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Abstract We prove existence and smoothness of the density of the solution to a
nonlinear stochastic heat equation on L2(O) (evaluated at fixed points in time
and space), where O is an open bounded domain in R

d with smooth boundary.
The equation is driven by an additive Wiener noise and the nonlinear drift term
is the superposition operator associated to a real function which is assumed to be
(maximal) monotone, continuously differentiable, and growing not faster than a
polynomial. The proof uses tools of the Malliavin calculus combined with methods
coming from the theory of maximal monotone operators.
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1 Introduction

Let O ⊂ R
d be an open bounded domain, and consider the stochastic semilinear

parabolic evolution equation on L2(O)

du(t) − �u(t) dt + f (u(t)) dt = ηu(t)dt + B dW(t), u(0) = u0, (1.1)

where � is the Dirichlet Laplacian on L2(O), W is a standard cylindrical Wiener
process on L2(O), f : R → R is continuous, increasing and of polynomial growth, η

is a positive number, B is a deterministic bounded linear operator on L2(O), and u0 is
an L2(O)-valued random variable (precise assumptions are given in the next section).
As will be explained in Remark 2.1 below, the above equation covers the case where
f − η is replaced by f + g, where f is as above and g is a globally Lipschitz function.

Under regularity assumptions on the initial datum and on the coefficients, one
can prove, using monotonicity methods, that (1.1) admits a unique mild solution with
continuous paths (see e.g. [4] and references therein). The purpose of this paper is to
study the existence and regularity of the density (with respect to Lebesgue measure)
of the random variable u(t, x), with (t, x) ∈]0, T] × O. In particular, we show that
a sufficient condition for the existence of the density is that f is of class C1 with
polynomially bounded derivative. We do not claim that this condition is sharp, but
we do hope that our methods could be the starting point for further developments.
The proof relies on techniques of the Malliavin calculus and on a priori estimates for
solutions of approximating equations, obtained replacing the nonlinear drift term
by its Yosida regularization. Furthermore, we show that if f is of class Cm with
polynomially bounded derivatives, the density becomes smoother, as it is natural
to expect. The proof of this still relies on a priori estimates, and requires a further
regularization of the drift, as the Yosida approximation does not necessarily have
bounded derivatives.

There is a large literature on problems of existence and regularity of the density
for solutions to parabolic (as well as hyperbolic) SPDEs with Lipschitz non-linearities
by means of the Malliavin calculus (see e.g. [16, 20, 22, 25, 26, 28, 30] and references
therein). These properties of (densities of) solutions are essential tools in the study
of certain potential theoretic properties of random fields, such as hitting probabilities
in terms of capacity (see e.g. [9, 10]), and can also be used to derive concentration
inequalities for rather large classes of Gaussian functionals (see e.g. [23]).

On the other hand, much less attention has been dedicated to SPDEs with
non-Lipschitz coefficients: the first article (relying on Malliavin calculus) we are
aware of is [27], where a nonlinear one-dimensional stochastic heat equation on
[0, 1] with polynomially growing drift and diffusion coefficients is considered. Us-
ing techniques of the Malliavin calculus, the authors prove, under quite general
conditions, including a very weak non-degeneracy assumption on the diffusion
coefficient, the absolute continuity of the law of the solution evaluated at fixed
points in time and space. In this regard, we recall that existence and uniqueness
of solution for the stochastic heat equation on [0, 1] driven by an additive noise
with a measurable drift having polynomial growth has been proved in [13]. In
[11], the absolute continuity for the law of the solution to a one-dimensional
stochastic heat equation with Hölder continuous diffusion coefficient and lin-
early growing drift is proved with completely different methods. In particular,
the proofs involve the Euler approximation and techniques of harmonic analy-
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sis. Furthermore, existence of the density of the solution to a class of stochastic
Cahn–Hilliard equations with locally Lipschitz coefficients has been considered
in [3].

A drawback of (some of) the techniques developed in this paper is that it seems
difficult to extend them to equations with multiplicative noise. We refer to Remark
5.8 below for details.

The paper is organized as follows. In Section 2 we provide the definition of
mild solution to equation (1.1), we state a corresponding well-posedness result, and
obtain some properties of a regularized version of (1.1) in terms of the Yosida
approximations. Section 3 is devoted to establishing the random field counterpart
(i.e. à la Walsh [29]) of equation (1.1). In Section 4 we collect some auxiliary results
needed for the proof of the main theorem. These correspond to a version of the
chain rule for Malliavin derivatives, some properties of time-dependent evolution
operators, and estimates for some regularizations of the drift coefficient. In Section
5, we state and prove the main result of the paper, Theorem 5.1. To this purpose, we
first establish the Malliavin differentiability of the solution to equation (1.1), then we
study the invertibility of the corresponding Malliavin matrix.

