1/2

K2 c7m
1/2

L c8m
a for a ∈ (0, 3/4)

K3 c9m
b for b ∈ (0, 1)

This table defines a list of constants used in the definition of the estimators. Here

c1, c2, . . . , c9 denote positive constants that are fixed throughout the paper.

can be found in, e.g., Jacod, Li, Mykland, Podolskij, and Vetter (2009), Jing, Liu, and

Kong (2014), Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011), and Varneskov

(2016, 2017). The first two papers assume the properties of u (zero mean and moment

bound condition) conditional on y, while the others assume an endogenous component in

u in the form

eti = m1/2

∞∑
h=−∞

φh,i

(
W̃ti−h

− W̃ti−h−1

)
, (3)

where W̃ is a standard Brownian motion possibly correlated with B and the coefficients φ

satisfy certain conditions. Finally, we will rely on the following assumption in deriving the

theoretical properties of the truncated two-scales and realized kernel estimators proposed

in this paper:

Assumption 1. For any fixed positive interger n, E (uni ) is uniformly bounded across

i ∈ {1, . . . ,m}.

This assumption is stronger than the common one that E (uni ) is bounded for a fixed

n, like n = 4 or 8, but it is still standard in the realized volatility literature. For example,

Fan et al. (2012) and Tao, Wang, and Zhou (2013) assumed ui as subgaussian, which

makes this assumption satisfied.

An additional word on notation is in order. In Table 1 we define a number of bandwidth

parameters that are required for the construction of the estimators introduced in the next

8



section.

3 Existing integrated volatility estimators

Various estimators have been introduced in the literature to estimate the integrated

volatility of an asset, which is defined as

IV =

∫ 1

0

σ2
t dt .

Andersen and Bollerslev (1998) used the sum of squared intra-daily non-overlapping re-

turns to approximate IV in the absence of jumps and noise. This leads to the classical

RV estimator σ̂2
RV =

∑m
i=1(4ix)2, where 4ix = xi − xi−1. Since IV is the quadratic

variation of the continuous part in y, Barndorff-Nielsen and Shephard (2002) showed that

when the price observations are not affected by jumps or the noise, m1/2 (σ̂2
RV − IV) is

asymptotically mixed Gaussian, that is

m1/2
(
σ̂2
RV − IV

) L−→ MN

(
0, 2

∫ 1

0

σ4
sds

)
,

as m → ∞, where the convergence in law is stable. As mentioned in the introduction,

this classical estimator has been modified in different directions in order to obtain robust

estimators in the presence of jumps or noise. We next proceed with a review of the most

important ones.

3.1 Realized range-based estimators

Christensen and Podolskij (2007) developed the realized range-based (RRV) estimator,

inspired by the works of Feller (1951) and Parkinson (1980). It is defined as

σ̂2
RRV =

1

υm1

m2∑
i=1

sup
0≤s,t≤m1

(xi−1+s − xi−1+t)2 ,
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where m1 and m2 are positive integers with m1m2 = m, and υm1 = E

(
max

0≤s,t≤m1

(
B t

m1

−

B s
m1

)2)
(with s, t integers). Christensen and Podolskij (2007) showed that in the absence

of jumps and noise, σ̂2
RRV converges to

∫ 1

0
σ2
t dt in probability as m2 →∞. Moreover, they

derived the asymptotic mixed Gaussian distribution for m
1/2
2

(
σ̂2
RRV −

∫ 1

0
σ2
t dt
)

when σ

satisfies (2). This result implies that σ̂2
RRV achieves the optimal convergence rate m−1/2

when m1 is O(1) as m → ∞. Then Martens and van Dijk (2007) proposed several bias-

corrected versions of σ̂2
RRV in order to deal with the noise, but they did not prove the

consistency of the modified estimators. Christensen, Podolskij, and Vetter (2009) showed

the consistency of a type of modified RRV estimators, but the proof of the convergence

relies on the assumed specific distribution for the noise terms, which is substantially

stronger than the commonly seen i.i.d. assumption.

3.2 Multipower variation estimators

The realized multipower variation (MPV) estimators are defined as

σ̂MPV(r1, . . . , rN) = m1−
∑N

i=1 ri
2

m∑
j=N

|4j−N+1x|r1 . . . |4jx|rN . (4)

where r1, . . . , rN are constants in (0, 1]. The properties of this type of estimators were stud-

ied e.g. in Barndorff-Nielsen and Shephard (2004), Barndorff-Nielsen, Graversen, Jacod,

Podolskij, and Shephard (2006a) and Barndorff-Nielsen, Shephard, and Winkel (2006b).

In the absence of jumps and noise, Barndorff-Nielsen, Graversen, Jacod, Podolskij, and

Shephard (2006a) derived the asymptotic mixed Gaussian distribution for m1/2
(
σ̂MPV −

c
∫ 1

0
|σs|

∑N
i=1 rids

)
in the sense of stable convergence in law, where c is some positive con-

stant depending only on {r1, . . . , rN}. Thus, by setting
∑N

i=1 ri = 2, we can make 1
c
σ̂MPV

a consistent estimator of IV. Barndorff-Nielsen, Shephard, and Winkel (2006b) discussed

the asymptotic property of σ̂MPV in the presence of FA and IA jumps. They showed that

when there are FA jumps, by properly setting the values of r1, . . . , rN , the asymptotic

distribution of the multipower estimator remains the same. In the presence of IA jumps,

the degree of jump activity must satisfy certain technical condition in order to yield the
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same asymptotic distribution for σ̂MPV.

When N = 2, σ̂MPV becomes the bipower variation σ̂BPV(r1, r2) which is an important

subgroup in the family of multipower variation estimators. In particular, we note that

the CLT does not in general hold for σ̂BPV(r1, r2) when there are jumps and r1 + r2 =

2; as Barndorff-Nielsen, Shephard, and Winkel (2006b) pointed out, the CLT requires

max{r1, r2} < 1 in the presence of jumps. Based on the structure of σ̂BPV, Podolskij and

Vetter (2009a,b) derived IV estimators robust to both jumps and the noise, which are the

modulated bipower variations that will be reviewed later.

3.3 Two-scales realized volatility estimator

The two-scales realized volatility (TSRV) estimator is defined as

σ̂2
TSRV =

1

K

m∑
i=K

(xi − xi−K)2 − m−K + 1

mK

m∑
i=1

(4ix)2 . (5)

This estimator was proposed by Zhang, Mykland, and Aı̈t-Sahalia (2005) where they

showed that it consistently estimates the IV in the presence of microstructure noise.

