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Abstract

We consider a system of d linear stochastic heat equations driven by an additive infinite-dimensional
fractional Brownian noise on the unit circle S1. We obtain sharp results on the Hölder continuity in time
of the paths of the solution u = {u(t, x)}t∈R+,x∈S1 . We then establish upper and lower bounds on hitting
probabilities of u, in terms of the Hausdorff measure and Newtonian capacity respectively.
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1. Introduction and main results

We consider a system of d stochastic heat equations on the unit circle driven by an infinite-
dimensional fractional Brownian motion B H with Hurst parameter H ∈ (0, 1). That is,

∂ui

∂t
(t, x) = ∆x ui (t, x)+

∂B H
i

∂t
(t, x), t > 0, x ∈ S1, (1.1)

with initial condition ui (0, x) = 0, for all i = 1, . . . , d . Here ∆x is the Laplacian on S1 and B H

a centered Gaussian field on R+ × S1 defined, for all x, y ∈ S1 and s, t ≥ 0, by its covariance
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structure

E
[

B H
i (t, x) B H

j (s, y)
]
= 2−1

(
t2H
+ s2H

− |t − s|2H
)

Q (x, y) δi, j ,

where Q is an arbitrary covariance function on S1 and δi, j is the Kronecker symbol. To simplify
our study, we assume that B H is spatially homogeneous and separable in space; therefore
Q (x, y) depends only on the difference x − y, and we denote it abusively Q(x − y).

Note that because Q is positive definite, there exists a sequence of non-negative real numbers
{qn}n∈N such that

Q (x − y) =
∑
n∈N

qn cos (n(x − y)) .

This expression may be only formal for certain choices of the sequence {qn}n , as these pointwise
values may explode, but this Fourier representation is always relevant if one allows Q to be a
Schwartz distribution. Examples will be given below where Q (0) is infinite while all other values
are finite (Riesz-kernel case); another, also with Q (0) = ∞, will show that Q may not be equal
to its Fourier series at any point (fractional noise case for small Hurst parameter), but still allows
a solution to (1.1). Any case with Q (0) = ∞ denotes a distribution-valued noise B H in space,
for which the notation B H (t, x) is only formal in the parameter x .

The infinite-dimensional fractional Brownian motion B H , with values in L2(S1), can also be
defined using its random Fourier series decomposition as

B H
i (t, x) =

∞∑
n=0

√
qn

(
cos (nx) βH

i,n (t)+ sin (nx) β ′Hi,n (t)
)
,

where the sequences {βH
i,n}n∈N and {β ′Hi,n }n∈N, i ∈ {1, . . . , d}, are independent and each formed

of independent one-dimensional standard fractional Brownian motions. Then, the “mild” or
“evolution” solution of the stochastic integral formulation of Eq. (1.1) is given by the evolution
convolution

ui (t, x) =
∞∑

n=0

√
qn

(
cos (nx)

∫ t

0
e−n2(t−s)βH

i,n (ds)

+ sin (nx)
∫ t

0
e−n2(t−s)β ′Hi,n (ds)

)
. (1.2)

[16] showed when such a solution exists, and more specifically, that the necessary and sufficient
condition for existence of (1.2) in L2

(
Ω × [0, T ] × S1

)
(cf. [16, Corollary 1]) is

∞∑
n=1

qnn−4H <∞.

The study of stochastic PDEs similar to (1.2), that is, using fractional Brownian noise in time, is
a fairly recent endeavor. Preceding [16] was the particular case where B H is white in continuous
space R (which would correspond to our case when qn = 1 for all n) which was studied in [7],
where the solution exists if and only if H > 1

4 . The topic is very active today; some recent results
in directions tangential to ours include: [11] (evolution equations), [8] (solutions of semilinear
equations), [13] (on the stochastic wave equation with fBm) and [2] (existence of the stochastic
heat equation with colored noise in Rd and H > 1/2.) Our article is closer to the line of [16]; in
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comparison with this and other papers concerned with regularity (such as [18], see below), our
article is the first to manage sharp time-regularity results when H < 1/2.

This article goes beyond regularity issues, however. Herein we develop a potential theory for
the solution to the system of equation (1.1). In particular, given A ⊂ Rd , we want to determine
whether the process {u(t, x), t ≥ 0, x ∈ S1

} visits, or hits, A with positive probability.
Potential theory for the linear and non-linear stochastic heat equation driven by a space–time

white noise was developed in [4,5]. The aim of this paper is to obtain upper and lower bounds on
hitting probabilities for the solution of (1.1). For this, following the approach developed in [4], a
careful analysis of the moments of the increments of the process u(t, x) is needed. In particular,
this will lead us to solve an open question which is the Hölder continuity in time of the solution
of (1.1) when H < 1

2 . The Hölder continuity in space for the solution of (1.1) was studied in [17],
and the Hölder continuity in time when H ≥ 1

2 is due to [18]. These are generalizations of earlier
work done for the stochastic heat equation with time white noise potential: [14,15].

Let us first state, in some detail, the path continuity results we obtain for the solution of the
fractional heat equation on the circle (1.1), as these are a valuable immediate consequence of our
work. Assume that for all n large enough

cn4H−2α−1
≤ qn ≤ Cn4H−2α−1, (1.3)

for some positive constants c and C and α ∈ (0, 1] with α 6= 2H . Our basic quantitative result is
the following bounds on the variance of the increments of the solution: for t0, T > 0, for some
positive constants c,C, ct0 ,Ct0 , for all x, y ∈ S1, and all s, t ∈ [t0, T ],

ct0 |x − y|2α ≤ E
[
‖u (t, x)− u (t, y) ‖2

]
≤ Ct0 |x − y|2α

c |t − s|α∧(2H)
≤ E

[
‖u (t, x)− u (s, x) ‖2

]
≤ C |t − s|α∧(2H) .

Here and throughout ‖ · ‖ denotes the Euclidean norm in Rd .
We then immediately get that u is β-Hölder continuous in space for any β ∈ (0, α) and is β-

Hölder continuous in time for any β ∈ (0, α2 ∧H), but not for β equal to the upper values of these
intervals. All these results are true for any H ∈ (0, 1). Moreover, these results are sharp for our
additive stochastic heat equation (1.1): up to non-random constants, exact moduli of continuity
can be found (see the last bullet point below).

Let us consider some examples:

• In the case where B H is “white noise” in space, then u exists if and only if H > 1/4; moreover
u is β-Hölder continuous in space for any β ∈ (0, 2H − 1

2 ) and β-Hölder continuous in time
for any β ∈ (0, H − 1

4 ). This follows from the above continuity results because the white
noise case is the case qn ≡ 1: the appellation “white” reflects the fact that all spatial Fourier
frequencies are equally represented.
• In the case where B H has a covariance function in space given by the Riesz kernel, that is,

Q(x − y) = |x − y|−γ , 0 < γ < 1, we can prove that qn is commensurate with nγ−1. More
specifically, we can show that qn = nγ−1c (n) where c (n) is a function bounded between
two positive constants, because it can be written as the partial sum of an alternating series
with decreasing general term and positive initial term (see Appendix A.1). Therefore, the
solution of (1.1) exists if and only if H >

γ
4 and u is β-Hölder continuous in space for any

β ∈ (0, 2H − γ
2 ) and β-Hölder continuous in time for any β ∈ (0, H − γ

4 ). See [13] for the
existence, uniqueness and Hölder regularity of the solution of the stochastic wave equation in
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R driven by a multiplicative infinite-dimensional fractional Brownian motion with H ∈ ( 1
2 , 1)

and a space covariance given the Riesz kernel. Note also that the condition H >
γ
4 is the same

as the one found in the paper [2] (when x ∈ Rd instead of S1).

• In the case where B H behaves as “fractional Brownian noise” both in time and space with
common Hurst parameter H , then the solution of (1.1) exists if and only if H > 1

3 . Indeed,
a wide class of examples fitting the description “fractional Brownian noise” can be defined
by assuming that qn = c(n)n1−2H where the function c only needs to be bounded above
and below by positive constants. When H > 1/2, if one prefers to work starting from the
spatial covariance function Q, one may stipulate that B H is has a Riesz-kernel covariance,
i.e. Q (x − y) = |x − y|2H−2

= |x − y|−γ with γ = 2 (1− H) ∈ (0, 1), in which case
one is in the situation of the last example, with qn = c (n) n1−2H where the function c was
described therein.

On the other hand, if H ≤ 1/2, no Riesz-kernel interpretation is possible with qn =

c(n)n1−2H no matter what the choice of c bounded. Appendix A.2 contains another
interpretation in this case, which also works for H ∈ (1/2, 1). This interpretation, which
uses a differentiation construction, also allows a justification, for all H ∈ (0, 1), of why we
use the appellation “fractional Brownian noise” in the case qn = c(n)n1−2H . In all cases,
i.e. for all H ∈ (1/3, 1), u is β-Hölder continuous in space for any β ∈ (0, 3H − 1) and is
β-Hölder continuous in time for any β ∈ (0, 3H−1

2 ).

• Similarly to the previous example, but more generally, to obtain a B H that behaves like a
fractional Brownian noise with parameter H in time and K in space, we can set qn = n1−2K

(using the same justification as in the Appendix relative to the previous example). This is
equivalent to α = 2H + K − 1. In other words, the full scale of fractional Brownian noise
with H, K ∈ (0, 1) covers the case of Riesz kernels with γ = 2K − 1, and also extends to
the case K ∈ (0, 1/2] which is not covered by the Riesz kernels. We then get existence of a
solution if and only if 2H + K > 1, and the solution is then β-Hölder continuous in space for
any β ∈ (0, 2H + K − 1) and is β-Hölder continuous in time for any β ∈ (0, 2H+K−1

2 ).

• In addition to the examples above, which are of Riesz, white noise, or fractional Brownian
noise type in space, we mention the classical Ornstein–Uhlenbeck (OU) process, which uses
Q(r) = exp(−ar), i.e. for small r , the squared canonical metric is 2ar + o (r), so that the
local behavior is very close to standard Brownian motion (note that the corresponding B H is
a bonafide function in space), and corresponds to qn � n−2 (see Lemma 2.1). We note then
that hypothesis (1.3) is satisfied with α = (4H + 1) /2, which can only work if H < 1/4. It is
the fact that the OU covariance is that of a bonafide function that creates this slight difficulty,
but if instead one interprets B H as an OU noise, i.e as the spatial derivative of a process with
spatial OU behavior, then qn � 1 i.e. α = 2H−1/2, and the behavior is like the case of white
noise in space (first example above).

• From Gaussian-regularity results such as Dudley’s entropy upper bound (see [10]), we
can state that if the upper bound in (1.3) holds, then the modulus of continuity random
variable

sup
x,y∈S1;s,t∈[t0,T ]

(
‖u (t, x)− u (t, y)‖

|x − y|α log1/2 (1+ 1/ |x − y|)

+
‖u (t, x)− u (s, x)‖

|t − s|(α/2)∧H log1/2 (1+ 1/ |t − s|)

)
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is finite almost surely. Moreover, a (near) converse also holds: if the above random variable
(with logarithmic terms moved to the numerators) is finite, then the upper bound in (1.3) holds
for some constant C <∞ (see [17, Corollary 1]).

Those examples treat the case where the covariance is “white” or “Riesz type” in space, but
other interesting examples such as Bessel type covariance, Poisson kernel, etc. could also be
considered.

We now state the results of potential theory that we will prove in this paper. For this, let us
first introduce some notation. For all Borel sets F ⊆ Rd we define P(F) to be the set of all
probability measures with compact support in F . For all µ ∈ P(Rd), we let Iβ(µ) denote the
β-dimensional energy of µ; that is,

Iβ(µ) :=
∫∫

Kβ(‖x − y‖) µ(dx) µ(dy).

Here and throughout,

Kβ(r) :=

r−β if β > 0,
log(N0/r) if β = 0,
1 if β < 0,

(1.4)

where N0 is a constant whose value will be specified later in the proof of Lemma 4.1.
For all β ∈ R and Borel sets F ⊂ Rd , Capβ(F) denotes the β-dimensional capacity of F ;

that is,

Capβ(F) :=
[

inf
µ∈P(F)

Iβ(µ)

]−1

,

where 1/∞ := 0.
Given β ≥ 0, the β-dimensional Hausdorff measure of F is defined by

Hβ(F) = lim
ε→0+

inf

{
∞∑

i=1

(2ri )
β
: F ⊆

∞⋃
i=1

B(xi , ri ), sup
i≥1

ri ≤ ε

}
,

where B(x, r) denotes the open (Euclidean) ball of radius r > 0 centered at x ∈ Rd . When
β < 0, we define Hβ(F) to be infinite.