Notation. We shall write a � b to mean that there exists a constant N such that
a ≤ Nb . To emphasize that the constant N depends on the parameters p1, . . . , pm,
we shall also write a �p1,...,pm b . We shall write sup to denote both the supremum and
the essential supremum. For a Banach space E, we shall denote by L

p(E) the space
of E-valued random variables ξ such that E‖ξ‖p

E < ∞.

2 Well-Posedness and Approximation

Let O be an open bounded domain in R
d. Lp spaces over the domain O will be

denoted without explicitly mentioning the domain, e.g. L2 stands for L2(O). The
norm in Lp will be denoted by ‖ · ‖p, and the inner product of L2 by 〈·, ·〉2.

On a given stochastic basis (�,F , F = (Ft)0≤t≤T , P), with T a fixed positive
number, let us consider the following semilinear SPDE on L2:

du(t) − �u(t) dt + f (u(t)) dt = ηu(t) dt + B dW(t), u(0) = u0, (2.1)

where � is the Dirichlet Laplacian on L2, f : R → R is continuous, increasing,
and such that | f (x)| � 1 + |x|p for some p > 0 (we denote the evaluation operator
associated to the function f by the same symbol), η is a positive number, W is a
cylindrical Wiener process on L2 generating the filtration F, B : L2 → L2 is a linear
and bounded operator, and u0 is an F0-measurable L2-valued random variable such
that E‖u0‖2

2 < ∞. All expressions involving random quantities are meant to hold P-
a.s. if not otherwise specified.

Remark 2.1 Instead of (2.1) one may equivalently consider an SPDE of the type

du(t) − �u(t) dt + f (u(t)) dt = B dW(t), u(0) = u0,
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where f is quasi-monotone, i.e. such that f + η is monotone for some η > 0. In fact,
we may write f = ( f + η) − η = f̃ − η, with f̃ monotone, thus obtaining (2.1) with
f̃ replacing f . Furthermore, note that equations of the type

du(t) − �u(t) dt + f (u(t)) dt + g(u(t)) dt = B dW(t), u(0) = u0,

with f monotone (or quasi-monotone) and g (globally) Lipschitz are just particular
cases of (2.1). In fact, one has

( f (x) + g(x) − f (y) − g(y)) (x − y) ≥ (g(x) − g(y)) (x − y) ≥ −‖g‖Ċ0,1 |x − y|2,

i.e. f + g is quasi-monotone, since f + g + η is monotone, with η = ‖g‖Ċ0,1 . (Here
‖ · ‖Ċ0,1 stands for the Lipschitz norm).

We shall work with the so-called mild solution, whose definition we recall. In the
following we shall denote by � the realization of the Dirichlet Laplacian on different
function spaces. The same convention we are going to use for the semigroup S(t) :=
et�, t ≥ 0, generated by −�.

Definition 2.2 An L2-valued adapted process u is a mild solution to equation (2.1) if
f (u) ∈ L1([0, T] → L2) and it satisfies the integral equation

u(t) +
∫ t

0
S(t − s)

(
f (u(s)) − ηu(s)

)
ds = S(t)u0 +

∫ t

0
S(t − s)B dW(s) (2.2)

for all t ∈ [0, T].

As is well-known, in order for the stochastic integral in (2.2) to be a well-defined
(Gaussian) L2-valued random variable it is necessary (and sufficient) to assume that

∫ t

0
Tr

(
S(s)BB∗S(s)∗

)
ds < ∞ ∀t ∈ [0, T]. (2.3)

Let us also recall that this condition is weaker than requiring Q := BB∗ to be
trace-class (cf. e.g. [6, Chapter 2]). We shall actually work under the following
stronger standing assumption, which guarantees, as we are going to recall, that (2.1)
admits a unique mild solution with paths in a space of continuous functions.

Hypothesis 2.3 It holds

E sup
t≤T

∥∥∥
∫ t

0
S(t − s)B dW(s)

∥∥∥q

C(O)
< ∞ ∀q ≥ 1.