The first component on the right-side of (5) can be regarded as the average of K realized

volatility estimators that are in the same form as the definition of σ̂2
RV, except that xi−xi−1

is replaced with xi − xi−K . Then the first component converges to IV in probability in

the absence of the noise, and the second component counteracts the impact of the noise

on the first component. Under the assumption that σt is continuous, and ui’s are i.i.d.,

independent of y, Zhang, Mykland, and Aı̈t-Sahalia (2005) showed that m1/6 (σ̂2
TSRV − IV)

converges stably in law to some mixed Gaussian distribution. When σt is not continuous,

it can be checked that σ̂2
TSRV − IV is still OP(m−1/6) (see e.g. Theorem 1 in Fan, Li, and

Yu 2012).

Later we will work with the following modified version of the TSRV estimator

σ̂2
TS =

1

K

m∑
i=K

(xi − xi−K)2 − 1

K

m∑
i=K

(4ix)2 . (6)

It can be seen that the difference between σ̂2
TSRV and σ̂2

TS lies in the second component of
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their expressions. Specifically, the second component on the right-side of (6) is obtained

by removing the first K−1 terms from the sum
∑m

i=1 (4ix)2 , and adjusting the coefficient

m−K+1
mK

accordingly to maintain the balance. As K � m, it is easy to check that σ̂2
TS has

the same asymptotic property as the one derived in Zhang, Mykland, and Aı̈t-Sahalia

(2005) for σ̂2
TSRV.

3.4 Realized kernel estimator

The realized kernel (RK) estimator is defined as

σ̂2
RK = γ0(X) +

H∑
h=1

k

(
h− 1

H

)
(γh(X) + γ−h(−X)) , (7)

where for each h ∈ {−H, . . . , H}, γh(X) =
∑m

i=14ix4i−hx, and the kernel function k

satisfies (i) k(0) = 1; (ii) k(x) is twice differentiable with bounded derivatives on [0, 1]; (iii)

k(1) = k′ (0) = k′(1) = 0. This estimator was introduced in Barndorff-Nielsen, Hansen,

Lunde, and Shephard (2008) and uses the kernel function to smooth away the impact of

the noise, so it consistently estimates IV in the presence of the ui’s that are mutually

independent and also independent of y. Notice that the construction of σ̂2
RK requires some

data outside the period [0, 1]. This issue can be addressed by changing the start and end

points of the process X, which, as pointed out by Barndorff-Nielsen, Hansen, Lunde,

and Shephard (2008), does not cause additional technical problems, but can ease the

exposition. Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) showed that without

jumps, m1/4 (σ̂2
RK − IV) converges stably in law to some mixed Gaussian distribution.

Barndorff-Nielsen, Hansen, Lunde, and Shephard (2011) made some modification on

σ̂2
RK, and the modified kernel estimator allows some dependency in the noise series, but

it converges to IV in probability at a slower rate, m−1/5. In order to deal with dependent

noise terms while keeping the convergence rate m−1/4, Varneskov (2016, 2017) employed

flat-top kernel functions in constructing σ̂2
RK, and the corresponding flat-top realized kernel
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(FTRK) estimator is defined as

σ̂2
FRK = γ0(X) +

H(1+C)∑
h=1

k

(
h

H

)
(γh(X) + γ−h(−X)) , where (8)

k(x) = 1{|x|≤C} + k(|x| − C)1{|x|>C},

and C = H−c for some c ∈ (0, 1). Compared to the kernel function in Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008, 2011), a property of the flat-top kernel function is

that k(x) = 1 in a neighbourhood of zero. Varneskov (2017) demonstrated that when

there are no jumps, m1/4 (σ̂2
FRK − IV) is asymptotically mixed Gaussian in the sense of

stable convergence in law. Moreover, the CLT is derived in the presence of a noise that

can be decomposed as

ui = ei + vi, (9)

where ei is the endogenous noise that can be described by (3), and vi is independent of y

with the α−mixing property and a polynomial decaying mixing coefficient. Additionally,

it can be checked that the order of the difference between σ̂2
FRK and the IV is m−1/4 when

the ui’s are independent of y and M−dependent with a fixed integer M > 0 (see the proof

of Theorem 3). In this case the assumption on the dynamics of σt like (2) is not needed.

Recall that M -dependent noise means that ui is independent of uj if |i− j| > M.

3.5 Pre-averaging estimator

Jacod, Li, Mykland, Podolskij, and Vetter (2009) used the pre-averaging approach to

construct a noise-robust IV estimator. The idea of the pre-averaging (PA) estimator is

to first compute the locally weighted averages of price observations, and then use the

averaged observations to approximate the IV, since the impact of noise on the averaged

observations is much smaller than on the original ones. The definition of the PA estima-

tor depends on q weight function g satisfying: (i) g is continuous, piecewise C1 with a

piecewise Lipschitz derivative g′; (ii) g(0) = g(1) = 0,
∫ 1

0
g(s)2ds > 0. For a generic i, a
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locally weighted average return used in the construction of the PA estimator is defined as

4i,K0X(g) =

K0−1∑
j=1

g

(
j

K0

)
4i+jx. (10)

Then taking the sum of the rescaled squares of 4i,K0X(g) across i leads to the first

component of the PA estimator, and the second component eliminates the bias caused by

the noise. Specifically, the PA estimator is defined as

σ̂2
PA =

1

K0ϕ2

m−K0+1∑
i=0

(4i,K0X(g))2 − ϕ1

2K2
0ϕ2

m∑
i=1

(4ix)2 , (11)

where ϕ1 =
∫ 1

0
g′(u)2du and ϕ2 =

∫ 1

0
g(u)2du. Furthermore, Jacod, Li, Mykland, Podol-

skij, and Vetter (2009) showed that in the absence of jumps, m1/4 (σ̂PA − IV) is asymp-

totically mixed Gaussian in the sense of stable convergence in law, assuming the zero

mean and bounded moment properties of u conditional on x. Jing, Liu, and Kong (2014)

and Koike (2016) adopted similar assumptions on u when showing the properties of the

truncated pre-averaging estimators that will be reviewed later in the text.