Let u(S) denote the range of S under the random map r 7→ u(r), where S is some Borel-
measurable subset of R+ × S1.

Theorem 1.1. Assume hypothesis (1.3). Let I ⊂ (0, T ] and J ⊂ [0, 2π) ≡ S1 be two fixed non-
trivial compact intervals. Then for all T > 0 and M > 0, there exists a finite constant cH > 0
depending on H,M, I and J such that for all compact sets A ⊆ [−M,M]d ,

c−1
H Capd−β(A) ≤ P{u(I × J ) ∩ A 6= ∅} ≤ cH Hd−β(A).

where β := 1
α
+ ( 2

α
∨

1
H ).

Remark 1.2. (a) When B H is white in time and space, that is, H = 1
2 and qn = 1 for all n,

Theorem 1.1 gives the same hitting probability estimates obtained in [4, Theorem 4.6.].
(b) Because of the inequalities between capacity and Hausdorff measure, the right-hand side of

Theorem 1.1 can be replaced by c Capd−β−η(A) for all η > 0 (cf. [9, p. 133]).
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We say that a Borel set A ⊆ Rd is called polar for u if P{u(S)∩ A 6= ∅} = 0; otherwise, A is
called non-polar.

The following results are consequences of Theorem 1.1.

Corollary 1.3. Assume hypothesis (1.3) and let β := 1
α
+ ( 2

α
∨

1
H ).

(a) A (non-random) Borel set A ⊂ Rd is non-polar for u if it has positive d − β-dimensional
capacity. On the other hand, if A has zero d − β-dimensional Hausdorff measure, then A is
polar for u.

(b) Singletons are polar for u if d > β and are non-polar when d < β. The case d = β is open.
(c) If d ≥ β, then

dimH(u(R+ × S1)) = β, a.s.

Let us consider the same examples as we had for the regularity statements.

• In the case where B H is white in space, then α = 2H − 1
2 and β = 6

4H−1 .
• In the case where B H has a covariance function in space given by the Riesz kernel, that is,

Q(x − y) = |x − y|−γ , 0 < γ < 1, then α = 2H − γ
2 and β = 6

4H−γ .

• In the case where B H is the fractional Brownian noise with Hurst parameter H > 1/3 in time
and space, then α = 3H − 1 and β = 3

3H−1 .
• In the case where B H is the fractional Brownian noise with Hurst parameter H in time and K

in space, and 2H + K > 1, then α = 2H + K − 1 and β = 3
2H+K−1 .

This paper is organized as follows. In Section 2 we prove the path continuity results of u
stated in Section 1 using fractional stochastic calculus. In Section 3 we obtain an upper bound
of Gaussian type for the bivariate density of u that will be needed for the proof of Theorem 1.1.
Finally, Section 4 is devoted to the proofs of Theorem 1.1 and Corollary 1.3.

Throughout the paper, cH ,CH will denote universal constants depending on H whose value
may change from line to line.

2. Regularity of the solution

We consider the two canonical metrics of u in the space and time parameter, respectively,
defined by

δ2
t (x, y) := E[‖u(t, x)− u(t, y)‖2],

δ2
x (s, t) := E[‖u(t, x)− u(s, x)‖2],

for all x, y ∈ S1 and s, t ∈ R+.
The aim of this section is to obtain upper and lower bounds in terms of the differences |x − y|

and |t − s| for the two canonical metrics above. These imply, in particular, the Hölder regularity
of u that we have described in detail in the introduction. We begin by introducing some elements
of fractional stochastic calculus.

2.1. Elements of fractional stochastic calculus

In this section, we recall, following [12], some elements on stochastic integration with respect
to one-dimensional fractional Brownian motion needed for the analysis of the regularity of u in
time.
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Fix T > 0. Let B H
= (B H (t), t ∈ [0, T ]) be a one-dimensional fractional Brownian motion

with Hurst parameter H ∈ (0, 1). That is, B H is a centered Gaussian process with covariance
function given by

R(t, s) = E[B H (t)B H (s)] = 2−1
(

t2H
+ s2H

− |t − s|2H
)
.

Note that for H = 1
2 , B H is a standard Brownian motion. Moreover, B H has the integral

representation

B H (t) =
∫ t

0
K H (t, s)W (ds),

where W = (W (t), t ∈ [0, T ]) is a Wiener process and K H (t, s) is the kernel defined as

K H (t, s) = cH

(
t

s

)H− 1
2

(t − s)H− 1
2 + s

1
2−H F

(
t

s

)
, (2.1)

where cH is a positive constant and

F(z) = cH

(
1
2
− H

)∫ z−1

0
r H− 3

2

(
1− (1+ r)H− 1

2

)
dr.

From (2.1) we get

∂K H

∂t
(t, s) = cH

(
H −

1
2

)
(t − s)H− 3

2

( s

t

) 1
2−H

. (2.2)

It is important to note that ∂K H

∂t is positive if H > 1/2, but is negative when H < 1/2. This
negativity causes problems when evaluating the time-canonical metric’s lower bound.

We denote by E the set of step functions on [0, T ]. Let H be the Hilbert space defined as the
closure of E with respect to the scalar product

〈1[0,t], 1[0,s]〉H = R(t, s).

The mapping 1[0,t] 7→ B H
t can be extended to an isometry between H and the Gaussian space

H1 associated with B H . Then {B H (φ), φ ∈ H } is an isonormal Gaussian process associated
with the Hilbert space H . For every element φ ∈ H , B H (φ) is called the Wiener integral of φ
with respect to B H and is denoted∫ T

0
φ(s)B H (ds).

For every s < t , consider the linear operator K ∗ from E to L2([0, T ]) defined by

K ∗t φ(s) = K H (t, s)φ(s)+
∫ t

s
(φ(u)− φ(s))

∂K H

∂u
(u, s) du.

When H > 1
2 , since K H (t, t) = 0, this operator has the simpler expression

K ∗t φ(s) =
∫ t

s
φ(u)

∂K H

∂u
(u, s) du.
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The operator K ∗ is an isometry between E and L2([0, T ]) that can be extended to the Hilbert
space H . As a consequence, we have the following relationship between the Wiener integral
with respect to the fractional Brownian motion B H and the Wiener integral with respect to the
Wiener process W :∫ t

0
φ(s)B H (ds) =

∫ t

0
K ∗t φ(s)W (ds),

which holds for every φ ∈H , which is true if and only if K ∗t φ ∈ L2([0, T ]).
Recall also that when H > 1

2 , for any φ,ψ ∈ |H |,

E
[∫ t

0
φ(s)B H (ds)

∫ t

0
ψ(s)B H (ds)

]
= H(2H − 1)

∫ t

0
ds
∫ t

0
du φ(s)ψ(u)|s − u|2H−2. (2.3)

Here the notation |H | designates the set of all functions φ ∈ L2([0, T ]) such that the quantity on
the right-hand side of formula (2.3) is finite for ψ = φ. The reader can also consult the original
work [1] for more details.

2.2. Space regularity

The next lemma gives a precise connection between a generic condition of type (1.3) and the
Fourier expansion of a canonical metric for a homogeneous Gaussian field on the circle.

Lemma 2.1. Let Y be a homogeneous, centered and separable Gaussian field on S1 with
canonical metric δ (x, y) = δ (x − y) for some univariate function δ. Then, there exists a
sequence of non-negative real numbers {rn}n∈N such that for any r ∈ S1,

δ2 (r) = 2
∞∑

n=1

rn (1− cos nr) . (2.4)

Moreover, if there exist constants c and C positive, and α ∈ (0, 1], such that for all n large
enough,

cn−2α−1
≤ rn ≤ Cn−2α−1, (2.5)

then for all r close enough to 0,√
kαcrα ≤ δ (r) ≤

√
KαCrα, (2.6)

where kα and Kα are constants depending only on α. More specifically, the upper bound (resp.
lower bound) in (2.5) implies the upper bound (resp. lower bound) in (2.6).

Proof. We start proving (2.4). Let C(x, y) denote the covariance function of Y , that is, for any
x, y ∈ S1,

E[Y (x)Y (y)] = C(x, y),

where C depends only on the difference x − y. Because C is positive definite, it holds that there
exists a sequence of non-negative real numbers {rn}n∈N such that

C(x, y) =
∑
n∈N

rn cos (n(x − y)) .
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Hence, for any r ∈ S1,

δ2(r) = E[(Y (0)− Y (r))2] = 2
∞∑

n=1

rn (1− cos nr) .

This proves (2.4).
We now prove the second statement of the lemma. We begin by proving the upper bound

statement. Assuming that the upper bound of (2.5) holds for all n > n0 ≥ 1, we restrict r
accordingly: we assume n0 ≤ [1/r ], that is, r ≤ 1/n0. In this case, we immediately get r2

≤ r2α .
We write

2−1δ2 (r) =
n0−1∑
n=1

rn (1− cos nr)+
[1/r ]∑
n=n0

rn (1− cos nr)+
∞∑

n=[1/r ]+1

rn (1− cos nr)

≤ max
n≤n0
{rn}

n0−1∑
n=1

(nr)2 +
[1/r ]∑
n=1

Cn−2α−1 (nr)2 + 2
∞∑

n=[1/r ]+1

Cn−2α−1

≤ n2
0 max

n≤n0
{rn} r

2
+ Cr2

[1/r ]∑
n=1

n−2α+1
+ 2

∞∑
n=[1/r ]+1

Cn−2α−1

≤ r2−2αn2
0 max

n≤n0
{rn} r

2α
+ CCαr2 (1/r)−2α+2

+ 2CC ′α (1/r)−2α

≤ 2C
(
Cα + 2C ′α

)
r2α,

provided r ≤ r1 := min
{

1/n0;C
(
Cα + 2C ′α

) [
n2

0 maxn≤n0 {rn}
]1/(2−2α)

}
, where Cα and C ′α

are constants depending only on α. It is elementary to check that C ′α can be taken as 1/ (2α). If
α ∈ (0, 1/2), then one checks that Cα can be taken as 1; while if α ∈ [1/2, 1], and we assume
moreover that r < r2 := (1− 2α)−1/(2α), then Cα can be taken as α−1. In other words, when
α < 1/2, we obtain the upper bound of (2.6) for all r ≤ r1, with Kα = 4

(
α−1
+ 1

)
, while when

α ∈ [1/2, 1], we obtain the upper bound of (2.6) for all r ≤ min {r1; r2} with Kα = 8α−1. In
fact, the formula Kα = 8α−1 can be used for both cases.

In order to prove the lower bound on δ (r), we write instead, still assuming r ≤ 1/n0, that

2−1δ2 (r) =
∞∑

n=1

rn (1− cos nr) ≥ c
∞∑

n=n0

n−2α−1 (1− cos nr)

≥ c
[π/(2r)]∑

n=[1/r ]+1

n−2α−1 (1− cos nr) ≥ c (1− cos 1)
[π/(2r)]∑

n=[1/r ]+1

n−2α−1

≥ c (1− cos 1)
( π

2r

)−2α−1
([ π

2r

]
− 1−

[
1
r

])
≥ r2αc (1− cos 1)

(π
2

)−2α (π
2
− 1− 2r

)
.

Note here that 1 − cos 1 > 0.459 and π/2 − 1 > 0.57. It is now clear that choosing
r ≤ r0 := min{0.035; 1/n0}, we get

δ2 (r) ≥ r2αc (1− cos 1) (π/2)−2α ,

which proves the lower bound of (2.6) with kα = (1− cos 1) (π/2)−2α for all r ≤ r0. The proof
of the lemma is complete. �
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This lemma can be applied immediately, to find sharp bounds on the spatial-canonical metric
of u; the almost-sure continuity results also follow.