Conditions on B and O implying that this hypothesis is fulfilled are extensively
discussed in the literature (cf. e.g. [4, Chapter 6] and [6, Chapter 2]).
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In order to state the well-posedness and approximation results we need, let us fix
some further notation: we denote by Cq, 1 ≤ q < ∞, the space of adapted processes
u with values in C(O) such that

‖u‖Cq :=
(

E sup
t≤T

‖u(t)‖q
C(O)

)1/q

< ∞.

The following global well-posedness result holds true (see e.g. [7, Theorem 7.13 and
Remark 11.23], as well as [4, Proposition 6.2.2], for a proof).

Theorem 2.4 Let q ≥ 1 and assume that u0 ∈ L
q(C(O)). Then equation (2.1) admits a

unique mild solution u ∈ Cq.

Let us now introduce the regularized SPDE

duλ(t) − �uλ(t) dt + fλ(uλ(t)) dt = ηuλ(t) dt + B dW(t), u(0) = u0, (2.4)

where fλ, λ > 0, stands for the Yosida approximation of f , i.e.

fλ(x) := 1

λ
(x − Jλ(x)) , Jλ(x) := (I + λ f )−1(x).

Recall that fλ is increasing, Lipschitz continuous with Lipschitz constant bounded by
1/λ, and fλ → f pointwise as λ → 0. Moreover, Jλ is a contraction and fλ = f ◦ Jλ

(see e.g. [2] for a detailed discussion of the Yosida approximation). It is then clear
that Theorem 2.4 applies also to (2.4), yielding the existence and uniqueness of a
mild solution uλ ∈ Cq. Furthermore, the following convergence result holds true (see
[4, Proposition 6.2.5]).

Proposition 2.5 Let q ≥ 1 and assume that u0 ∈ L
q(C(O)). Then there exists a con-

stant N, independent of λ, such that

E sup
t≤T

‖uλ(t)‖q
C(O)

< N.

Moreover, one has

lim
λ→0

E sup
t≤T

‖uλ(t) − u(t)‖q
C(O)

= 0,

where u ∈ Cq denotes the (unique) mild solution to equation (2.1). In particular, one
has, for any (t, x) ∈ [0, T] × O,

lim
λ→0

E|uλ(t, x) − u(t, x)|q = 0.

3 An Alternative Expression for the SPDE (2.1)

The pathwise continuity in t and x of the solution to equation (2.2), which is
guaranteed by Theorem 2.4, allows us to pass to the random field formulation of
(2.2), i.e. as in [29], in a sense made precise in Proposition 3.1 below.
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It is classical that S(t) is a kernel operator for all t > 0, i.e. there exists a function
]0, T] × O × O � (t, x, y) �→ Gt(x, y), with Gt(·, ·) ∈ L∞(O × O) for all t ∈]0, T],
such that, for any 0 < t ≤ T,

S(t)φ =
∫
O

Gt(·, y)φ(y) dy

and

‖S(t)‖1→∞ = ‖Gt(·, ·)‖L∞(O×O),

where ‖ · ‖1→∞ stands for the L1 → L∞ operator norm. Since the semigroup S is
contracting in L∞ i.e. ‖S(t) f‖L∞ ≤ ‖ f‖L∞ for all t > 0, and it holds

Gt(x,O) =
∫
O

Gt(x, y) dy = [S(t)1O](x),

one has

sup
x∈O

Gt(x,O) = ‖S(t)1O‖L∞ ≤ 1. (3.1)

We have the following result, where we use the terminology introduced in [29] for
stochastic integrals.

Proposition 3.1 For q ≥ 1, let u0 ∈ L
q(C(O)) and denote the unique mild solution in

Cq to equation (2.2) by u. Setting u(t, x) := [u(t)](x), one has, for any (t, x) ∈]0, T] ×
O,

u(t, x) =
∫
O

Gt(x, y)u0(y) dy +
∫ t

0

∫
O

Gt−s(x, y) (ηu(s, y) − f (u(s, y))) dy, ds

+
∫ t

0

∫
O

Gt−s(x, y) W̄(ds, dy),

where W̄ stands for a martingale measure with covariance operator Q = BB∗.
Moreover,

E sup
(t,x)∈OT

|u(t, x)|q < ∞, (3.2)

where OT := [0, T] × O.