3.6 Truncated realized volatility

Mancini (2008, 2009) and Cont and Mancini (2011) applied the truncation technique to

σ̂2
RV, and the truncated σ̂2

RV, denoted as σ̂2
TRV, consistently estimates the IV in the presence

of jumps. In the absence of the noise, when x is continuous on ]ti−1, ti], the increment

of x over this interval is small in absolute value for large m, otherwise the value of the

increment is close to the jump size. Then the idea of truncation is to detect the presence

of jumps by checking whether |4ix| is larger than some threshold, and if it is larger, 4ix

is removed from the realized volatility estimator. Thus σ̂2
TRV is defined as

σ̂2
TRV =

m∑
i=1

(4ix)2 1{|4ix|≤T (m)},

where the threshold T (m) converges to zero at some rate slower than the convergence

rate of the continuous part in 4ix as m→∞.
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Mancini (2009) pointed out that in the presence of FA jumps, σ̂2
TRV has the same

asymptotic distribution as σ̂2
RV constructed in the setting where there are no jumps,

since truncation removes the effects of jumps, and the magnitude of information loss

is oP(m−1/2). Assuming jumps follow a Lévy process, Mancini (2009) also showed the

consistency of σ̂2
TRV while allowing jumps to have infinite activity. Cont and Mancini

(2011) further demonstrated that under the condition where jumps have finite variation,

the IA Lévy jump process does not affect the asymptotic distribution of σ̂2
TRV, which is

the same as that of σ̂2
RV in the absence of jumps.

We have seen that when estimating the IV, the mechanisms of the BPV and TRV have

the potential to deal with jumps, while the ideas of the TSRV, RK and PA estimators lead

to noise-robust estimators. Therefore, it is natural to think of combining the techniques of

these estimators in hopes of deriving new estimators robust to both jumps and the noise.

Accordingly, the bipower-type estimators considered in Podolskij and Vetter (2009a,b) and

Christensen, Oomen, and Podolskij (2014) were obtained by introducing the pre-averaging

procedure in the bipower variations, and truncating the PA gives rise to the truncated pre-

averaging estimator proposed in Jing, Liu, and Kong (2014). Besides the aforementioned

estimators, we will also introduce the truncated TSRV and truncated FTRK estimators.

Moreover, another estimator reviewed later is the quantile-based realized volatility (QRV),

which also consistently estimates the IV in the presence of FA jumps and the noise.

3.7 Modulated bipower variation

The earliest modulated bipower variation (MBV) estimator introduced by Podolskij and

Vetter (2009a,b) is similar to the BPV, except that4x’s are replaced with local (weighted)

average returns. Taking the pre-averaged returns makes the MBV robust to the noise.

Generally, this type of estimators are analyzed with the ui’s that are mutually independent

and also independent of y, and equation (2) is a necessary condition to derive the corre-

sponding CLT results (Podolskij and Vetter 2009a,b, Christensen, Oomen, and Podolskij

2014; Christensen, Hounyo, and Podolskij 2018). Specifically, the MBV in Podolskij and
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Vetter (2009b) is given by

σ̂MBV(r, `) = m
r+`
4
− 1

2

M0∑
i=1

∣∣X i

∣∣r ∣∣X i+1

∣∣` , where X i =
1

m
M0
−K + 1

im
M0
−K∑

j=
(i−1)m

M0

(
xj+K − xj

)
,(12)

for some r, ` > 0. Podolskij and Vetter (2009b) showed that with FA jumps and the noise,

when r + ` = 2, σ̂MBV(r, `) converges in probability to some quantity depending on ω2

and IV. Given that ω2 can be conveniently estimated by ω̂2 = 1
2m

∑m
i=14ix

2, a consistent

estimator on IV can be derived from σ̂MBV(r, 2− r), but the convergence rate is unknown.

Podolskij and Vetter (2009a) modified σ̂MBV with a weight function g, and the modified

MBV is defined as

σ̃MBV(r, `) = m
r+`
4
−1

m−2K+1∑
i=0

|X̃i|`|X̃i+k|r, where X̃i =
K∑
j=1

g
(
j/K

)
4i+jx,

for r, ` > 0. In the presence of IA jumps that satisfy some conditions, Podolskij and Vetter

(2009a) computed the limit of σ̃MBV(r, `) in probability when r + ` = 2. This limit is also

determined by the IV and ω2. Then a consistent IV estimator can be naturally derived

from σ̃MBV(r, 2 − r) and ω̂2 for r ∈ (0, 2). In the presence of IA jumps, Podolskij and

Vetter (2009a) showed a CLT for σ̃MBV(r, `) when r, ` < 1. They also provided a CLT for

σ̃MBV(r, `) when r + ` = 2 in the absence of jumps. Based on this result, Christensen,

Hounyo, and Podolskij (2018) established a CLT for the truncated MBV defined as

σ̃TMBV(r, `) = m
r+`
4
−1

m−2K+1∑
i=0

|X̃i|`1{|X̃i|<vm}|X̃i+k|r1{|X̃i+k|<vm}, where

r, ` > 0, vm = cuωm for some ω ∈ (0, 1/2), and um =
K

m
,

with a certain restriction on the degree of activity of the IA jumps. In particular, the CLT

indicates that when r+ ` = 2 the limit in probability of σ̃TMBV(r, `) is the same as that of

σ̃MBV(r, `). Thus a consistent IV estimator can be derived from σ̃TMBV(r, 2− r), with the

estimation error multiplied by m1/4, being asymptotically mixed Gaussian in the sense of

stable convergence in law. Moreover, Christensen, Oomen, and Podolskij (2014) showed
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that in the presence of FA jumps, m1/4 (σ̂BV − IV) is asymptotically mixed Gaussian in

the sense of stable convergence in law, in which σ̂BV is also an MBV-type estimator given

by

σ̂BV =
mπ

4(m− 2K1 + 2)K1φK1

m−2K1+1∑
i=0

|Xi,K1| |Xi+K1,K1| −
ω̂2

c26φK1

, where

Xi,K1 =
1

K1

K1−1∑
j=K1/2

(
xi+j − xi+j−K1

2

)
, φK1 =

2 +K2
1

12K2
1

,

and c6 is the constant from Table 1.

3.8 Quantile-based realized volatility

Christensen, Oomen, and Podolskij (2010) proposed two kinds of QRV estimators, respec-

tively for the no-noise and noisy data conditions, and here, we only focus on the latter.

Like the PA estimator and the MBV in Podolskij and Vetter (2009a), the QRV employs

a weight function g to compute the weighted averages of intra-daily returns within over-

lapping intervals in order to relieve the impact of the noise. For a generic interval within

which we perform the pre-averaging procedure, if it contains a jump, the jump will cause

extreme values in the averaged returns. For the sake of excluding such extreme values and

so the effects of jumps, Christensen, Oomen, and Podolskij (2010) selected the averaged

returns based on their empirical quantiles across each overlapping interval, and used the

selected data to construct the QRV.