Corollary 2.2. Let H ∈ (0, 1), t0 > 0 and t ∈ [t0, T ] be fixed. Assume hypothesis (1.3). Then
the canonical metric δt (x − y) for u (t, ·) satisfies, for all r enough close to 0,√

kαcc (t0, T, H)rα ≤ δt (r) ≤
√

KαCC (t0, T, H)rα,

where kα and Kα are constants depending only on α, c (t0, T, H) and c (t0, T, H) are constants
depending only on t0, T and H and c,C are the constants in (1.3). In particular, u(t, ·) is β-
Hölder continuous for any β ∈ (0, α). More specifically, up to a non-random constant, the
function r 7→ rα log1/2 (1/r) is an almost-sure uniform modulus of continuity for u (t, ·).

Proof. Let (βH (t) , t ≥ 0) be a one-dimensional fractional Brownian motion. Let t0 > 0 and
t ∈ [t0, T ] be fixed. From the proof of Theorems 2 and 3 of [16] we deduce that there exist
positive constants c (t0, T, H) and C (t0, T, H) such that

c (t0, T, H) n−4H
≤ E

[(∫ t

0
e−n2(t−s)βH

n (ds)

)2
]
≤ C (t0, T, H) n−4H .

Thus, appealing to (1.2), we find that for all n sufficiently large,

2c (t0, T, H) n−4H qn(1− cos(nr)) ≤ δ2
t (r) ≤ 2C (t0, T, H) qnn−4H (1− cos(nr)).

Then hypothesis (1.3) and Lemma 2.1 conclude the first result of the corollary.
The second statement of the corollary, which is a repeat of one of the continuity results

described in the introduction, is proved using the arguments described therein as well. In fact,
a simple application of Dudley’s entropy upper bound theorem is sufficient (see [10, Theorem
2.7.1]). We do not elaborate further on this point. �

2.3. Time regularity

We now concentrate our efforts on finding sharp bounds on the time-canonical metric of u. The
bounds we find for H > 1/2 were essentially already obtained in [18], although the result and its
proof were not stated explicitly therein, an omission which we deal with here. When H < 1/2,
no results were known, either for upper or lower bounds: we perform these calculations from
scratch. This portion of our calculations is very delicate. As in the previous section, our new
estimates can be used to also derive almost-sure regularity results.

Proposition 2.3. Let H ∈ (0, 1). Assume hypothesis (1.3). Let T > 0, t0 ∈ (0, 1] and
s, t ∈ [t0, T ] with |t − s| ≤ t0

2 be fixed. Then the canonical metric δx (t − s) for u (·, x) satisfies
for every x ∈ S1

ct0,T,H |t − s|α∧(2H)
≤ δ2

x (t − s) ≤ Ct0,T,H |t − s|α∧(2H), (2.7)

where ct0,T,H and Ct0,T,H are positive constant depending only on t0, T and H. In particular,
u(·, x) is β-Hölder continuous for any β ∈ (0, α2 ∧ H).

In particular, u(·, x) is β-Hölder continuous for any β ∈ (0, α2 ∧ H). More specifically, up to

a non-random constant, the function r 7→ r
α
2∧H log1/2 (1/r) is an almost-sure uniform modulus

of continuity for u (·, x).
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Proof. The statement on almost-sure continuity is established using the arguments described in
the introduction, or simply by applying Dudley’s entropy upper bound theorem (see [10, Theorem
2.7.1]). We detail only the proof of (2.7), separating the cases H > 1/2 and H < 1/2.

Fix T > 0, t0 ∈ (0, 1] and s, t ∈ [t0, T ] such that |t − s| ≤ t0
2 . We assume without loss of

generality that s ≤ t . Following [18, Section 2.1], it yields that

δ2
x (s, t) = q0|t − s|2H

+

+∞∑
n=1

qn E

[{∫ s

0
(e−n2(t−r)

− e−n2(s−r))βH
n (dr)+

∫ t

s
e−n2(t−r)βH

n (dr)

}2
]
,

(2.8)

where {(βH
n (t), t ≥ 0)}n≥1 is a sequence of fractional Brownian motions.

In order to bound the last expectation we consider two different cases:

Case 1: H ≥ 1
2 . In [18, (15)] it is proved that δ2

x (s, t) is bounded above and below by

q0|t − s|2H
+

∑
n2(t−s)>1

cH qn

n4H
+

∑
n2(t−s)≤1

CH qn|t − s|2H .

Taking qn and α ∈ (0, 1] from hypothesis (1.3), we obtain that δ2
x (s, t) is bounded above and

below by

cH (|t − s|2H
+ |t − s|α) = cH |t − s|α(|t − s|2H−α

+ 1).

Hence, as 2H ≥ 1 ≥ α > 0, the upper and lower bounds of (2.7) follow for H ≥ 1
2 .

Case 2: H < 1
2 . We prove the upper and lower bounds of (2.7) separately.

The upper bound. In order to prove the upper bound of (2.7), we start estimating the expectation
in (2.8). Using the results in Section 2.2, we have that

E

[(∫ s

0

(
e−n2(t−r)

− e−n2(s−r)
)
βH

n (dr)+
∫ t

s
e−n2(t−r)βH

n (dr)

)2
]

≤ 2I1 + I2 + 2I3, (2.9)

where

I1 :=

∫ s

0
(K ∗s f (r))2dr, f (r) = e−n2(t−r)

− e−n2(s−r),

I2 :=

∫ t

s
(K ∗t g(r))2dr, g(r) = e−n2(t−r),

I3 :=

∫ s

0
(K ∗t g(r)− K ∗s g(r))2dr.

(2.10)

We next study each of the terms I1, I2 and I3 separately. We will compute the order of each
series

∑
+∞

n=1 qn Ii , for i = 1, 2, 3, for qn as in (1.3). For this, we will separate the sum into two
terms: n2(t− s) > 1 (tail) and n2(t− s) ≤ 1 (head). We will then prove that the tails of the series
are of order |t − s|α for all the terms, and the heads are of order |t − s|α∧(2H) for I1 and I3, and
of order (|t − s|α∧(2H)

+ |t − s|α) for I2.
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We start estimating I1. We write

I1 ≤ 2
∫ s

0
(K (s, r) f (r))2dr + 2

∫ s

0

(∫ s

r
( f (u)− f (r))

∂K

∂u
(u, r)du

)2

dr

:= 2I1,1 + 2I1,2. (2.11)

Using Lemma A.1 and the change of variables 2n2(s − r) = v, we have

I1,1 ≤ cH

∫ s

0
(s − r)2H−1r2H−1(e−n2(t−r)

− e−n2(s−r))2 dr

=
cH

n4H
(1− e−n2(t−s))2

∫ 2n2s

0

(
s −

v

2n2

)2H−1
v2H−1e−v dv.

By Lemma A.2, it yields

I1,1 ≤
cH

n4H
(1− e−n2(t−s))2.

We now treat I1,2. Using Lemma A.1 and the change of variables s− r = v, s− u = v′, we have

I1,2 ≤ cH (1− e−n2(t−s))2
∫ s

0
dv
(∫ v

0
dv′(v − v′)H− 3

2 (e−n2v′
− e−n2v)

)2

.

By the change of variables v − v′ = u, we find

I1,2 ≤ cH (1− e−n2(t−s))2
∫ s

0
dv e−2n2v

(∫ v

0
du u H− 3

2 (en2u
− 1)

)2

.

Then using [16, Lemma 2] with a = n2 and A = H − 1
2 , we conclude that

I1,2 ≤
cH

n4H
(1− e−n2(t−s))2.

Writing I1,1 and I1,2 together, we get

I1 ≤
cH

n4H
(1− e−n2(t−s))2.

We now separate the sum in (2.8) into two terms, as n2(t − s) > 1 (tail) and n2(t − s) ≤ 1
(head), and take qn and α ∈ (0, 1] from hypothesis (1.3). Then we obtain for the tail of the series∑

n2(t−s)>1

qn I1 ≤ cH

∑
n2(t−s)>1

n−2α−1
≤ cH |t − s|α.

For the head of the series, use the inequality 1− e−x
≤ x , valid for all x ≥ 0, to get∑

n2(t−s)≤1

qn I1 ≤
∑

n2(t−s)≤1

qn
c(t0, H)

n4H
(1− e−n2(t−s))2H (1− e−n2(t−s))2−2H

≤ cH |t − s|2H
∑

n2(t−s)≤1

n4H−2α−1

≤ cH |t − s|α∧(2H).
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We now bound I2.

I2 ≤ 2
∫ t

s
(K (t, r)g(r))2dr + 2

∫ t

s
dr

(∫ t

r
du (g(u)− g(r))

∂K

∂u
(u, r)

)2

:= 2I2,1 + 2I2,2.

Using Lemma A.1 and the change of variables 2n2(t − r) = u, we have

I2,1 ≤ cH

∫ t

s
dr (t − r)2H−1r2H−1e−2n2(t−r)

=
cH

n4H

∫ 2n2(t−s)

0
du

(
t −

u

2n2

)2H−1
u2H−1e−u .

Using Lemma A.2, we obtain for the tail of the series∑
n2(t−s)>1

qn I2,1 ≤ cH

∑
n2(t−s)>1

n−2α−1
≤ cH |t − s|α.

For the head of the series, as |t − s| ≤ t0
2 , we have

∑
n2(t−s)≤1

qn I2,1 ≤
∑

n2(t−s)≤1

qn
c(t0, H)

n4H

(
t

2

)2H−1 ∫ 2n2(t−s)

0
du u2H−1

≤ cH |t − s|2H
∑

n2(t−s)≤1

n4H−2α−1.

This proves that
∑

n2(t−s)≤1 qn I2,1 is of the same order as
∑

n2(t−s)≤1 qn I1 which we calculated
above to be of order |t − s|α∧(2H).

We now bound I2,2. Using Lemma A.1 and the change of variables t − r = v, t − u = v′, we
have

I2,2 ≤ cH

∫ t−s

0
dv
(∫ v

0
dv′(v − v′)H− 3

2 (e−n2v′
− e−n2v)

)2

.

Using the change of variables n2(v − v′) = y and 2n2v = x , we find

I2,2 ≤
cH

n4H

∫ 2n2(t−s)

0
dx e−x

(∫ x/2

0
dy yH− 3

2 (ey
− 1)

)2

.

Appealing to [16, Lemma 2] with a = n2 and A = H − 1
2 , we obtain for the tail of the series∑

n2(t−s)>1

qn I2,2 ≤ cH

∑
n2(t−s)>1

n−2α−1
≤ cH |t − s|α.

For the head of the series, we have

∑
n2(t−s)≤1

qn I2,2 ≤
∑

n2(t−s)≤1

qn
cH

n4H

∫ 2n2(t−s)

0
dx

(∫ 1/2

0
dyyH− 3

2 (ey
− 1)

)2

≤ cH |t − s|
∑

n2(t−s)≤1

n−2α+1
≤ cH |t − s|α.
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We now estimate I3.

I3 ≤ 2
∫ s

0
(K (t, r)− K (s, r))2(g(r))2dr + 2

∫ s

0
dr

(∫ t

s
du (g(u)− g(r))

∂K

∂u
(u, r)

)2

:= 2I3,1 + 2I3,2.

By Lemma A.1, we get, for every r < s < t ,

K (t, r)− K (s, r) = (t − s)
∫ 1

0

∣∣∣∣∂K

∂u
(s + v (t − s) , r)

∣∣∣∣ dv

≤ cH (t − s)
∫ 1

0
|s + v (t − s)− r |H−3/2 dv (2.12)

≤ cH

∣∣∣(s − r)H−1/2
− (t − r)H−1/2

∣∣∣ . (2.13)

We now separate the evaluation of the integral in I3,1 depending upon whether r is bigger or
smaller than s − (t − s) /2. In the first case, we evaluate

I3,1,1 :=

∫ s

s−(t−s)/2
(K (t, r)− K (s, r))2 e−n2(t−r)dr.

Here, we have s − r < (t − s) /2 and t − r > t − s; therefore, using (2.13), we have

I3,1,1 ≤ cH

∫ s

s−(t−s)/2

((
1+ 2H−1/2

)
(s − r)H−1/2

)2
e−n2(t−r)dr

≤ cH e−n2(t−s)
∫ s

s−(t−s)/2
(s − r)2H−1 dr

= cH e−n2(t−s) (t − s)2H .