Proof It is readily seen that we only have to prove that, for any t ∈]0, T],
∫ t

0
S(t − s)B dW(s) =

∫ t

0

∫
O

Gt−s(·, y) W̄(ds, dy) (3.3)

as L2-valued random variables. Let us assume (without loss of generality) that,
formally,

W(t) =
∑
k∈N

ek wk(t), (3.4)
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where {ek}k∈N is a basis of L2 and {wk}k∈N is a family of independent standard one-
dimensional Brownian motions. Then we have, by the integral representation of S(·),

∫ t

0
S(t − s)B dW(s) =

∑
k∈N

∫ t

0
S(t − s)Bek dwk(s)

=
∑
k∈N

∫ t

0

∫
O

Gt−s(·, y)
[
Bek] (y) dy dwk(s),

where the series of ordinary Itô integrals are no longer formal by virtue of (2.3).
As far as the stochastic integral on the right-hand side of (3.3) is concerned, we

notice (see e.g. [8]) that it may be understood as a stochastic integral with respect to a
cylindrical Q-Wiener process {W̄h(t), h ∈ L2, t ≥ 0} in the sense of e.g. [21]. Namely,
by definition, the latter is a centered Gaussian family of random variables such
that, for any h ∈ L2, the process {W̄h(t), t ≥ 0} is a Brownian motion with variance
t〈Qh, h〉 and, for all s, t ≥ 0 and h, g ∈ L2,

E(W̄h(s)W̄g(t)) = (s ∧ t)〈Qh, g〉2. (3.5)

By an innocuous abuse of notation, this cylindrical Q-Wiener process will be also
denoted by W̄. Let us introduce the Hilbert space L2

Q, which we define as the
completion of L2 with respect to 〈h, g〉L2

Q
:= 〈Qh, g〉2. Then one can define the (real-

valued) stochastic integral with respect to W̄ of any L2
Q-valued square integrable

process as follows: let {ēk}k∈N be a basis of L2
Q and X ∈ L2(� × [0, T] → L2

Q) (see
e.g. [8, Section 2]), and set

∫ T

0

∫
O

X(s, y) W̄(ds, dy) :=
∑
k∈N

∫ t

0
〈X(s), ēk〉L2

Q
dW̄ēk(s).

Moreover, the L2-valued cylindrical Wiener process W of (3.4) determines a cylin-
drical Q-Wiener process W̄, with Q = BB∗, as follows: for any t ≥ 0 and h ∈ L2, set

W̄h(t) :=
∑
k∈N

∫ t

0
〈Bek, h〉2 dwk(s).

It is immediate that W̄h(t) is a centered Gaussian random variable and

E

(∑
k

∫ t

0
〈Bek, h〉2 dwk(s)

)2

= t
∑

k

〈ek, B∗h〉2
2 = t‖B∗h‖2

2 = t〈BB∗h, h〉2 = t〈Qh, h〉2.

In a completely similar way one verifies the covariance condition (3.5).
In order to prove (3.3), one just needs to take ēk := Q−1/2ek, where Q−1/2 denotes

the pseudo-inverse of Q1/2, whence one easily verifies that W̄ēk(s) = wk(s) and

∫
O

Gt−s(·, y)
[
Bek] (y) dy =

∫
O

Gt−s(·, y)
[
Qēk] (y) dy.
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We have thus proved the identities

∫ t

0
S(t−s)B dW(s)=

∑
k

∫ t

0

∫
O

Gt−s(·, y)
[
Bek] (y) dwk(s)=

∫ t

0

∫
O

Gt−s(·, y) W̄(ds, dy).

Finally, the estimate (3.2) is an immediate consequence of Theorem 2.4. ��

4 Auxiliary Results

We collect here some tools that we shall need in the next section. In particular, we
give a version of the chain rule for the Malliavin derivative, where a (Malliavin)
differentiable random variable is composed with an increasing function of polyno-
mial growth. The result, also without the monotonicity assumption, is certainly well-
known to experts (cf. e.g. [17, page 36]), but we include a proof for completeness
and because most standard references contain only a proof for functions of class C1

b
(cf. e.g. [24, Proposition 1.2.3]). Moreover, we prove some estimates for evolution
operators generated by time-dependent bounded perturbations of the Laplacian and
for regularizations via Yosida approximations as well as via mollification.

As usual, a function φ : R → R is said to be of polynomial growth if there exists
p ∈ N such that |φ(x)| � 1 + |x|p for all x ∈ R. We shall denote by Ck

pol(R) the space
of functions φ ∈ Ck(R) such that φ, φ′, . . . , φ(k) are of polynomial growth. It is not
difficult to see that, by the fundamental theorem of calculus, one can equivalently
say that Ck

pol(R) is the space of functions φ ∈ Ck(R) such that φ(k) is of polynomial
growth, and also that it is the space of functions φ ∈ Ck(R) for which there exists
p ∈ N such that

|φ(x)| + |φ′(x)| + · · · + |φ(k)(x)| � 1 + |x|p.