Specifically, the first step to construct the QRV estimator is to compute the weighted

average returns:

Xi =

K2−1∑
j=1

g

(
i

K2

)
4i+jx, for i = 0, . . . ,m−K2 + 1,

where the function g also satisfies conditions (i) and (ii) above (10). Then for each

interval
[
i
m
, i+c(K2−1)

m

]
, where c is some positive constant, we consider the sequence Ci =
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{
Xi+(j−1)(K2−1)

}c
j=1

that contains the averaged returns in it, and compute

q∗i (λj) = h2λjc
(
m1/4Ci

)
+ h2λj(1−c)+1

(
m1/4Ci

)
,

where hj(F ) = F(j) is the j-th order statistic of the sequence F = (f1, . . . , fk), and

λj ∈
(
1
2
, 1
)
. Define

σ̂2
QRV,j =

1

c7ϕ2(m− c(K2 − 1) + 1)

m−c(K2−1)∑
i=0

qi(λj)

v(c, λj)
, (13)

where c7 is defined in Table 1, ϕ2 is defined in (11), v(c, λj) = E
(
|Ucλj |2 + |Uc−cλj+1|2

)
,

and Ucλj is the (cλj)-th order statistic of an independent standard normal sample {Ui}ci=1.

Then the QRV estimator σ̂2
QRV is obtained by taking the weighted average of σ̂2

QRV,j, and

correcting the bias caused by the noise:

σ̂2
QRV =

c̃∑
i=1

biσ̂
2
QRV,i −

ϕ1

c2ϕ2

ω̂2,

where c̃ is a positive constant, ϕ1 is defined in (11), ω̂2 = 1
2m

∑m
i=14ix

2, bi ≥ 0, and∑c̃
i=1 bi = 1. Since the increments of the Brownian motion are normal, the rescaling factor

v(c, λj) in (13) is from the quantiles of the standard normal distribution. (2) is needed in

order to obtain the desired property for σ̂2
QRV, as σt is required to be roughly unchanged

within small intervals. Then Christensen, Oomen, and Podolskij (2010) showed that in the

presence of FA jumps and the noise, m1/4
(
σ̂2
QRV − IV

)
is asymptotically mixed Gaussian

in the sense of stable convergence in law.

3.9 Truncated pre-averaging estimator

Truncated pre-averaging estimators that consistently estimate the IV in the presence of

IA jumps and the noise can be found, among others, in Wang, Liu, and Liu (2013), Jing,

Liu, and Kong (2014) and Koike (2016). The first paper shows the consistency without

specifying the convergence rate, while the other two show a CLT for their estimators.

Jing, Liu, and Kong (2014) used the absolute value of 4i,K0X(g) defined in (10) to detect
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the presence of jumps. If |4i,K0X(g)| is abnormally large, it is likely that there is a

jump(s) in ]ti, ti+K0−1], and this jump can change the asymptotic distribution of the PA

estimator. Then Jing, Liu, and Kong (2014) obtained the truncated pre-averaging (TPA)

estimator by subtracting (4i,K0X(g))2 from the PA estimator when |4i,K0X(g)| is larger

than some threshold, so that the TPA estimator is robust to both jumps and the noise.

Specifically, the TPA estimator σ̂2
TPA is defined as

σ̂2
TPA =

1

K0ϕ2

m−K0+1∑
i=0

(4i,K0X(g))2 1{|4i,K0
X(g)|≤um} −

ϕ1

2K2
0ϕ2

m∑
i=1

(4ix)2 , (14)

where the threshold um is set so that umm
−ω1 → 0 and umm

−ω2 → ∞ for some 0 ≤

ω1 < ω2 <
1
4
, and ϕ1, ϕ2 are the same as in (11). Notice that there is no truncation

on the second component of the right-side of (14), since the impact of jumps on that

component is oP(m−1/4), and the downward bias due to truncations on the first component

is small. Jing, Liu, and Kong (2014) allowed jumps to have infinite activity. They showed

that σ̂2
TPA has the same asymptotic distribution as the one derived for σ̂2

PA by Jacod, Li,

Mykland, Podolskij, and Vetter (2009) that did not consider jumps, when the IA jump

process satisfies certain properties, the dynamics of σ can be described by (2), and the

noise shares the same properties as in Jacod, Li, Mykland, Podolskij, and Vetter (2009).

In addition, Koike (2016) applied the Hayashi-Yoshida technique to the truncated pre-

averaging estimator. As Hayashi and Yoshida (2005) designed this technique to deal

with the asynchronicity problem for multivariate analysis, the truncated pre-averaging

Hayashi-Yoshida estimator by Koike (2016) is robust to some irregular sampling schemes.

3.10 Nearest neighbor truncation estimators

Developed by Andersen, Dobrev, and Schaumburg (2012), the nearest neighbor truncation

mechanism eliminates the jump impact by comparing each absolute intraday return with

its adjacent absolute return(s), and throwing away the bigger returns in constructing

the estimators. Specifically, Andersen, Dobrev, and Schaumburg (2012) provided the
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following estimators by applying this technique to σ̂2
RV :

σ̂2
minRV =

π

π − 2

m

m− 1

m−1∑
i=1

min (|4ix| , |4i+1x|)2 , and

σ̂2
medRV =

π

6− 4
√

3 + π

m

m− 2

m−1∑
i=2

med (|4i−1x| , |4ix| , |4i+1x|)2 ,

where m
m−1 and m

m−2 are for finite sample bias corrections, and the rescaled factors π
π−2 ,

π
6−4
√
3+π

are obtained following the Brownian motion properties, as their values, e.g., can be easier

to pin down when σ is a constant. When there is no noise and jumps have finite activity,

Andersen, Dobrev, and Schaumburg (2012) demonstrated the consistency of σ̂2
minRV and

σ̂2
medRV as IV estimators, and the asymptotic centered mixed Gaussian distributions for

m1/2 (σ̂2
minRV − IV) and m1/2 (σ̂2

medRV − IV) in the sense of stable convergence in law when

σ follows (2). The estimators σ̂2
minRV and σ̂2

medRV are robust to FA jumps because when

m is large enough, for two adjacent intervals of the form (ti, ti+1], at most one of them

contains a jump, which makes the corresponding absolute return the bigger one and trun-

cated from the estimators. Andersen, Dobrev, and Schaumburg (2012) further applied

this nearest neighbor truncation method to realized variations of higher powers, and thus

obtained consistent estimators of
∫ 1

0
σpt dt for any positive and even p, when there are FA

jumps and no noise.