For the head of the series, we find∑
n2(t−s)≤1

qn I3,1,1 ≤ cH (t − s)2H
∑

n2(t−s)≤1

n4H−2α−1,

which is bounded above by cH |t − s|α∧(2H) while for the tail of the series we have∑
n2(t−s)>1

qn I3,1,1 ≤ cH (t − s)2H
∑

n2(t−s)>1

n4H−2α−1e−n2(t−s)

≤ cH (t − s)2H
∫
∞

(t−s)−1/2
e−x2(t−s)x4H−2α−1dx

= cH (t − s)α
∫
∞

1
e−y2

y4H−2α−1dy = cH (t − s)α .

Second we evaluate

I3,1,2 :=

∫ s−(t−s)/2

0
(K (t, r)− K (s, r))2 e−n2(t−r)dr.

Here, we have s − r > (t − s) /2; we simply use (2.12) where an upper bound is obtained
by replacing |s + v (t − s)− r |H−3/2 by |s − r |H−3/2; the latter can now be bounded above by
23/2−H |t − s|H−3/2. Thus
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I3,1,2 ≤ cH |t − s|2+2H−3
∫ s−(t−s)/2

0
e−n2(t−r)dr.

≤ cH |t − s|2H−1 n−2e−n2(t−s).

This estimate will not help us in the case n2 (t − s) ≤ 1. In the other case, we have∑
n2(t−s)>1

qn I3,1,2 ≤ cH |t − s|2H−1
∑

n2(t−s)>1

n4H−2α−3e−n2(t−s)

≤ cH |t − s|2H−1
∫
∞

(t−s)−1/2
x4H−2α−3e−x2(t−s)dx

= cH |t − s|2H−1 (t − s)−2H+α+1
∫
∞

1
y4H−2α−3e−y2

dy = cH (t − s)α .

The third and last step of the estimation of I3,1 is the sum for n2 (t − s) < 1 of I3,1,2. In this
case, we use (2.13) and obtain an upper bound by bounding (s − r)H−1/2

− (t − r)H−1/2 above
by cH (t − s) (s − r)H−3/2. Thus

I3,1,2 ≤ cH (t − s)2
∫ s−(t−s)/2

0
(s − r)2H−3 dr ≤ cH (t − s)2H .

This proves that
∑

n2(t−s)≤1 qn I3,1,2 is of the same order as
∑

n2(t−s)≤1 qn I3,1,1 which we
calculated above to be of order |t − s|α∧(2H).

We now bound I3,2. Using Lemma A.1 and the change of variables s− r = v, s− u = v′, we
have

I3,2 ≤ cH e−2n2(t−s)
∫ s

0
dv

(∫ 0

s−t
dv′(v − v′)H− 3

2 (e−n2v′
− e−n2v)

)2

.

Using the change of variables v − v′ = u, we find

I3,2 ≤ cH e−2n2(t−s)
∫ s

0
dv e−2n2v

(∫ v+(t−s)

v

du u H− 3
2 (en2u

− 1)

)2

.

Appealing to [16, Lemma 2] with a = n2 and A = H − 1
2 , we obtain for the tail of the series∑

n2(t−s)>1

qn I3,2 ≤ cH

∑
n2(t−s)>1

n−2α−1
≤ cH |t − s|α.

In order to evaluate the head of the series, we separate the evaluation of the integral in I3,2
depending upon whether v is bigger or smaller than t − s, that is,

I3,2 ≤ cH

∫ s

0
dv

(∫ v+(t−s)

v

du u H− 3
2

)2

= cH


∫ t−s

0
dv

(∫ v+(t−s)

v

du u H− 3
2

)2

+

∫ s

t−s
dv

(∫ v+(t−s)

v

du u H− 3
2

)2


≤ cH

{∫ t−s

0
dv v2H−1

+

∫ s

t−s
dv v2H−3(t − s)2

}
≤ cH (t − s)2H .
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Therefore,
∑

n2(t−s)≤1 qn I3,2 is of the same order as
∑

n2(t−s)≤1 qn I3,1 which is of order
|t − s|α∧(2H).

Use all the estimates above, together with (2.8), to conclude that

δ2
x (s, t) ≤ cH (|t − s|2H

+ |t − s|α) ≤ c′H |t − s|α∧(2H).

This proves the upper bound of (2.7) when H < 1/2.

The lower bound: We now estimate the lower bound of the expectation in the case H < 1/2. We
write

E

[(∫ s

0

(
e−n2(t−r)

− e−n2(s−r)
)
βH

n (dr)+
∫ t

s
e−n2(t−r)βH

n (dr)

)2
]

= I1 + I2 + I3 + I4, (2.14)

where I1, I2 and I3 are as in (2.10), and

I4 :=

∫ s

0
(K ∗s f (r))(K ∗t g(r)− K ∗s g(r))dr. (2.15)

We will prove that the series
∑

n∈N qn(I1 + I2 + I3 + I4) is of order (t − s)α , and that
the tails of the series of the first term I1 are the ones that contribute on that order. First note that
I1, I2, I3 ≥ 0, but I4 = I4,1+ I4,2+ I4,3+ I4,4, where I4,1, I4,2 ≥ 0 and I4,3, I4,4 ≤ 0 (see (2.17)).
Hence, it suffices to find a lower bound for

∑
n∈N qn(I1+ I4,3+ I4,4). In fact, it suffices to find a

lower bound for the tail series
∑

n∈SK
qn(I1+I4,3+I4,4), where SK :=

{
n ∈ N : n2 (t − s) > K

}
for some (large) constant K ≥ 1 which will be chosen later. We will prove that for some
constant K ≥ 1 sufficiently large, the series

∑
n∈SK

qn I1 is bigger than 2
∑

n∈SK
qn
∣∣I4,3

∣∣ and
than 4

∑
n∈SK

qn
∣∣I4,4

∣∣, and is of order (t − s)αK−α . This will imply the desired lower bound.
We start by finding a lower bound for I1. We have I1 := I1,1+ I1,2+ I1,3, where I1,1 and I1,2

are as in (2.11), and

I1,3 = 2
∫ s

0
dr K (s, r) f (r)

∫ s

r
du ( f (u)− f (r))

∂K

∂u
(u, r).

The change of variables s − r = v, s − u = w, v − w = u′ gives

I1 = (1− e−n2(t−s))2
∫ s

0
dv e−2n2v

(
K (s, s − v)+

∫ v

0
du′

∂K

∂u′
(u′, 0)(en2u′

− 1)
)2

.

Appealing to Lemma A.1 in the Appendix, and the change of variables n2u′ = u, n2v = x , we
obtain

I1 ≥
cH

n4H

(
1− e−n2(t−s)

)2
∫ n2s

0
dx e−2x

(
x H− 1

2 −

(
1
2
− H

)∫ x

0
du u H− 3

2 (eu
− 1)

)2

≥
cH

n4H
(1− e−n2(t−s))2

∫ t0

0
dx e−2x

(
x H− 1

2 −

(
1
2
− H

)∫ x

0
du u H− 3

2 (eu
− 1)

)2

=
cH

n4H
(1− e−n2(t−s))2, (2.16)

as the last integral is finite and positive.
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Next we evaluate I4. We write I4 = I4,1 + I4,2 + I4,3 + I4,4, where

I4,1 =

∫ s

0
dr K (s, r) f (r)(K (t, r)− K (s, r))g(r),

I4,2 =

∫ s

0
dr K (s, r) f (r)

∫ t

s
du(g(u)− g(r))

∂K

∂u
(u, r),

I4,3 =

∫ s

0
dr
∫ s

r
du( f (u)− f (r))

∂K

∂u
(u, r)

∫ t

s
dv(g(v)− g(r))

∂K

∂v
(v, r),

I4,4 =

∫ s

0
dr(K (t, r)− K (s, r))g(r)

∫ s

r
du( f (u)− f (r))

∂K

∂u
(u, r).

(2.17)

Now, note that I4,1, I4,2 ≥ 0 but I4,3, I4,4 ≤ 0.
We claim that, for some subset SK ⊂ N,∑

n∈SK

qn I1 > 2
∑

n∈SK

qn
∣∣I4,3

∣∣ , (2.18)

∑
n∈SK

qn I1 > 4
∑

n∈SK

qn
∣∣I4,4

∣∣ , (2.19)

where qn and α ∈ (0, 1] are as in hypothesis (1.3) and SK :=
{
n ∈ N : n2 (t − s) > K

}
for some

(large) constant K ≥ 1 which will be chosen later.
Assume (2.18) and (2.19) are proved. We write, using (2.16),∑

n∈SK

qn I1 ≥ cH (1− e−1)2
∫
∞

2
√

K/
√

t−s
dx x−2α−1

:= c1
α,H (t − s)αK−α. (2.20)

Because I2, I3, I4,1, I4,2 ≥ 0 and using (2.18)–(2.20), we find∑
n∈N

qn(I1 + I2 + I3 + I4) ≥
∑

n∈SK

qn I1 −
∑

n∈SK

qn|I4,3| −
∑

n∈SK

qn|I4,4|

≥
1
4

∑
n∈SK

qn I1

≥ cα,H,K (t − s)α .

Therefore, by (2.8) and (2.14), we conclude that

δ2
x (s, t) ≥ q0|t − s|2H

+ cH |t − s|α ≥ c′H |t − s|α∧(2H).

This proves the lower bound of (2.7) when H < 1
2 .

We finally prove (2.18) and (2.19).

Proof of 2.18. Using Lemma A.1 and the change of variables s− r = r ′, s−u = u′, s−v = v′,
r ′ − u′ = u′′, r ′ − v′ = v′′, n2u′′ = x , n2v′′ = v, we find∣∣I4,3

∣∣ ≤ cH

(
1− e−n2(t−s)

)
e−n2(t−s)n−4H

∫ n2s

0
dxe−2x

(∫ x

0
du u H−3/2 (eu

− 1
))

×

(∫ x+n2(t−s)

x
dv vH−3/2 (ev − 1

))
. (2.21)
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Note that with the exception of the factor e−n2(t−s) in
∣∣I4,3

∣∣, the combinations of all the terms
in I1 and I4,3 are in fact largely similar, which makes this portion of the proof quite delicate,
and in particular, to exploit the factor e−n2(t−s), we must restrict the values of n2(t − s) to being
relatively large, which explains the choice of SK above.

Our strategy is to bound the sum over n ∈ SK of qn
∣∣I4,3

∣∣ above as tightly as possible
by performing a “Fubini”, dragging the sum over n all the way inside the expression for∑

SK
qn
∣∣I4,3

∣∣, and evaluating it first using some Gaussian estimates. That these Gaussian
estimates work has to do with the precise eigenvalue structure of the Laplacian, not with the
Gaussian property of the driving noise.

We proved in (2.20) that the contribution of I1 is bounded below by an expression of the form
c1
α,H (t − s)α K−α , where c1

α,H depends only on α and H . We will now show that∑
n∈SK

qn|I4,3| ≤ c2
α,H (t − s)α K−β (2.22)

for some β > α, where c2
α,H depends again only on H and α. Even if c2

α,H is much larger than

c1
α,H , one only needs to choose K ≥ (2c2

α,H/c
1
H,α)

1/(β−α) to guarantee that the contribution of I1
exceeds twice the absolute value of the contribution of I4,3 as announced in (2.18), which implies
that even though the latter is negative, the sum of the two exceeds (c1

α,H/2) (t − s)α K−α , i.e. for
some K depending only on H and α.

First, for fixed x , we perform the announced Fubini, which means that, instead of having the
integration and summation limits for n and v as n >

√
K/ (t − s) first and x < v < x+n2 (t − s)

next, we get instead x < v <∞ and

n > max
{√

K/ (t − s),
√
(v − x) /t − s

}
= (t − s)−1/2

√
(v − x) ∨ K .

Therefore, bounding (1− e−n2(t−s)) by 1, and n2s by∞, we have∑
n∈SK

qn
∣∣I4,3

∣∣ ≤ cH

∫
∞

0
dx e−2x

(∫ x

0
du u H−3/2 (eu

− 1
))

×

(∫
∞

x
dv vH−3/2 (ev − 1

)
S (K , v − x, t − s)

)
, (2.23)

where the term S (K , v − x, t − s) is defined by a series which we compare to a Gaussian integral
as follows

S (K , v − x, t − s) :=
∑

n>(t−s)−1/2
√
(v−x)∨K

n−2α−1e−n2(t−s)

≤

∫
∞

y≥(t−s)−1/2
√
(v−x)∨K

dy y−2α−1e−y2(t−s).