4.1 Malliavin Calculus

We shall repeatedly use the following strong-weak closability property of the Malli-
avin derivative (cf. e.g. [25, p. 78]). We use standard notation and terminology (see
e.g. [24]).

Lemma 4.1 Let k ∈ N, p ∈]1,∞[. Assume that limn→∞ Xn = X in Lp(�) and
supn∈N ‖Xn‖Dk,p < ∞. Then X ∈ D

k,p and Xn → X weakly in D
k,p.

We shall denote the Gaussian Hilbert space “supporting” the Malliavin calculus
by H. Moreover, we shall say that X ∈ D

k,∞ if X ∈ D
k,p for all p > 1.

Lemma 4.2 Let X ∈ D
1,∞, f ∈ C1

pol(R) and increasing. Then f (X) ∈ D
1,∞ and

Df (X) = f ′(X)DX.

Proof Assume, without loss of generality, that | f (x)| + | f ′(x)| � 1 + |x|p, with p ∈
N. Let fλ, λ > 0, denote the Yosida approximation of f . Since fλ → f pointwise and
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f is continuous, one has fλ(X) → f (X) P-a.s. as λ → 0. Moreover, recalling that
| fλ| ≤ | f |, hence that, for any q ≥ 1,

| fλ(x) − f (x)|q ≤ 2q| f (x)|q � 1 + |x|qp,

and E|X|qp < ∞, the dominated convergence theorem yields

lim
λ→0

E| fλ(X) − f (X)|q = 0 ∀q ≥ 1. (4.1)

Appealing to the inverse function theorem, it is easy to show that f ∈ C1 implies
f ′
λ ∈ Cb , and

J′
λ(x) = 1

1 + λ f ′(Jλ(x))
, f ′

λ(x) = f ′(Jλ(x))

1 + λ f ′(Jλ(x))
.

In particular, since fλ is Lipschitz continuous, one has fλ ∈ C1
b , so that the “classical”

chain rule (see e.g. [24, Proposition 1.2.3]) implies that fλ(X) ∈ D
1,∞ and Dfλ(X) =

f ′
λ(X)DX. Let us check now that, for any q ≥ 1, it holds

sup
λ>0

E‖Dfλ(X)‖q
H < ∞. (4.2)

By the above expression for f ′
λ and f ′ ≥ 0 it immediately follows that

| f ′
λ(x)| ≤ | f ′(Jλ(x))| � 1 + |Jλ(x)|p ≤ 1 + |x|p,

hence, by Cauchy-Schwarz’ inequality,

E‖Dfλ(X)‖q
H ≤ (

E| f ′
λ(X)|2q)1/2

(
E‖DX‖2q

H

)1/2
�

(
1 + E|X|2pq)1/2

(
E‖DX‖2q

H

)1/2
.

The right-hand side is finite and independent of λ, thus (4.2) is proved. In particular,
(4.1) and (4.2) imply that f (X) ∈ D

1,∞ and Dfλ(X) converges to Df (X) weakly in
L

q(H) as λ → 0, for all q ≥ 1. Since the weak limit is unique, in order to prove that
Df (X) = f ′(X)DX, it suffices to show that

lim
λ→0

E‖Dfλ(X) − f ′(X)DX‖q
H = 0.

Observe that

E‖Dfλ(X) − f ′(X)DX‖q
H = E

(| f ′
λ(X) − f ′(X)|q‖DX‖q

H

)

≤ (
E| f ′

λ(X) − f ′(X)|2q)1/2
(
E‖DX‖2q

H

)1/2
,

and that, by the expression of f ′
λ, one has f ′

λ → f ′, hence f ′
λ(X) → f ′(X) P-a.s. as

λ → 0. Moreover, taking into account that

| f ′
λ(x) − f ′(x)| =

∣∣∣ f ′(Jλ(x))

1 + λ f ′(Jλ(x))
− f ′(x)

∣∣∣ ≤ | f ′(Jλ(x))| + | f ′(x)| � 1 + |x|p,
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one also has

| f ′
λ(X) − f ′(X)|2q � 1 + |X|2pq,

hence, by the dominated convergence theorem, f ′
λ(X) → f ′(X) in L2q(�) as λ → 0,

and the proof is finished. ��

4.2 Time-Dependent Evolution Operators

Using the notation introduced in Section 2, let F : [0, T] → L∞+ , and consider the
following linear evolution equation on L2:

dy(t) − �y(t) + F(t)y(t) = 0, y(s) = y0 ∈ L2, 0 ≤ s ≤ t ≤ T. (4.3)

Here Lp
+, p ∈ [1, ∞], denotes the set of (equivalence classes of) functions φ ∈ Lp

such that φ ≥ 0 a.e.. The evolution operator U(t, s) is then defined by y(t) =:
U(t, s)y0.