To deal with the time-dependent noise and FA jumps, Varneskov (2017) combines

the above technique with the realized kernel estimators. Specifically, he considered the

partitions
{

0, L
m
, . . . , mLL

m

}
, where mL = bm/Lc, and for each i ∈ {1, . . . ,mL}, constructs

the flat-top realized kernels σ̂2
FRK,i based on the data in

[
(i−1)L
m

, iL
m

]
. When σ satisfies (2),

σ̂2
FRK,i ≈ σ2

iL
L
m
, if there is no jump in

[
(i−1)L
m

, iL
m

]
. Then in the spirit of σ̂2

medRV, the medium

block realized kernels are defined as

σ̂2
MBRK =

mL−1∑
i=2

med
(
σ̂2
FRK,i−1, σ̂

2
FRK,i, σ̂

2
FRK,i+1

)
,

and Varneskov (2017) showed under (2) that σ̂2
MBRK converges to IV in probability at the

rate of m−1/4 in the presence of FA jumps and the same type of noise as displayed in (9).
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4 Two novel truncated estimators

In line with the methodology of truncated volatility estimators, we propose the truncated

two-scales and kernel estimators respectively in this and the next subsections. The general

idea is to employ the βi’s defined below as a jump indicator, and then truncate the intervals

that contain jumps from the two-scales and kernel estimators.

Similarly to the TPA estimator, we remove the effect of the jumps based on the

absolute values of the locally averaged returns βi which are defined as:

βi(m) =
1

K3

i+K3−1∑
j=i

(xj − xj−K3) , for i = 1, . . . ,m.

Notice that like σ̂2
RK defined in (7), obtaining the values of the βi’s for i < K3 and

i > m −K3 + 1 requires observations outside the period [0, 1]. This is for the simplicity

of explanation, and can be achieved by extending the whole period without additional

technical problems. The properties of the βi’s related to the jump detection when jumps

have finite activity are summarized in Lemma 1 of the appendix. Then in Lemma 2 of

the appendix we analyze the behavior of the βi’s in the presence of IA jumps, which is a

more involved case.

4.1 Truncated two-scales estimator

The truncated two-scales realized volatility (TTSRV) estimator is obtained by applying

the jump indictor β to σ̂2
TS, and performing the truncation accordingly as follows:

σ̂2
TTS =

1

K

m∑
j=K

(xj − xj−K)21Ej
− 1

K

m∑
j=K

(xj − xj−1)21Ej
, (15)

where Ej = {|βi| ≤ r(m), for all i = j −K + 1, . . . , j}, and r(m) is the threshold.

Notice that on the right-side of (15), the scheme can truncate many terms in the

second component that are not affected by jumps in the presence of FA jumps. The

reason is that due to the noise effects, substantial downward bias which can make the

truncated two-scales estimator inconsistent could occur, if we truncate (xj − xj−1)2 from

21



the second component only when there is a jump in [tj−1, tj]. This truncation scheme is

different from that of σ̂2
TPA, since there is no truncation on the second component of the

right-side of (14). This is because for the σ̂2
TPA, the impact of the noise on the truncated

terms from the first component is oP(m−1/4), which is negligible, so there is no need to

truncate the second component to cancel the noise effects. This difference is natural since

the noise impact on the first component of σ̂2
TS is OP(m1/3), while it is only OP(1) for the

first component of σ̂2
PA.

The estimator σ̂2
TTS is similar to the truncated two-scales estimators proposed by Fan

and Wang (2007) and Boudt and Zhang (2015), since they both use some jump indicators

to truncate the intervals that may contain jumps. However, there are notable differences

in the truncation schemes used. Fan and Wang (2007) adopted the wavelet technique to

locate jumps, and the technical analysis relies on the assumption that the jump process

is independent of the continuous process in y, which is not needed for σ̂2
TTS. Boudt and

Zhang (2015) detected the presence of jumps in (ti, tj] by checking whether |xj − xi| is

larger than some threshold, but the validity of this indicator can be disturbed by the

noise. Thus Boudt and Zhang (2015) did not deliver the consistency of their estimator.

Based on the theoretical property of σ̂2
TSRV derived in Zhang, Mykland, and Aı̈t-Sahalia

(2005), we can obtain the asymptotic distribution of σ̂2
TTS under FA jumps as follows:

Theorem 1. Consider the assumptions of Lemma 1 in the appendix, and that lim
m→∞

K3

K
= 0.

If σt is continuous and the ui’s are mutually independent, then as m→∞,

m1/6

(
σ̂2
TTS −

∫ 1

0

σ2
t dt

)
L−→ MN

(
0, 8c−21 ω4 +

4

3
c1

∫ 1

0

σ4
t dt

)
,

where c1 is the constant from Table 1, the convergence is stable in law, and “ MN” means

a mixed Gaussian distribution.

Observe that by Theorem 1, σ̂2
TTS has the same asymptotic distribution as the TSRV

estimator in Zhang, Mykland, and Aı̈t-Sahalia (2005) that did not consider jumps. This

is because in the proof we show that the difference between σ̂2
TTS and the TSRV built

with data not affected by jumps, which is defined as σ2
TS in the proof, is oP(m−1/6).
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The assumption that σt is continuous is needed for proving the asymptotic distribution

(Zhang, Mykland, and Aı̈t-Sahalia 2005). Without this assumption, it can be still checked

that σ2
TS − IV is OP(m−1/6) (see e.g. Fan, Li, and Yu 2012). In addition, when proving

σ̂2
TTS − σ2

TS = oP(m−1/6), σt does not need to be continuous, so the difference between

σ̂2
TTS and IV is still OP(m−1/6) when σt is not continuous.

σ̂2
TTS consistently estimates the IV also in the presence of infinite activity jumps.

Specifically, we assume Jt = J1,t + J2,t, where J1,t is a general FA jump process with

J1,t =
∑Nt

i=1 Yi, and J2,t is an IA Lévy pure jump process. Under these conditions, we

show the consistency of TTSRV in the following theorem:

Theorem 2. Assume the hypothesis of Lemma 1 in the appendix except the assumption

that Jt has finite activity. Assume also that J2 is independent of N , and ui’s are mutually

independent. If there exists α > 0 such that

lim
m→∞

K3
3

r2(m)m1/3−α = 0,

then as m→∞, σ̂2
TTS

P−→
∫ 1

0
σ2
t dt.

The structure of the proof of this theorem is similar to that of (Mancini, 2009, Theorem

4). On one hand, we use the measure βi and the threshold r(m) in order to cut off the

jumps from J1. On the other hand, we truncate the jumps in J2 with absolute values

larger than
√
δ + 16r2(m), where δ > 0 is arbitrary, and show that the information loss

caused by the truncation is negligible.