Using the change of variable w2
= (t − s) y2, we have

S (K , v − x, t − s) ≤ (t − s)α
∫
∞

√
(v−x)∨K

dww−2α−1e−w
2

≤ (t − s)α ((v − x) ∨ K )−α−1/2
∫
∞

√
(v−x)∨K

dw e−w
2
.
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Now, using the classical Gaussian tail estimate
∫
∞

A dw e−w
2
≤ 2−1 A−1e−A2

, we get

S (K , v − x, t − s) ≤ 2−1(t − s)α ((v − x) ∨ K )−α−1 e−(v−x)∨K . (2.24)

Combining (2.23) and (2.24) we have immediately∑
n∈SK

qn
∣∣I4,3

∣∣ ≤ cH (t − s)α
∫
∞

0
dx e−2x

(∫ x

0
u H−3/2 (eu

− 1
)

du

)
×

(∫
∞

x
dvvH−3/2 (ev − 1

)
((v − x) ∨ K )−α−1 e−(v−x)∨K

)
= cH (t − s)α e−K K−α−1

∫
∞

0
dx e−2x

(∫ x

0
du u H−3/2 (eu

− 1
))

(2.25)

×

(∫ x+K

x
dv vH−3/2 (ev − 1

))
+ cH (t − s)α

∫
∞

0
dx e−2x

(∫ x

0
u H−3/2du

(
eu
− 1

))
(2.26)

×

(∫
∞

x+K
dv vH−3/2 (ev − 1

)
(v − x)−α−1 e−(v−x)

)
.

We separate the last expression into various terms. We will calculate first the term in line
(2.25) by separating the x-integration over x ∈ [0, K ] and x ∈ (K ,∞), which we denote by
J4,3,1 and J4,3,2, respectively. The term in line (2.26), which we denote by J4,3,2, can be dealt
with more directly. We now perform these evaluations.

Term J4,3,1. We write

J4,3,1 := cH (t − s)α e−K K−α−1
∫ K

0
dx e−2x

(∫ x

0
du u H−3/2 (eu

− 1
))

×

(∫ x+K

x
dv vH−3/2 (ev − 1

))
≤ cH (t − s)α e−K K−α−1

∫
∞

0
dx e−2x

(∫ x

0
du u H−3/2 (eu

− 1
))

×

(
cH +

∫ 2K

1
dv vH−3/2 (ev − 1

))
.

Now, integrating by parts, we get∫ 2K

1
dv vH−3/2 (ev − 1

)
≤ cH eK K H+1/2.

The last two estimates imply immediately that

J4,3,1 ≤ cH (t − s)α K−α+H−1/2,

which proves the contribution of J4,3,1 in (2.22).
Term J4,3,2. We write

J4,3,2 := cH (t − s)α e−K K−α−1
∫
∞

K
dx e−2x

(∫ x

0
du u H−3/2 (eu

− 1
))
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×

(∫ x+K

x
dv vH−3/2 (ev − 1

))
≤ cH (t − s)α e−K K−α−1

∫
∞

K
dx e−2x

(∫ x

0
du u H−3/2 (eu

− 1
))

× x H−3/2
(

ex+K
− ex

)
≤ cH (t − s)α K−α−1

∫
∞

K
dx e−x x H−3/2

(∫ x

0
du u H−3/2 (eu

− 1
))

≤ cH (t − s)α K−α−1
∫
∞

K
dx e−x x H−3/2

(
cH + ex

∫ x

1
du u H−3/2

)
≤ cH (t − s)α K−α−1

(
K H−3/2e−K

+ K H−1/2
)

≤ cH (t − s)α K−α+H−3/2

which proves the contribution of J4,3,2 in (2.22).
Term J4,3,3. The last part of the estimation is that of

J4,3,3 := cH (t − s)α
∫
∞

0
dx e−2x

(∫ x

0
u H−3/2 (eu

− 1
)

du

)
×

(∫
∞

x+K
dv vH−3/2 (ev − 1

)
(v − x)−α−1 e−(v−x)

)
≤ cH (t − s)α K H−3/2

∫
∞

0
dx e−x

·

(∫ x

0
du u H−3/2 (eu

− 1
))

×

(∫
∞

x+K
dv (v − x)−α−1

)
= cα,H (t − s)α K−α+H−3/2

∫
∞

0
du u H−3/2 (eu

− 1
) (∫ ∞

u
dx e−x

)
= cα (t − s)α K−α+H−3/2

∫
∞

0
u H−3/2 (eu

− 1
)

e−udu

= cα (t − s)α K−α+H−3/2
[

cH +

∫
∞

1
u H−3/2du

]
= cα,H (t − s)α K−α+H−3/2.

Therefore, (2.22) holds taking β = α + 1/2− H which is greater than α as H < 1/2.
The proof of (2.18) is now finished. �

Proof of 2.19. By (2.12) and Lemma A.1, we have

|I4,4| ≤ cH (t − s)
∫ s

0
dr (s − r)H− 3

2 g(r)
∫ s

r
du (u − r)H− 3

2 ( f (u)− f (r)).

Using the change of variables s − r = r ′, s − u = u′, r ′ − u′ = v, n2v = u, n2r ′ = x , we get

|I4,4| ≤
cH

n4H−2 (t − s)e−n2(t−s)(1− e−n2(t−s))

∫ n2s

0
dx x H− 3

2 e−2x
∫ x

0
du u H− 3

2 (eu
− 1).
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Bounding (1− e−n2(t−s)) by 1 and n2s by∞, we get

|I4,4| ≤
cH

n4H−2 (t − s)e−n2(t−s).

We will now proceed as in the proof of (2.18); that is we will prove that there exists a constant
c3

H depending only on H such that∑
n∈SK

qn|I4,4| ≤ c3
H (t − s)α K−β , (2.27)

for some β > α. It then suffices to choose K ≥ (4c3
H/c

1
H,α)

1/(β−α) to get (2.19).
We now prove (2.27). We write∑

n∈SK

qn|I4,4| ≤ cH (t − s)
∫
∞

√
K/(t−s)

dx x−2α+1e−x2(t−s)

= cH (t − s)α
∫
∞

√
K

dy y−2α+1e−y2

≤ cH (t − s)αK−α2−1
∫
∞

√
K

dy 2ye−y2

≤ cH (t − s)αK−(α+1),

which proves (2.27) taking β = α + 1 and concludes the proof of (2.19). �

This finishes the proof of the entire proposition. �

3. Gaussian upper bound for the bivariate density

We denote by pt,x;s,y(·, ·) the (Gaussian) probability density function of the random vector
(u(t, x), u(s, y)) for all s, t > 0 and x, y ∈ S1 such that (t, x) 6= (s, y).

For every fixed real number 0 < α ≤ 1 we consider the metric

1((t, x); (s, y)) = |x − y|2α + |t − s|α∧(2H). (3.1)

In this section we establish an upper bound of Gaussian type for the bivariate density
pt,x;s,y(·, ·) in terms of the metric (3.1). This will be one of the key results in order to show
the lower bound of Theorem 1.1. The estimates obtained in the previous section to prove space
and time regularity are nearly sufficient to obtain the results in this section. The following
further improvement is needed, which deals with precise joint regularity (see [4, (4.11)] for the
space–time white noise case).

Lemma 3.1. Assume hypothesis (1.3). Fix t0, T > 0. Then there exists cH > 0 such that for any
s, t ∈ [t0, T ], x, y ∈ S1, with (t, x) is sufficiently near (s, y), and i = 1, . . . , d,

c−1
H 1((t, x); (s, y)) ≤ E

[
(ui (t, x)− ui (s, y))2

]
≤ cH 1((t, x); (s, y)). (3.2)

Proof. The upper bound in (3.2) is a consequence of the upper bounds of Corollary 2.2 and
Proposition 2.3, and the following inequality

E
[
(ui (t, x)− ui (s, y))2

]
≤ 2

{
E
[
(ui (t, x)− ui (s, x))2

]
+ E

[
(ui (s, x)− ui (s, y))2

]}
.
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We now proceed to the proof of the lower bound in (3.2). By Corollary 2.2, there exist
c1, c2 > 0 such that for all t ∈ [t0, T ], x, y ∈ S1, with x is sufficiently near y, and i = 1, . . . , d,

c1|x − y|2α ≤ E
[
(ui (t, x)− ui (t, y))2

]
≤ c2|x − y|2α. (3.3)

Moreover, Proposition 2.3 ensures the existence of c3, c4 > 0 such that that for any s, t ∈ [t0, T ],
x ∈ S1, with t is sufficiently near s, and i = 1, . . . , d ,

c3 |t − s|α∧(2H)
≤ E

[
(ui (t, x)− ui (t, y))2

]
≤ c4 |t − s|α∧(2H) . (3.4)

Let us now consider two different cases.

Case 1: |t− s|α∧(2H) <
c1

4c4
|x− y|2α . Appealing to the lower bound in (3.3) and the upper bound

in (3.4),

E
[
(ui (t, x)− ui (s, y))2

]
= E

[
(ui (t, x)− ui (t, y)+ ui (t, y)− ui (s, y))2

]
≥

1
2

E
[
(ui (t, x)− ui (t, y))2

]
− E

[
(ui (t, y)− ui (s, y))2

]
≥

1
2

c1|x − y|2α − c4|t − s|α∧(2H).

Because of the inequality that defines this Case 1, this is bounded below by

c1

2
|x − y|2α −

c1

4
|x − y|2α =

c1

4
|x − y|2α

≥
c1

8
|x − y|2α +

c1

8
4c4

c1
|t − s|α∧(2H)

≥ min
(c1

8
,

c4

2

)
1((t, x); (s, y)).

This completes the proof of the lower bound in (3.2) in Case 1.

Case 2: |t − s|α∧(2H) >
4c2
c3
|x − y|2α . The proof of this portion is identical to Case 1, by using

the upper bound in (3.3) and the lower bound in (3.4), and writing

E
[
(ui (t, x)− ui (s, y))2

]
= E

[
(ui (t, x)− ui (t, y)+ ui (t, y)− ui (s, y))2

]
≥

1
2

E
[
(ui (t, x)− ui (s, x))2

]
− E

[
(ui (s, x)− ui (s, y))2

]
which yields the lower bound min

( c3
8 ,

c2
2

)
1((t, x); (s, y)). This completes the proof of Case 2.

Case 3: 4c2
c3
|x − y|2α ≥ |t − s|α∧(2H)

≥
c1

4c4
|x − y|2α . Note that it suffices to prove that,

E
[
(ui (t, x)− ui (s, y))2

]
≥ c|t − s|α∧(2H). (3.5)

Indeed, because of the lower bound inequality that defines this Case 3, this is bounded below by

c

2
|t − s|α∧(2H)

+
c

2
c1

4c4
|x − y|2α ≥ c′1((t, x); (s, y)),

which proves the lower bound in (3.2) in this Case 1, provided that (3.5) is proved.
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Proof of 3.5. We write

E
[
(ui (t, x)− ui (s, y))2

]
= q0|t − s|2H

+

∞∑
n=1

qn{W1 +W2},

where

W1 = E

[{∫ s

0
(cos(nx) e−n2(t−r)

− cos(ny) e−n2(s−r)) βn(dr)

+

∫ t

s
cos(nx) e−n2(t−r) βn(dr)

}2
]
,

W2 = E

[{∫ s

0
(sin(nx) e−n2(t−r)

− sin(ny) e−n2(s−r)) β ′n(dr)

+

∫ t

s
sin(nx) e−n2(t−r) β ′n(dr)

}2
]
,

where {βn}n∈N and {β ′n}n∈N are independent standard fractional Brownian motions.
Now, because the further calculations use fractional stochastic calculus we need to consider

the two different cases, namely H < 1
2 and H ≥ 1

2 .

Case H ≥ 1
2 . In this case α ∧ (2H) = α and (3.5) is proved in [18] for the case x = y.