Proposition 4.3 For any 0 ≤ s < t ≤ T, the following properties hold true:

(i) U(t, s) is positivity preserving, i.e. y0 ≥ 0 implies U(t, s)y0 ≥ 0;
(ii) U(t, s) ≤ S(t − s), i.e. y0 ≥ 0 implies U(t, s)y0 ≤ S(t − s)y0;

(iii) U(t, s) is ultracontractive, i.e. its L1 → L∞ norm is f inite.
(iv) U(t, s) is a kernel operator, i.e. there exists a function k : [0, T]2 × O2 → R+

such that

[
U(t, s)φ

]
(x) =

∫
O

k(t, s; x, y)φ(y) dy.

Proof (i) Let y0 ≥ 0 and y(·) be a strong solution (without loss of generality) of
(4.3), where we assume, for simplicity, s = 0. Taking the scalar product with y− and
integrating with respect to time, we obtain, denoting the L2 norm by ‖ · ‖,

1

2
‖y−(t)‖2 +

∫ t

0
‖∇y−(r)‖2 dr +

∫ t

0

〈
F(r)y−(r), y−(r)

〉
dr = ‖y−

0 ‖2,

hence ‖y−(t)‖2 ≤ 2 ‖y−
0 ‖2 = 0, i.e. y(t) ≥ 0 for all t ∈ [0, T]. (ii) Let z be the solution

to z′ − �z = 0, z(0) = y0. Then one has

d
dt

(y − z)(t) − �(y − z)(t) + F(t)y(t) = 0, (y − z)(0) = 0,

hence, taking the scalar product with (y − z)+ and integrating,

∥∥(y(t) − z(t))+
∥∥2 +

∫ t

0

∥∥∇(y(r) − z(r))+
∥∥2

dr +
∫ t

0

〈
F(r)y(r), (y(r) − z(r))+

〉
ds = 0,

which yields, recalling that, by (i), y(r) ≥ 0 for all r, y(t) ≤ z(t) for all t. (iii) Note that,
by (i), one has

|U(t, s)y0| = |U(t, s)y+
0 − U(t, s)y−

0 | ≤ |U(t, s)y+
0 | + |U(t, s)y−

0 |
= U(t, s)y+

0 + U(t, s)y−
0 = U(t, s)|y0|,
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therefore

|U(t, s)y0| ≤ U(t, s)|y0| ≤ S(t − s)|y0| ∈ L∞,

which immediately implies U(t, s)y0 ∈ L∞. (iv) is a direct consequence of (iii), thanks
to a classical criterion of Dunford and Pettis (see e.g. [14, Chapter XI, Section 1]). ��

4.3 Regularizations

In the next Lemma we use the notation introduced immediately after Theorem 2.4.

Lemma 4.4 Let f ∈ Cm
pol(R) be an increasing function such that | f (n)(x)| � 1 + |x|p

for all n = 0, 1, . . . , m. Then the following properties hold:

(i) fλ and Jλ belong to Cm(R);
(ii) for λ ≤ 1, there exists q ∈ N, independent of λ, such that | f (n)

λ (x)| � 1 + |x|q for
all n = 0, 1, . . . , m.

(iii) f (n)
λ converges pointwise to f (n) as λ → 0 for all n = 0, 1, . . . , m.

Proof Since Jλ = (I + λ f )−1, and f ′ ≥ 0, the inverse function theorem implies that,
if f is of class Cm, then also Jλ is of class Cm. Moreover, the identity λ fλ = I − Jλ

implies that also fλ is of class Cm, hence (i) is proved.
(ii) The polynomial growth of fλ is obvious by the inequality | fλ| ≤ | f |. Moreover,
recalling that fλ = f ◦ Jλ, that Jλ is of class Cm and is a contraction, we have

| f ′
λ(x)| = | f ′(Jλ(x))| |J′

λ(x)| ≤ | f ′(Jλ(x))| � 1 + |Jλ(x)|p ≤ 1 + |x|p.