4.2 Truncated flat-top realized kernel estimator

Another novel truncated estimator introduced in this paper is the truncated flat-top

realized kernel (TFTRK) estimator, which consistently estimates the IV in the pres-

ence of jumps and M -dependent noise with the optimal convergence rate m−1/4. Here

M−dependence means that ui is independent of uj when |i − j| > M. The TFTRK
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estimator is defined as

σ̂2
TRK =

m∑
i=1

H(1+C)∑
h=1

k

(
h

H

)
(4i−hx+4i+hx) +4ix

4ix1Ei
, (16)

where Ei = {|βj| ≤ r(m), for all j = i−H(1 + C), . . . , i+H(1 + C)} . Without the in-

dicator function, the right-side of (16) is the same as σ̂2
FRK defined in (8). Notice that the

scheme can truncate many terms of the form k
(
i−j
H

)
4ix4jx even though there are no

jumps in [ti−1, ti] or [tj−1, tj]. On the contrary, if we truncate k
(
i−j
H

)
4ix4jx only when

it is affected by a jump, the truncated kernel estimator would be inconsistent due to the

noise effects.

Moreover, in computing σ̂2
TRK we adopt the similar jittering procedure as in Barndorff-

Nielsen, Hansen, Lunde, and Shephard (2008, 2011) and Varneskov (2017) in order to

smooth away the boundary effects which can increase the asymptotic variance of the

estimator. The difference is that for σ̂2
TRK, the boundary effects arise when we truncate

each component due to one jump, so the boundary points of each truncated component

should be jittered, and the corresponding mechanism and procedure are described in the

appendix for the case of infinite activity jumps. In addition, we use the jittered points to

compute the value of the right-side of (16) except 1Ei
, that is, the βi’s and so the Ei’s

are computed still based on the original observations.

Given relevant analysis in the literature (e.g. Kim, Wang, and Zou 2016 and Varneskov

2017), one can show that when there are no jumps, the difference σ̂2
FRK− IV is OP(m−1/4).

As the jump indicator 1Ei
can remove finite activity jumps from the estimator, and the

magnitude of information loss due to the truncation is oP(m−1/4), σ̂2
TRK converges to IV

in probability also at the rate of m−1/4, which gives the following theorem:

Theorem 3. Under the assumptions of Lemma 1 in the appendix and that lim
m→∞

K3

m1/2 = 0,

we have

σ̂2
TRK −

∫ 1

0

σ2
t dt = OP(m−

1
4 ), as m→∞.

In the setting of Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008) where the

ui’s are mutually independent and (2) is true, it can be easily checked that σ̂2
FRK defined in
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(8) has the same asymptotic distribution as σ̂2
RK defined in (7), which can be also verified

by Theorem 1 in Varneskov (2017). Then the proof of Theorem 3 implies that σ̂2
TRK has

the same asymptotic distribution holds when FA jumps are present, which leads to the

following corollary:

Corollary 1. Consider the assumptions of Lemma 1 in the appendix, that lim
m→∞

K3

m1/2 = 0,

σ is subject to (2), and the ui’s are mutually independent. Then, as m→∞,

m1/4

(
σ̂2
TRK −

∫ 1

0

σ2
udu

)
LH1−→ MN

(
0, 4

∫ 1

0

σ4
udu

(
c2k1 + 2c−12 k2ρ1ρ

2
2 + c−32 k3ρ

4
2

))
, (17)

where c2 is defined in Table 1,
LH1−→ means H1−stable convergence in law with H1 being

the σ-algebra generated by (ys, σs) for s ∈ [0, 1], k1 =
∫ 1

0
k(x)2dx, k2 =

∫ 1

0
k′(x)2dx, k3 =∫ 1

0
k′′(x)2dx, ρ1 =

∫ 1

0
σ2
udu/

√∫ 1

0
σ4
udu, and ρ2 = ω2/

√∫ 1

0
σ4
udu.

The notion of H1−stable convergence in law follows from Theorem 1 in Varneskov

(2017), and its definition can be found in Barndorff-Nielsen, Hansen, Lunde, and Shephard

(2008). Here it amounts to the statement that (Ym, Z)
L→ (Y , Z) for any random variable

Z which is H1-measurable, where Ym is the left-side of (17) and Y is the right-side.

Lemmas 1-3 and Proposition 5 by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2008)

revealed some properties of this type of convergence.

After reviewing and introducing the above IV estimators, we summarize their prop-

erties in Table 2 concerning their convergence rates and robustness to jumps and the

noise.

5 Simulation study

In this section we first perform simulation exercises to evaluate the efficiency of the trun-

cated two-scales and kernel estimators in finite samples, as these two estimators are

newly introduced in this paper. Then by simulations we compare the performance of

σ̂MBV(r, `), σ̂2
QRV, σ̂

2
TPA, σ̂

2
TTS, σ̂

2
TRK and σ̂2

MBRK. We simulate the dynamics of yt according
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Table 2: Property of the realized volatility estimators
Robust to jumps Robust to the noise Convergence rate Dependence of ui’s

σ̂2
RV No No m−1/2 /

σ̂2
RRV No No m−1/2 /

σ̂MPV Yes, robust to IA jumps No m−1/2 /
σ̂BPV Yes, robust to IA jumps No Unknown /

σ̂2
TS No Yes m−1/6 independent

σ̂2
RK No Yes m−1/4 independent

σ̂2
FRK No Yes m−1/4 see equation (9)

σ̂2
PA No Yes m−1/4 independent conditional on y

σ̂2
TRV Yes, robust to IA jumps No m−1/2 /
σ̂MBV Yes, robust to FA jumps Yes Unknown independent
σ̃MBV Yes, robust to IA jumps Yes Unknown independent

σ̃TMBV Yes, robust to IA jumps Yes m−1/4 independent

σ̂BV Yes, robust to FA jumps Yes m−1/4 independent

σ̂2
QRV Yes, robust to FA jumps Yes m−1/4 independent

σ̂2
TPA Yes, robust to IA jumps Yes m−1/4 independent conditional on y

σ̂2
minRV Yes, robust to FA jumps No m−1/2 /

σ̂2
medRV Yes, robust to FA jumps No m−1/2 /

σ̂2
MBRK Yes, robust to FA jumps Yes m−1/4 see equation (9)

σ̂2
TTS Yes, robust to IA jumps Yes m−1/6 (FA jumps) independent

σ̂2
TRK Yes, robust to FA jumps Yes m−1/4 M−dependent

This table shows the convergence rates and robustness to the jumps and noise of the

reviewed estimators. The last column indicates the type of dependency among the noise

terms that can be allowed by the estimator.

to (1), and

σt = exp(β0 + β1τt),

where dτt = ατtdt+dWt with Wt being a standard Brownian motion and Corr(dWt, dBt) =

ρ. We let µ = 0.03, β0 = 0.3125, β1 = 0.125, α = −0.025, ρ = −0.3, and these coefficients

are selected from Jing, Liu, and Kong (2014) and Podolskij and Vetter (2009b). The noise

ui is a discrete i.i.d. N(0, ω2). The jump process J is a compound Poisson process with a

constant intensity λ = 2, and the jump sizes are i.i.d. N(0, ξ2).