Straightforward computations using (2.3) give

E
[
(ui (t, x)− ui (s, y))2

]
= q0|t − s|2H

+

∞∑
n=1

qn

{(
e−2n2t

+ e−2n2s
− 2 cos(n|x − y|)e−n2(t+s)

)
I1

+ e−n2 I2 I2 + 2e−n2t
(

e−n2t
− cos(n|x − y|)e−n2s

)
I3

}
≥ q0|t − s|2H

+

∞∑
n=1

qn

{
(e−n2t

− e−n2s)2 I1 + e−n2 I2 I2 + 2e−n2t (e−n2t
− e−n2s)I3

}
,

where

I1 =

∫ s

0
dw

∫ s

0
dv en2(w+v)

|w − v|2H−2,

I2 =

∫ t

s
dw

∫ t

s
dv en2(w+v)

|w − v|2H−2,

I3 =

∫ s

0
dw

∫ t

s
dv en2(w+v)

|w − v|2H−2.

Hence, using the results of [18, Section 2.1 and (17)] and (1.3), it follows that

E
[
(ui (t, x)− ui (s, y))2

]
≥ q0|t − s|2H

+ cH (t − s)2H
∑

n2(t−s)≤1

qn

≥ cH ((t − s)2H
+ (t − s)α) ≥ cH (t − s)α.

This proves (3.5) when H ≥ 1
2 .
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Case H < 1
2 . It is elementary to see that by (2.14), W1 ≥ Ĩ1 + Ĩ4, where Ĩ1 and Ĩ4 are defined,

respectively, as I1 and I4 in the previous section (see (2.10) and (2.15)), but replacing f and g
by

f̃ (r) = cos(nx) e−n2(t−r)
− cos(ny) e−n2(s−r), g̃(r) = cos(nx) e−n2(t−r).

Similarly, W2 ≥ Ī1 + Ī4, where Ī1 and Ī4 are defined, respectively, as I1 and I4 but replacing f
and g by

f̄ (r) = sin(nx) e−n2(t−r)
− sin(ny) e−n2(s−r), ḡ(r) = sin(nx) e−n2(t−r).

Therefore, the proof of (3.5) when H < 1
2 is similar to the control of I1 from below by |I4| in

the previous section; yet it is less delicate, because the hardest estimates we will need to use are
ones which were already obtained therein. Indeed, proceeding as in (2.16), we find

Ĩ1 + Ī1 ≥
cH

n4H
{(cos(nx) e−n2(t−s)

− cos(ny))2 + (sin(nx) e−n2(t−s)
− sin(ny))2}

=
cH

n4H
{e−2n2(t−s)

+ 1− 2 cos(n|x − y|) e−n2(t−s)
}

≥
cH

n4H
(1− e−n2(t−s))2. (3.6)

Here we see that the case where x = y is the worst case, in the sense that the lower bound (2.16)
obtained for I1 is a lower bound for all Ĩ1 + Ī1 uniformly in t, x, s, y.

Moreover, simple calculations yield very similar formulas for the four terms in Ĩ4 + Ī4 as we
had found for I4 itself in (2.17); namely we have

Ĩ4,1 + Ī4,1 =

∫ s

0
dr K (s, r)h(r)(K (t, r)− K (s, r))g(r),

Ĩ4,2 + Ī4,2 =

∫ s

0
dr K (s, r)h(r)

∫ t

s
du(g(u)− g(r))

∂K

∂u
(u, r),

Ĩ4,3 + Ī4,3 =

∫ s

0
dr
∫ s

r
du(h(u)− h(r))

∂K

∂u
(u, r)

∫ t

s
dv(g(v)− g(r))

∂K

∂v
(v, r),

Ĩ4,4 + Ī4,4 =

∫ s

0
dr(K (t, r)− K (s, r))g(r)

∫ s

r
du(h(u)− h(r))

∂K

∂u
(u, r)

where

h(r) = e−n2(t−r)
− cos(n|x − y|) e−n2(s−r)

= e−n2(s−r)
(

e−n2(t−s)
− cos(n|x − y|)

)
=: e−n2(s−r)hs,t,x,y . (3.7)

In other words, for each j = 1, 2, 3, 4, the formula for Ĩ4, j + Ī4, j is identical to that of I4, j , with
f replaced by h. Also recall that

f (r) = e−n2(s−r)
(

e−n2(t−s)
− 1

)
= e−n2(s−r)hs,t,x,x .

We see here that f is always negative, while it is much more difficult to control the sign of h.
Luckily, for any r , the sign of h (r) is the sign of the fixed coefficient hs,t,x,y defined in (3.7).
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When hs,t,x,y is negative, we will be able to use calculations from the previous section directly.

When hs,t,x,y is non-negative, we will instead compare Ĩ1+ Ī1 with
∣∣∣ Ĩ4,1 + Ī4,1

∣∣∣ and
∣∣∣ Ĩ4,2 + Ī4,2

∣∣∣ .
Case hs,t,x,y < 0. Note that, in this case, Ĩ4,1 + Ī4,1 > 0 and Ĩ4,2 + Ī4,2 > 0, while the other

two sums are negative. Therefore, identically to the proof of lower bound in the previous section,
we only need to show that for sufficiently large K , still using SK = {n : n2

|t − s| ≥ K },∑
n∈SK

qn( Ĩ1 + Ī1) > 2
∑

n∈SK

qn

∣∣∣ Ĩ4,3 + Ī4,3

∣∣∣ , (3.8)

∑
n∈SK

qn( Ĩ1 + Ī1) > 4
∑

n∈SK

qn

∣∣∣ Ĩ4,4 + Ī4,4

∣∣∣ . (3.9)

This is not difficult. Indeed, we have that both f and h are decreasing, and for all u ∈ [r, s],

|h (u)− h (r)| =
(

e−n2(s−u)
− e−n2(s−r)

) ∣∣hs,t,x,y
∣∣

≤

(
e−n2(s−u)

− e−n2(s−r)
) ∣∣hs,t,x,x

∣∣ = | f (u)− f (r)| .

Hence, exploiting the fact that all the terms in the products defining the I4,3 as well as Ĩ4,3+ Ī4,3
have constant signs, we can write∣∣∣ Ĩ4,3 + Ī4,3

∣∣∣ = ∫ s

0
dr
∫ s

r
du |h(u)− h(r)|

∣∣∣∣∂K

∂u
(u, r)

∣∣∣∣ ∫ t

s
dv(g(v)− g(r))

∣∣∣∣∂K

∂v
(v, r)

∣∣∣∣
≤

∫ s

0
dr
∫ s

r
du | f (u)− f (r)|

∣∣∣∣∂K

∂u
(u, r)

∣∣∣∣ ∫ t

s
dv(g(v)− g(r))

∣∣∣∣∂K

∂v
(v, r)

∣∣∣∣
=
∣∣I4,3

∣∣ ,
and similarly we get

∣∣∣ Ĩ4,4 + Ī4,4

∣∣∣ ≤ ∣∣I4,4
∣∣. Since the lower bound on Ĩ1+ Ī1 in (3.6) is as large as

the lower bound (2.16) on I1, the proof of the lower bound in the previous section implies both
(3.8) and (3.9), which finishes the proof of (3.5) when hs,t,x,y < 0.

Case hs,t,x,y ≥ 0. Here we cannot rely on previous calculations. Indeed, in this case,
Ĩ4,3 + Ī4,3 ≥ 0 and Ĩ4,4 + Ī4,4 ≥ 0, while Ĩ4,1 + Ī4,1 and Ĩ4,2 + Ī4,2 are negative, and we
must therefore control their absolute values. As in the previous case, we only need to prove that
for K large enough,∑

n∈SK

qn( Ĩ1 + Ī1) > 2
∑

n∈SK

qn

∣∣∣ Ĩ4,1 + Ī4,1

∣∣∣ , (3.10)

∑
n∈SK

qn( Ĩ1 + Ī1) > 4
∑

n∈SK

qn

∣∣∣ Ĩ4,2 + Ī4,2

∣∣∣ . (3.11)

Unlike the last section where the full sum had to be invoked to obtain the required lower
bounds, here it is possible to prove that the above two inequalities hold without the sums, i.e. for
any fixed n ∈ SK . These fact are established in Appendix A.4.

This proves (3.5) when H < 1
2 . The proof of the lemma is thus complete. �
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Proposition 3.2. Assume hypothesis (1.3). Then for all t0, T,M > 0, there exists a finite constant
cH > 0 such that for all s, t ∈ [t0, T ], x, y ∈ S1 and z1, z2 ∈ [−M,M]d ,

pt,x;s,y(z1, z2) ≤ cH (1((t, x); (s, y)))−d/2 exp
(
−

‖z1 − z2‖
2

cH 1((t, x); (s, y))

)
.

Proof. Let pi
t,x;s,y(·, ·) denote the bivariate density of the random vector (ui (t, x), ui (s, y)).

Note that pi
t,x;s,y(·, ·) does not depend on i .

We follow [3,4]. As in [3, (3.8)] and [4, (4.10)], we have that

pi
t,x;s,y(z1, z2) ≤

1
2πσs,yτ

exp
(
−
|z1 − z2|

2

4τ 2

)

× exp
(
|z2|

2
|1− m|2

4τ 2

)
exp

(
−
|z2|

2

2σ 2
s,y

)
, (3.12)

where

τ 2
:= σ 2

t,x

(
1− ρ2

t,x;s,y

)
, ρt,x;s,y =

σt,x;s,y

σt,xσs,y
, σ 2

t,x = E[(ui (t, x))2]

m :=
σt,x;s,y

σ 2
s,y

, σt,x;s,y = Cov (ui (t, x), ui (s, y)) .

We now show the analogues of (4.12) and Lemma 4.3 in [4] in the case of the fractional heat
equation. Fix s, t ∈ [t0, T ], x, y ∈ S1. We claim that the following estimates hold:

|σt,x − σs,y | ≤ cH |t − s|2α. (3.13)

c−1
H 1((t, x); (s, y)) ≤ σ 2

t,xσ
2
s,y − σ

2
t,x;s,y ≤ cH 1((t, x); (s, y)), (3.14)

|σ 2
t,x − σt,x;s,y | ≤ cH [1((t, x); (s, y))]1/2 . (3.15)

Indeed, in the proof of Proposition 2.3 we have proved that

E

[(∫ t

0
e−n2(t−s)βH

n (ds)

)2
]
≤ cH |t − s|2α.

Therefore, using [4, (4.31)], we have

|σt,x − σs,y | ≤ cH |σ
2
t,x − σ

2
s,y | ≤ cH |t − s|2α

where cH does not depend on t ∈ [t0, T ]. This proves (3.13).
We now prove (3.14). Let γ 2

t,x;s,y := E[(ui (t, x)− ui (s, y))2]. Then using [4, (4.42)],

σ 2
t,xσ

2
s,y − σ

2
t,x;s,y =

1
4

(
γ 2

t,x;s,y − (σt,x − σs,y)
2
) (
(σt,x + σs,y)

2
− γ 2

t,x;s,y

)
. (3.16)

By Lemma 3.1, γ 2
t,x,s,y ≤ c1((t, x); (s, y)). Therefore, the second factor of (3.16) is bounded

below by a positive constant when (t, x) is near (s, y). Furthermore, Lemma 3.1 and (3.13) yield

γ 2
t,x,s,y − (σt,x − σs,y)

2
≥ cH 1((t, x); (s, y)).

This proves the lower bound of (3.14) provided (t, x) is sufficiently near (s, y).
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In order to extend this inequality to all (t, x) and (s, y) in [t0, T ] × S1, note that by the
continuity of the function (t, x, s, y) 7→ σ 2

t,xσ
2
s,y − σ

2
t,x;s,y , it suffices to show that

σ 2
t,xσ

2
s,y − σ

2
t,x;s,y > 0 if (t, x) 6= (s, y).

If this last function was equal to zero there would be λ ∈ R such that ui (t, x) = λui (s, y) a.s.,
which is a contradiction to the lower bound in (3.2) and the fact that 1((t, x); (s, y)) is zero only
if (t, x) = (s, y). This completes the proof of the lower bound of (3.14).

In order to prove the upper bound of (3.14), use Lemma 3.1 to see that the first factor in (3.16)
is bounded above by cH 1((t, x); (s, y)). As the second factor in (3.16) is bounded above by a
constant cH , the desired upper bound follows.