Taking into account that λ f ′′
λ = J′′

λ and that

f ′′
λ = f ′′(Jλ)(J′

λ)
2 + f ′(Jλ)J′′

λ,

one gets (1 + λ f ′(Jλ)) f ′′
λ = f ′′(Jλ)(J′

λ)
2, which implies

| f ′′
λ (x)| ≤ | f ′′(Jλ(x))| � 1 + |Jλ(x)|p ≤ 1 + |x|p. (4.4)

Unfortunately it does not seem possible to extend such elementary arguments to
obtain the polynomial growth of f (n)

λ . We can nonetheless argue as follows: by
Arbogast’s formula1 (see e.g. [12]) one has

f (n)
λ =

∑ n!
b 1!b 2! · · · b n! f (k)(Jλ)

(
J′
λ

1!
)b 1

(
J′′
λ

2!
)b 2

· · ·
(

J(n)

n!
)b n

,

where the sum is taken over all possible combinations of {b 1, b 2, . . . , b n} ⊂ N ∪ {0}
such that

b 1 + 2b 2 + · · · + nb n = n and b 1 + b 2 + · · · + b n = k.

1This formula is better known as Faà di Bruno’s formula. The latter attribution, however, seems to
be historically incorrect.
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In particular, note that there is only one possible term of the series containing
f ′(Jk), precisely the one corresponding to b 1 = b 2 = · · · = b n−1 = 0, b n = 1, that is
f ′(Jλ)J(n)

λ . Similarly, there is only one possible term containing f (n)(Jλ), precisely the
one corresponding to b 1 = n, b 2 = b 3 = · · · = b n = 0, that is f (n)(Jλ)(J′

λ)
n. Recalling

that λ f (n)
λ = −J(n)

λ , we have
(
1 + λ f ′ (Jλ)

)
f (n)
λ = f (n)

(
Jλ)(J′

λ

)n + Sn−1, (4.5)

hence
∣∣ f (n)

λ

∣∣ ≤ ∣∣ f (n)(Jλ)
∣∣ + |Sn−1|,

where Sn−1 is a finite sum of terms involving only f (k)(Jλ) and powers of J(k)
λ , for

k = 1, . . . , n − 1. Using once again that λ f (k)
λ = −J(k)

λ , we conclude that Sn−1 is a
finite sum of terms involving only f (k)(Jλ) and powers of λ f (k)

λ , for k = 1, . . . , n − 1.
Taking λ ≤ 1, since | f (k)(Jλ(x))| � 1 + |x|p for all k = 1, . . . , n, recalling that f ′′

λ

satisfies (4.4), we obtain that there exists q3 ∈ N such that | f (3)
λ (x)| � 1 + |x|q3 . By

iteration one ends up with | f (k)
λ (x)| � 1 + |x|qk for each k = 0, 1, . . . , m. Since m is

finite, this implies the claim. (iii) It is known that fλ → f pointwise as λ → 0. That
f ′
λ → f ′ pointwise as λ → 0 has been proved in Lemma 4.2. Passing to the limit

(pointwise) as λ → 0 in (4.5) we obtain

lim
λ→0

f (n)
λ = f (n) + lim

λ→0
Sn−1,

where we have used that Jλ → I and

lim
λ→0

J′
λ(x) = lim

λ→0

1

1 + λ f ′(Jλ(x))
= 1.

The claim is proved if we show that Sn−1 → 0 pointwise as λ → 0. For n = 2 one has
S1 = 0, hence the claim holds. For n ≥ 3, we observe that each term in Sn−1 is of the
form

cf (i)(Jλ)
(
J′
λ

)h1
(
J′′
λ

)h2 · · ·
(

J(n−1)
λ

)hn−1

,

where c is a positive number, 1 ≤ i, h1 ≤ n − 1, and h2, h3, . . . , hn−1 are nonnegative
integers with at least one of them, say hs, greater than 1. Let 2 ≤ σ := hs. Recall that

J(σ )
λ = −λ f (σ )

λ ,

therefore the generic term of Sn−1, hence Sn−1 itself, converges to zero as λ → 0. ��

Let us introduce mollifiers in the following (standard) way: for ζ ∈ C∞(R) pos-
itive, with support contained in [−1, 1] and

∫
R

ζ = 1, set, for any β > 0, ζβ(x) :=
β−1ζ(x/β).