We assume that a trading day is 6.5 hours long and the observed price xt is measured

for every 3 seconds (that is, m = 7800). The simulation is carried out using the Euler

simulation scheme. Throughout this section we set K3 = bm 1
3 c = 19. For the TFTRK, we

use the Parzen kernel, and choose C = H−
3
5 following Varneskov (2017), H = b0.5m 1

2 c =

44, and m0 = 3 which, as described in the appendix, is the number of jittered points when

jittering occurs; and for the TTSRV we set K = b0.1m 2
3 c. For each setting the simulation

is replicated 1000 times.

Figure 1 shows the plots of the MSE of the TTSRV and TFTRK estimators as a

function of r(m) for different magnitudes of ξ (0.25, 0.50, 1), while ω is fixed at 0.10.
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Figure 1: The figure shows the plot of the MSE of the TTSRV and TFTRK estimators as a
function of the threshold r(m). The top left panel shows the MSE of TTSRV for different
values of the jump size standard deviation ξ (ξ = 0.25, 0.5, 1). The top right panel shows the
MSE of TTSRV for different values of the market microstructure noise standard deviation
ω (ω = 0.005, 0.010, 0.015). The bottom left panel shows the MSE of TFTRK for different
values of the jump size standard deviation ξ (ξ = 0.25, 0.5, 1). The bottom right panel
shows the MSE of TFTRK for different values of the market microstructure noise standard
deviation ω (ω = 0.005, 0.010, 0.015).

The plots show that in both cases the MSE is a decreasing function of r(m) when r(m)

is small. This is because when the threshold is too small, many intervals that do not

contain jumps are truncated, and this can cause severe downward bias for the TTSRV

and TFTRK estimators. On the other hand, the MSE is an increasing function of r(m)

when r(m) is large. This is because when the threshold is too large, the intervals that

contain price jumps are not truncated, which leads to upward bias for the TTSRV and

TFTRK estimators. Figure 1 also displays the plots of the MSE of the TTSRV and

TFTRK as a function of r(m) for different magnitudes of ω (0.005, 0.01, 0.015), while ξ

is fixed at 0.50. The MSE curves have the same convex shape documented in previous

cases.

Next we investigate the finite sample distributions of the TTSRV and TFTRK estima-

tors. We define the standardized estimation errors of the TTSRV and TFTRK estimators
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Table 3: Distribution of the TTSRV estimator.
ξ = 0.50 ξ = 0.75 ξ = 1.0

Mean -0.204 -0.269 -0.311
Std Dev 0.968 1.061 1.00
Skewness 0.106 0.286 0.202
Kurtosis 2.68 2.98 2.86
Pct 0.035 0.080 0.063

Statistics of the standardized estimation errors of the TTSRV estimator. Pct means the percentage of

the standardized errors whose absolute values are larger than 1.96 (asymptotically this percentage is

0.05).

Table 4: Distribution of the TFTRK estimator.
ξ = 0.50 ξ = 0.75 ξ = 1.0

Mean -0.059 -0.065 -0.166
Std Dev 1.079 1.029 1.022
Skewness 0.12 0.14 0.12
Kurtosis 3.28 3.14 2.76
Pct 0.058 0.053 0.053

Statistics of the standardized estimation errors of the TFTRK estimator. Pct means the percentage of

the standardized errors whose absolute values are larger than 1.96 (asymptotically this percentage is

0.05).

respectively as

z1 =
m1/6

(
σ̂2
TTS −

∫ 1

0
σ2
sds
)

(
8c−21 ω4 + 4

3
c1
∫ 1

0
σ4
sds
)1/2 ,

and

z2 =
m1/4

(
σ̂2
TRK −

∫ 1

0
σ2
sds
)

√
4
∫ 1

0
σ4
udu(c2k1 + 2c−12 k2ρ1ρ22 + c−32 k3ρ42)

,

Theorem 1 and Corollary 1 imply that if the sample size is sufficiently large, z1 and z2

should be approximately standard normally distributed. We compute z1 and z2 keeping

the value of the threshold r(m) fixed at 0.35 and η = 0.01. From the last set of simulations

we can see that MSE is relatively small when r(m) is around 0.35.

Tables 3 and 4 report summary statistics of z1 and z2. We can see that the truncation of

intervals causes a downward bias in estimation for both estimators, and this bias increases

as the standard deviation of the jump size grows. Overall, z2 is more unbiased against

the standard normal distribution, and the inspection of the histogram and the normal

qqplot of z2 (nor reported in the paper) conveys that the approximation provided by the

asymptotic theory is adequate.

Last, we compare the efficiency of the TTSRV and TFTRK with the other estimators

mentioned at the beginning of this section. In this exercise the threshold r(m) of the

TTSRV and TFTRK is fixed at 0.35, and besides the i.i.d. assumption, we also consider
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Table 5: MSE comparisons for different values of the noise variance (i.i.d. noise)
ω 0 0.002 0.004 0.006 0.008 0.010 0.012 0.014

TPV 0.116 0.128 0.110 0.116 0.114 0.119 0.116 0.117
MBV 0.362 0.464 0.582 0.363 0.386 0.463 0.388 0.426
QRV 0.793 0.553 0.488 0.173 0.144 0.026 0.137 0.587

MBRK 0.085 0.071 0.093 0.079 0.131 0.078 0.069 0.065
TFTRK 0.038 0.043 0.042 0.038 0.037 0.045 0.039 0.045
TTSRV 0.044 0.050 0.045 0.044 0.041 0.047 0.043 0.049

Table 6: MSE comparisons for different values of the noise variance (MA(1) noise)
ω 0 0.002 0.004 0.006 0.008 0.010 0.012 0.014

TPV 0.133 0.108 0.090 0.098 0.092 0.124 0.091 0.093
MBV 0.373 0.578 0.460 0.393 0.442 0.352 0.361 0.408
QRV 0.793 0.618 0.555 0.245 0.192 0.099 0.167 0.675

MBRK 0.083 0.108 0.090 0.080 0.089 0.090 0.065 0.078
TFTRK 0.041 0.037 0.037 0.039 0.032 0.036 0.033 0.038
TTSRV 0.051 0.050 0.048 0.049 0.039 0.056 0.043 0.045

the following MA(1) process to generate ui, which was also employed by Kim, Wang, and

Zou (2016) and Varneskov (2017) in their numerical studies:

ui = θi+1 − 0.5θi, (18)

where θi is a discrete i.i.d. N(0, ω2/1.25) .