It remains to prove (3.15). Use [4, (4.47)] to find

|σ 2
t,x − σt,x;s,y | =

∣∣∣γ 2
t,x;s,y + Cov (ui (t, x)− ui (s, y), ui (s, y))

∣∣∣
≤ γ 2

t,x;s,y + γt,x;s,yσs,y

≤ cH [1((t, x); (s, y))]1/2,

where we have used Lemma 3.1 twice in the last inequality. This implies the desired bound.
Finally, introducing inequalities (3.14) and (3.15) into (3.12) and using the independence of

the components u1, . . . , ud , the proposition follows. �

4. Proof of Theorem 1.1 and Corollary 1.3

In order to prove Theorem 1.1 we will follow the approach developed in [4] extended to
our situation. For this we shall state and prove the versions of Theorem 2.1(1), Lemma 2.2(1),
Theorem 3.1(1) and Lemma 4.5 in [4] needed in our situation.

The first result is an extension of [4, Lemma 2.2(1)] (take α = 1/2, H = 1/2 and d = β).

Lemma 4.1. Let I and J two intervals as in Theorem 1.1. Then for all N > 0, there exists a
finite and positive constant C = C(I, J, N ) such that for all a ∈ [0, N ],∫

I
dt
∫

I
ds
∫

J
dx
∫

J
dy

e−a2/1((t,x);(s,y))

1d/2((t, x); (s, y))
≤ C Kd−( 1

α
+

2
α∧(2H) )

(a), (4.1)

where 1((t, x) ; (s, y)) is the metric defined in (3.1).

Proof. Write α1 := 2α and α2 := α ∧ (2H). Using the change of variables ũ = t − s (t fixed),
ṽ = x − y (x fixed) we have that the integral in (4.1) is bounded above by

4|I | |J |
∫
|I |

0
dũ
∫
|J |

0
dṽ (ũα1 + ṽα2)−d/2 exp

(
−

a2

ũα1 + ṽα2

)
. (4.2)

A change of variables [ũα1 = a2u, ṽα2 = a2v] implies that this is equal to

Ca
2
α1
+

2
α2
−d
∫
|I |α1 a−2

0
du
∫
|J |α2 a−2

0
dv

u
1
α1
−1
v

1
α2
−1

(u + v)d/2
exp

(
−

1
u + v

)
. (4.3)

Observe that the last integral is bounded above by∫
|I |α1 a−2

0
du
∫
|J |α2 a−2

0
dv (u + v)

1
α1
+

1
α2
−2− d

2 exp
(
−

1
u + v

)
.
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Pass to polar coordinates to deduce that the preceding is bounded above by I1 + I2(a), where

I1 :=

∫ K N−2

0
dρ ρ

1
α1
+

1
α2
−1− d

2 exp(−c/ρ),

I2(a) :=
∫ K a−2

K N−2
dρ ρ

1
α1
+

1
α2
−1− d

2 ,

where K = |I |α1 ∨ |J |α2 . Clearly, I1 ≤ C <∞, and if d 6= 2
α1
+

2
α2

, then

I2(a) = K
1
α1
+

1
α2
−

d
2

a
d− 2

α1
−

2
α2 − N

d− 2
α1
−

2
α2

1
α1
+

1
α2
−

d
2

.

If d > 2
α1
+

2
α2

, then I2(a) ≤ C for all a ∈ [0, N ]. If d < 2
α1
+

2
α2

, then I2(a) ≤ Ca
d−( 2

α1
+

2
α2
)
.

Finally, if d = 2
α1
+

2
α2

, then

I2(a) = 2
[

ln
(

1
a

)
+ ln(N )

]
.

Hence, we deduce that for all a ∈ [0, N ], the expression in (4.3) is bounded above by
C Kd−( 2

α1
+

2
α2
)
(a), provided that N0 in (1.4) is sufficiently large. This proves the lemma. �

The next result uses the proof of [4, Theorem 2.1(1)] applied to our situation and establishes
the lower bound of Theorem 1.1.

Theorem 4.2. Assume hypothesis (1.3). Let I ⊂ (0, T ] and J ⊂ [0, 2π) be two fixed non-trivial
compact intervals. Then for all T > 0 and M > 0, there exists a finite constant cH > 0 such
that for all compact sets A ⊆ [−M,M]d ,

cH Capd−β(A) ≤ P{u(I × J ) ∩ A 6= ∅},

where β := 1
α
+ ( 2

α
∨

1
H ).

Proof. The proof of this result follows exactly the same lines as the proof of [4, Theorem 2.1(1)],
therefore we will only sketch the steps that differ. It suffices to replace their β − 6 by our d − β
with β := 1

α
+ ( 2

α
∨

1
H ). Moreover, if pt,x (y) denotes the density of u(t, x) solution of (1.1),

then we have that for all y ∈ [−M,M]d and (t, x) ∈ I × J ,

pt,x (y) = (2πσ 2
t,x )
−d/2e−‖y‖

2/(2σ 2
t,x ) ≥ cH , (4.4)

which proves hypothesis A1 of [4, Theorem 2.1(1)]. On the other hand, our Proposition 3.2
proves hypothesis A2 with 1((t, x) ; (s, y)) defined as in (3.1).

We then follow the proof of [4, Theorem 2.1(1)]. Define, for all z ∈ Rd and ε > 0,
B̃(z, ε) := {y ∈ Rd

: |y − z| < ε}, where |z| := max1≤ j≤d |z j |, and

Jε(z) =
1

(2ε)d

∫
I

dt
∫

J
dx 1B̃(z,ε)(u(t, x)).

In the case d < β, following as in [4, (2.30)] and using Proposition 3.2, we find that for all
z ∈ A ⊆ [−M,M]d and ε > 0,

E
[
(Jε(z))

2
]
≤ cH

∫
I

dt
∫

I
ds
∫

J
dx
∫

J
dy 1−d/2((t, x); (s, y)).
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Then instead of [4, (2.31)], we get following as in (4.2) and using [4, Lemma 2.3], that for all
z ∈ A ⊆ [−M,M]d and ε > 0,

E
[
(Jε(z))

2
]
≤ cH

∫
|I |

0
du

∫
|J |

0
dv (u2α

+ vα∧(2H))−d/2

≤ cH

∫
|I |

0
du Ψ|J |,d( α2∧H)(u

dα)

≤ cH

∫
|I |

0
du K1−( 2

α
∨

1
H )/d

(udα).

We will then consider the different cases: d < 2
α
∨

1
H , 2

α
∨

1
H < d < 1

α
+( 2

α
∨

1
H ) and d = 2

α
∨

1
H .

This will prove the case d < β.
The case d ≥ β is proved exactly along the same lines as the proof of [4, Theorem 2.1(1)],

appealing to (4.4), Proposition 3.2 and Lemma 4.1. �

The following result is an extension of [4, Lemma 4.5].

Lemma 4.3. Assume hypothesis (1.3). For all p ≥ 1, there exists C p,H > 0 such that for all
ε > 0 and all (t, x) fixed,

E

[
sup

[1((t,x) ;(s,y))]1/2≤ε
‖u(t, x)− u(s, y)‖p

]
≤ C p,H ε

p, (4.5)

where 1((t, x) ; (s, y)) is defined as in (3.1).

Proof. It suffices to prove (4.5) for each coordinate ui , i = 1, . . . , d. We proceed as in [4, Lemma
4.5], that is, we will use [4, Proposition A.1] with S := Sε = {(s, y) : [1((t, x); (s, y))]1/2 < ε},
ρ((t, x), (s, y)) := [1((t, x); (s, y))]1/2, µ(dtdx) := dtdx , Ψ(x) := e|x | − 1, p(x) := x , and
f := ui .

Moreover, by (3.2), the random variable C defined in [4, Proposition A.1] satisfies

E [C ] ≤ E
[∫

Sε
dt dx

∫
Sε

ds dy exp
(
|ui (t, x)− ui (s, y)|

[1((t, x); (s, y))]1/2

)]
≤ cH ε

β ,

where β = 2
α
+ ( 4

α
∨

2
H ).

The rest of the proof follows exactly as in [4, (4.51)] and is therefore omitted. �

The next result uses the proof of [4, Theorem 3.1(1)] applied to our situation and establishes
the upper bound of Theorem 1.1.

Theorem 4.4. Assume hypothesis (1.3). Let I ⊂ (0, T ] and J ⊂ [0, 2π) be two fixed non-trivial
compact intervals. Then for all T > 0 and M > 0, there exists a finite constant cH > 0 such
that for all Borel sets A ⊆ [−M,M]d ,

P{u(I × J ) ∩ A 6= ∅} ≤ cH Hd−β(A),

where β := 1
α
+ ( 2

α
∨

1
H ).

Proof. When d < β, there is nothing to prove, so we assume that d ≥ β. For all positive integers
n, set tn

k := k2−n/α , xn
` := `2

−(2n/α)∨(n/H), and

I n
k = [t

n
k , tn

k+1], J n
` = [x

n
` , xn

`+1], Rn
k,` = I n

k × J n
` .
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Then for all Rn
k,` ⊂ I × J , there exists a constant cH > 0 such that the following estimate for

hitting a small ball holds for all z ∈ Rd and ε > 0,

P{u(Rn
k,`) ∩ B(z, ε) 6= ∅} ≤ cH ε

d . (4.6)

Indeed, as {ui (t, x)}i=1,..,d are independent, centered, Gaussian random variables, with variance
bounded above and below by positive constants, and such that the upper bound in (3.2) and
Lemma 4.3 hold, the proof of (4.6) follows exactly along the same lines as the proof of [4,
Proposition 4.4]. Note also that because {ui (t, x), ui (tn

k , xn
` )} is a two-dimensional centered

Gaussian vector, the random variables Y n
k,` and Zn

k,` defined in [4, (4.58)] are independent.
Finally, the result follows directly from [4, Theorem 3.1(1)] replacing their β by d and the 6

by our β. �

Proof of Theorem 1.1. Theorems 4.2 and 4.4 prove the lower and upper bounds of Theorem 1.1,
respectively. �

Proof of Corollary 1.3. (a) This is an immediate consequence of Theorem 1.1.
(b) Let z ∈ Rd . If d < β, then Capd−β({z}) = 1. Hence, the lower bound of Theorem 1.1

implies that {z} is not polar. On the other hand, if d > β, then Hd−β({z}) = 0 and the upper
bound of Theorem 1.1 implies that {z} is polar.

(c) Theorem 1.1 implies that for d ≥ 1: codim(u(R+× S1)) = (d−β)+; where codim(E) with
E a random set is defined in [4, (5.12)]. Then, when d > β, [4, (5.13)] implies the desired
result.
The case d = β follows using exactly the same argument that led to the result in [4, Corollary
5.3(a)] for d = 6, and is therefore omitted. �
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Appendix

A.1. Riesz-kernel example

We consider the example of the Riesz kernel. There, we assume that Q (x) = |x |−γ for some
γ ∈ (0, 1). We then first need to show that this is a bonafide homogeneous spatial covariance
function on the circle (that this is such a function in Euclidean space is well-known, but here we
are restricted to the circle). In other words, we need to show that

Q (x) =
∞∑

n=0

qn cos nx,

where {qn}n∈N is a sequence of non-negative real numbers. Since Q is integrable, we simply
calculate the values qn by (inverse) Fourier transform: using the symmetry of Q, and some
scaling, we obtain

qn =

∫ π

−π

einx
|x |−γ dx = 2

∫ π

0
cos (nx) x−γ dx

= 2nγ−1
∫ nπ

0
cos (x) x−γ dx
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= nγ−1
n−1∑
k=0

r (k) ,

where r (k) = 2
∫ (k+1)π

kπ cos (x) x−γ dx . We can calculate this r (k) a bit further: using an
integration by parts, we get

r (k) = 2γ
∫ (k+1)π

kπ
x−γ−1 sin (x) dx

= 2γ (−1)k
∫ (k+1)π

kπ
x−γ−1

|sin (x)| dx .

Hence we do indeed have, as announced in the Riesz-kernel example, that qn = nγ−1c (n) where
c (n) is the partial sum of the alternating sequence with general term 2r (k). Also as announced,
we clearly see that r (0) > 0, and it is trivial to prove that |r (k + 1)| < |r (k)|, by simply using
the change of variable x ′ = x − π , and the fact that sin

(
x ′ + π

)
= − sin

(
x ′
)
. The partial sums

of such an alternating series are always positive since the first term is positive. All the claims in
the Riesz-kernel example are justified.