To compute σ̂MBV(r, `) described in (12), we set r = ` = 1, K = bm 1
2 c = 88, and M0 =

b0.625m
1
2 c = 55, following Podolskij and Vetter (2009b). Recall the definition of σ̂2

TPA in

(14). In computing σ̂2
TPA, following Jing, Liu, and Kong (2014), we set K0 = bm 1

2 c = 88,

g(s) = min(s, 1− s) for s ∈ (0, 1), and the threshold um = m−0.23.

Given the process of constructing σ̂2
QVR described in section 3.8, following Christensen,

Oomen, and Podolskij (2010), we set c = 40, c̃ = 4, (λ1, λ2, λ3, λ4) = (0.8, 0.85, 0.9, 0.95),

g(x) = min(x, 1−x) for x ∈ (0, 1) and the value of K2 is determined through simulations.

That is, we set K2 = 23 after many experiments, which roughly yields smallest estimation

errors on average in our setting. Moreover, the weight vector (b1, b2, b3, b4) is determined

by equation (11) in Christensen, Oomen, and Podolskij (2010).

Analogous to the choice in Varneskov (2017), we choose mL = 20 in computing σ̂2
MBRK,

and so L = m
mL

= 390. We also adopt the Parzen kernel, and set HL = b0.5L 1
2 c = 9 and

CL = H
− 3

5
L when constructing σ̂FRK,i, where HL and CL for the FTRK over

[
(i−1)L
m

, iL
m

]
are the counterparts of H and C for the FTRK over the whole period.

Figures 2 and 3 show the plots of the MSE of the estimators as a function of ω, and the
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Figure 2: The figure shows the plot of log values of the MSE of the MBV, MBRK, TFTRK,
TPA, QRV and TTSRV estimators as a function of standard deviation ω of the i.i.d. noise.

Figure 3: The figure shows the plot of log values of the MSE of the MBV, MBRK, TFTRK,
TPA, QRV and TTSRV estimators as a function of standard deviation ω of the MA(1) noise.

value of ξ is fixed to 0.5, respectively under the condition where ui’s are i.i.d. or MA(1)

as described by (18). Tables 5 and 6 report the corresponding MSE of the estimators

for selected values of ω. The plots show that the MBRK, TPV, TTSRV and TFTRK

estimators can steadily yield small estimation erros over the range of ω considered, and

the TTSRV and TFTRK dominate the other estimators most of the time. Under i.i.d.

noise, the QRV estimator yields the smallest MSE when ω is around 0.01. However, the

efficiency of this estimator is quite sensitive to the value of ω, and it can lead to large
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Figure 4: The figure shows the plot of log values of the MSE of the MBV, MBRK, TFTRK,
TPA, QRV and TTSRV estimators as a function of the jump size standard deviation ξ in
the presence of the i.i.d. noise.

Figure 5: The figure shows the plot of log values of the MSE of the MBV, MBRK, TFTRK,
TPA, QRV and TTSRV estimators as a function of the jump size standard deviation ξ in
the presence of the MA(1) noise.

estimation error when ω is substantially different from 0.01. Moreover, it can be noticed

that compared to the condition with i.i.d. noise, time-dependency in the noise can always

increase the estimation error of the QRV.

Figures 4 and 5 show the plots of the MSE of the estimators as a function of ξ,

respectively under the condition where ui’s are i.i.d. or MA(1), with ω fixed at 0.005.

Tables 7 and 8 report the MSE of the estimators for selected values of ξ. The TTSRV
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Table 7: MSE comparisons for different jump size variance (i.i.d. noise)
ξ 0 0.2 0.4 0.6 0.8 1

TPV 0.125 0.122 0.125 0.119 0.141 0.119
MBV 0.304 0.241 0.329 0.565 0.611 0.817
QRV 0.293 0.315 0.274 0.267 0.258 0.395

MBRK 0.091 0.074 0.073 0.100 0.254 0.388
TFTRK 0.041 0.042 0.039 0.048 0.044 0.041
TTSRV 0.046 0.046 0.046 0.055 0.058 0.048

Table 8: MSE comparisons for different jump size variance (MA(1) noise)
ξ 0 0.2 0.4 0.6 0.8 1

TPV 0.125 0.116 0.120 0.125 0.129 0.123
MBV 0.263 0.290 0.349 0.532 0.869 1.198
QRV 0.565 0.558 0.553 0.591 0.595 0.613

MBRK 0.093 0.084 0.074 0.088 0.349 0.502
TFTRK 0.038 0.045 0.044 0.039 0.035 0.038
TTSRV 0.049 0.050 0.050 0.049 0.044 0.048

and TFTRK achieve the best performance overall, and the estimation error of the TPA is

also steadily small. The estimation precision of the MBRK is good when ξ is small, but

when ξ is larger than 0.6, the MSE of the MBRK, as well as that of the MBV, increases

significantly as ξ grows.

6 Conclusion

Estimating the integrated volatility with high frequency price data is a rapidly growing

field of research in financial econometrics. In this paper, we have reviewed a number

of IV estimators that are robust to either jumps or the market microstructure noise,

or both. We can see that stemming from the classic RV estimator, methods including

the use of two time scales, the kernel functions and the pre-averaging procedure have

been developed to deal with the noise, and the mechanisms of the multipower variations,

the quantile-based technique and the (nearest neighbor) truncations can be adopted to

remove the disturbance from jumps. Then consistent IV estimators can be derived by the

combinations of these methodologies, like the modulated bipower variations, the truncated

pre-averaging and the medium block realized kernels. We also fill the gap in the literature

by introducing the truncated versions of the two-scales and realized kernels estimators,

and justify their consistency in the presence of jumps and the noise. Finally, we perform

numerical studies to evaluate the efficiency of the different estimation approaches.
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