A.2. Fractional Brownian example

In the fractional Brownian noise class of examples, with H < 1/2 and where qn = c(n)n1−2H

for some function c which is bounded above and below by positive constants, the Fourier series
representation Q (x) =

∑
∞

n=0 c(n)n1−2H cos (nx) is only formal because this series diverges
even as an alternating series. Yet we can interpret B H as the spatial derivative of a process
similar to a space–time fractional Brownian sheet. Indeed, consider the centered Gaussian field
Y (t, x) which is fractional Brownian in time with parameter H , and has spatial covariance equal
to R (x, y) = R (0) − |x − y|2H . This field, which is spatially homogeneous on the circle for
fixed t , is not the usual fractional Brownian sheet on the circle since the latter is not spatially
homogeneous. However, the reader will immediately check that B H and the standard fractional
Brownian sheet share the same canonical metric (standard deviation of their increments), which
means that their increments have the same regularity and scaling properties. Using exactly the
same calculations as in the Riesz-kernel case above, but this time with γ = −2H , we can still
invoke the fact that x−γ−1 is decreasing, since 2H − 1 < 0, and thus R (x, y) can be written as
R (0)+

∑
∞

n=1 c (n) n−2H−1 cos (nx) where, as in the previous example, c (n) is the partial sum
of a positive alternating series. It is then easy to see that Y can be represented as

Y (t, x) =
√

R (0)B0,H (t)+
∞∑

n=1

√
c (n)n−H−1/2 cos (nx) Bn,H (t)

+

∞∑
n=1

√
c (n)n−H−1/2 sin (nx) B̃n,H (t) ,

where {Bn,H }n∈N and {B̃n,H }n∈N are independent sequences of IID standard fractional Brownian
motions. If one then defines the noise in the heat equation formally (i.e. in the sense of
distributions) by

BH (t, x) =
∂

∂x
Y (t, x) ,
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a factor n comes out in the Fourier representation, and one gets that BH can be written, in the
sense of distributions, as

BH (t, x) =
∞∑

n=1

√
c (n)n−H+1/2 cos (nx) Bn,H (t)

+

∞∑
n=1

√
c (n)n−H+1/2 sin (nx) B̃n,H (t) ,

from which the formula qn = c (n) n1−2H follows, i.e. the formal expansion Q (x) =∑
∞

n=0 c (n) n−2H+1 cos (nx) follows immediately. This justifies using the scale n1−2H as the
covariance’s Fourier coefficient in order to construct a space–time fractional Brownian noise.
Note that this justification also works when H > 1/2.

It is instructive to note that one can also formally write

Q (x − y) = E
[
∂

∂x
Y (1, x)

∂

∂y
Y (1, y)

]
= (∂2/∂x∂y) |x − y|2H

= 2H (2H − 1) |x − y|2H−2 ,

which is not integrable at the origin (x = y) when H < 1/2, which explains why one cannot use
the pointwise Fourier and/or the Riesz-kernel representation in this case.

A.3. Estimates of the kernel K H

We have the following estimates on the kernel K H .

Lemma A.1. Let t0, T ≥ 0 be fixed. Then for any H < 1
2 and s, t ∈ [t0, T ] with s ≤ t , there

exist positive constants c(t0, T, H) and C(t0, T, H) such that

c(t0, T, H)−1(t − s)H− 1
2 ≤ K H (t, s) ≤ c(t0, T, H)(t − s)H− 1

2 s H− 1
2 ,

C(t0, T, H)−1
(

H −
1
2

)
(t − s)H− 3

2 ≤
∂K H

∂t
(t, s) ≤ C(t0, T, H)

(
H −

1
2

)
(t − s)H− 3

2 .

Proof. Theses estimates follow immediately from (2.1), (2.2) and [6, Theorem 3.2]. �

The following is a two real variable technical result that is used several times in this paper.

Lemma A.2. Let t0 > 0 be fixed. Then for any s ≥ t0, there exists a positive constant c(t0, H)
such that∫ 2n2s

0

(
s −

v

2n2

)2H−1
v2H−1e−v dv ≤ c(t0, H).

Proof. We write, following [16, eq. (25)],∫ 2n2s

0

(
s −

v

2n2

)2H−1
v2H−1e−v dv

≤

( s

2

)2H−1
∫
∞

0
v2H−1e−v dv + (n2s)2H−1

∫ 2n2s

n2s

(
s −

v

2n2

)2H−1
e−v dv
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≤ cH t0
2H−1

+ (n2s)2H−1
∫ n2s

0

(
v′

2n2

)2H−1

e−(2n2s−v′) dv′

≤ C(t0, H)+ cH t0
2H−1e−n2s(n2s)2H

≤ C(t0, H)+ C(t0, H) sup
x≥s
|e−x x2H

|

≤ C(t0, H). �

A.4. Further covariance calculations

Proof of 3.10. With the notations of the proof of Lemma 3.1, we will show that for K large
enough and for all n such that n2 (t − s) ≥ K , when ht,s,x,y ≥ 0,

Ĩ1 + Ī1 > 2
∣∣∣ Ĩ4,1 + Ī4,1

∣∣∣ . (A.1)

This will prove (3.10).
Using Lemma A.1, and the trivial bound ht,s,x,y ≤ 2 applied to (3.7), we have∣∣∣ Ĩ4,1 + Ī4,1

∣∣∣ = ∫ s

0
dr K (s, r)h(r)

(∫ t

s

∣∣∣∣∂K

∂u
(u, r)

∣∣∣∣ du

)
g(r)

≤ cH

∫ s

0
dr (s − r)H−1/2 e−n2(t+s−2r)

(
(s − r)H−1/2

− (t − r)H−1/2
)

= cH e−n2(t−s)
∫ s

0
dr r H−1/2

(
r H−1/2

− (r + t − s)H−1/2
)

e−2n2r .

We evaluate the integral above by splitting it up according to whether r exceeds n−2. We also
assume that n2 (t − s) ≥ 1, i.e. we restrict K ≥ 1. Hence∫ n−2

0
dr r H−1/2

(
r H−1/2

− (r + t − s)H−1/2
)

e−2n2r

≤

∫ n−2

0
dr r H−1/2

(
r H−1/2

− (2t − 2s)H−1/2
)

=

∫ n−2

0
dr
(

r2H−1
− r H−1/2 (2t − 2s)H−1/2

)
≤ cH n−4H .

The other piece is∫ s

n−2
dr r H−1/2

(
r H−1/2

− (r + t − s)H−1/2
)

e−2n2r

≤ cH

∫ s

n−2
dr r H−1/2 (t − s) r H−3/2e−2n2r

= cH (t − s)
∫ s

n−2
dr r2H−2e−2n2r

= cH n−2n4−4H (t − s)
∫ n2s

1
dx x2H−2e−2x

≤ cH n−4H n2 (t − s)
∫
∞

1
dx x2H−2e−2x

= cH n−4H n2 (t − s) .
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In conclusion, we get∣∣∣ Ĩ4,1 + Ī4,1

∣∣∣ ≤ c1
H n−4H

(
1+ n2 (t − s)

)
e−n2(t−s).

Since the function x 7→ (1+ x) e−x decreases to 0 as x increases to∞, we only need to choose

K sufficiently large such that for all n with n2 (t − s) ≥ K ,
∣∣∣ Ĩ4,1 + Ī4,1

∣∣∣ ≤ 2−1c1
H n−4H (1 −

e−n2(t−s))2 ≤ Ĩ1 + Ī1, where c1
H is the constant in (3.6). This completes the proof of (A.1). �

Proof of 3.11. We now show that for K large enough and for all n such that n2 (t − s) ≥ K ,
when ht,s,x,y ≥ 0,

Ĩ1 + Ī1 > 2
∣∣∣ Ĩ4,2 + Ī4,2

∣∣∣ . (A.2)

This will prove (3.11).
Again using Lemma A.1, and the bound ht,s,x,y ≤ 2 applied to (3.7), we have∣∣∣ Ĩ4,2 + Ī4,2

∣∣∣ = ht,s,x,y

∫ s

0
dr K (s, r)e−n2(s−r)

∫ t

s
du(g(u)− g(r))

∣∣∣∣∂K

∂u
(u, r)

∣∣∣∣
≤ cH

∫ s

0
dr(s − r)H−1/2e−n2(s+t−r)

∫ t

s
du
(

en2u
− en2r

)
(u − r)H−3/2.

We cut this integral into three pieces. First calculate the piece for u > s + n−2:∫ s

0
dr(s − r)H−1/2e−n2(s+t−r)

∫ t

s+n−2
du
(

en2u
− en2r

)
(u − r)H−3/2

≤

∫ s

0
dr(s − r)H−1/2e−n2(s+t−2r)

∫ t

s+n−2
duen2(u−r)(u − r)H−3/2

= n−2H+1
∫ s

0
dr(s − r)H−1/2e−n2(s+t−2r)

∫ (t−r)n2

(s−r)n2+1
ex x H−3/2dx

= n−4H
∫ sn2

0
dy yH−1/2e−ye−n2(t−s)

∫ y+n2(t−s)

y+1
ex x H−3/2dx .

Now, for any fixed constants y0 (H) and y1 (H) such that y1 > y0 + 1, the above term with the
y-integral restricted to y ≤ y0 can be written as follows:

n−4H
∫ y0

0
dy yH−1/2e−ye−n2(t−s)

(∫ y1

y+1
ex x H−3/2dx +

∫ y+n2(t−s)

y1

ex x H−3/2dx

)

≤ n−4H
∫ y0

0
dy yH−1/2

(
e−n2(t−s)c (H, y1)+ yH−3/2

1 ey0
)
.

We now choose y1 and K large enough such that for all n with n2 (t − s) ≥ K and for any choice
of y0, the above equation is smaller than cH n−4H with cH ≤ 2−1c1

H (1− e−n2(t−s))2, where c1
H

is the constant in (3.6).
For the other part of the integral in y we get

n−4H
∫ sn2

y0

dy yH−1/2e−ye−n2(t−s)
∫ y+n2(t−s)

y+1
ex x H−3/2dx
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≤ n−4H
∫ sn2

y0

dy y2H−2e−ye−n2(t−s)
∫ y+n2(t−s)

y+1
ex dx

≤ n−4H
∫ sn2

y0

dy y2H−2

≤ cH n−4H y2H−1
0 ,

and it is sufficient to take y0 large enough to ensure that this last expression is smaller than
cH n−4H with cH ≤ 2−1c1

H (1− e−n2(t−s))2.
Now we calculate the piece for u ∈ [s, s + n−2

] and r ∈ [s − n−2, s]. This yields a piece
bounded above by

cH

∫ s

s−n−2
dr(s − r)H−1/2e−n2t

∫ s+n−2

s
du
(

en2s+1
− en2s−1

)
(u − r)H−3/2

≤ cH e−n2(t−s)
∫ s

s−n−2
dr(s − r)H−1/2

(
(s − r)H−1/2

− (s − r + n−2)H−1/2
)

= cH e−n2(t−s)n−4H
∫ 1

0
x H−1/2

(
x H−1/2

− (x + 1)H−1/2
)

dx

= cH e−n2(t−s)n−4H

which can obviously be made smaller than 2−1c1
H (1−e−n2(t−s))2, for all n such that n2 (t − s) ≥

K , provided that K is large enough.
The last piece to deal with is

cH

∫ s−n−2

0
dr(s − r)H−1/2e−n2(s+t−r)

∫ s+n−2

s
du
(

en2u
− en2r

)
(u − r)H−3/2

≤ cH

∫ s−n−2

0
dr(s − r)H−1/2e−n2(s+t−r)

∫ s+n−2

s
du en2u(u − r)H−3/2

≤ cH e
∫ s−n−2

0
dr(s − r)H−1/2e−n2(t−r)

∫ s+n−2

s
du (u − r)H−3/2

= cH e−n2(t−s)
∫ s−n−2

0
dr(s − r)H−1/2

(
(s − r)H−1/2

− (s − r + n−2)H−1/2
)

≤ cH e−n2(t−s)n−4H
∫
∞

1
x H−1/2

(
x H−1/2

− (x + 1)H−1/2
)

dx

≤ cH e−n2(t−s)n−4H
∫
∞

1
x H−3/2dx

= cH e−n2(t−s)n−4H ,

and the conclusion is the same as before. This finishes the proof of (A.2). �
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