Lemma 4.5 Let f : R → R be such that | f (x)| � 1 + |x|p, and fβ = f ∗ ζβ , β ≤ 1.
Then one has

| fβ(x)| ≤ N(1 + |x|p) ∀x ∈ R,

where the constant N does not depend on β.
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Proof Assume that | f (x)| ≤ N1(1 + |x|p). By the triangle inequality and the proper-
ties of ζ one has

| fβ(x)| ≤
∫

R

| f (x − y)|ζβ(y) dy ≤ N1

∫
R

(
1 + |x − y|p) ζβ(y) dy

≤ N1(1 + |x|p) + N1

∫
R

|y|pζβ(y) dy

= N1(1 + |x|p) + N1β
p
∫

R

|y|pζ(y) dy

≤ N1(2 + |x|p).

��

5 Existence and Smoothness of the Density

In this section, we provide sufficient conditions on the data of the problem implying
that the law of u(t, x) is absolutely continuous with respect to the Lebesgue measure
and that the corresponding density is a differentiable function. More precisely, we
will prove the following result.

Theorem 5.1 Assume that u0 ∈ C(O) and let u ∈ ⋂
q∈N

Cq be the mild solution to
(2.1). Furthermore, assume that there exists γ ∈ (0, 2) such that, for all x ∈ O, there
exists a constant cx > 0 such that, for any t ∈ (0, 1),

g(x, t) :=
∫ t

0
‖Gs(x, ·)‖2

L2
Q

ds ≥ cx tγ . (5.1)

(a) If f ∈ C1
pol(R) is increasing, then, for any (t, x) ∈]0, T] × O, the random variable

u(t, x) is absolutely continuous with respect to the Lebesgue measure.
(b) Moreover, if, for some integer m ≥ 2, f ∈ Cm

pol(R), then the density of u(t, x)

belongs to Cm−2(R).

As we shall see below, assumption 5.1 is not needed to prove Malliavin regularity
of u(t, x). It is instead needed to prove finiteness of negative moments of the
Malliavin matrix (which reduces to a real random variable in the present setting).
Moreover, as explained in Remark 5.10, in order to prove the existence of a density,
condition 5.1 can be slightly weakened. Nevertheless, for the sake of conciseness and
clarity, we have decided to state only one condition of the term g(x, t).

Remark 5.2 The hypothesis on the initial datum in the previous theorem may be
relaxed to u0 ∈ L

q(C(O)) for all q ≥ 1, and u0 ∈ L∞(O → D
1,∞). However, it does

not seem natural to assume the initial datum to have such regularity.

Let us give some examples of domains O and covariance operators Q = BB∗
satisfying condition 5.1 above.

Example 5.3 Let d = 1, O = (0, 1) and B = I. Then (5.1) holds with γ = 1
2 (see e.g.

[1, (A.3)]).
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Example 5.4 Let O = (0, π)d. Define, for any k = (k1, . . . , kd) ∈ N
d,

ek(x) :=
(

2

π

) d
2

sin(k1x1) · · · sin(kdxd), x ∈ O.

It is readily checked that the family {ek}k∈Nd is an orthonormal basis of L2(O)

such that

−�ek = |k|2 ek,

where |k|2 := k2
1 + · · · + k2

d. Set B = (I − �)−m for m ≥ 0. Then, since Q = (I −
�)−2m, one has

g(x, t) =
∫ t

0

∫
O

Gs(x, y)[QGs(x, ·)](y) dy, ds

=
∫ t

0

∑
k∈Nd

(
1 + |k|2)−m 〈Gs(x, ·), ek〉2

L2 ds

=
∫ t

0

∑
k∈Nd

(
1 + |k|2)−m

e−2s|k|2 |ek(x)|2 ds

= 1

2

∑
k∈Nd

(
1 + |k|2)−m |k|−2

(
1 − e−2t|k|2

)
|ek(x)|2.

Using the fact that |ek(x)| is uniformly bounded with respect to k and x, one easily
verifies that m > d

2 − 1 implies that the last series is finite. Moreover, we have that

1 − e−2t|k|2 ≥ 2t|k|2
1 + 2t|k|2 ≥ 2t|k|2

1 + 2T|k|2 .

Hence

g(x, t) ≥ t
∑
k∈Nd

(
1 + |k|2)−m (

1 + 2T|k|2)−1 |ek(x)|2

and this series can be bounded from below by any of its summands, such as the one
corresponding to k = (1, . . . , 1) ∈ N

d. Therefore g(x, t) ≥ cxt, with

cx := (1 + d)−m (1 + 2Td)−1

(
2

π

) d
2

sin(x1) · · · sin(xd).

Since x ∈ (0, π)d, it is clear that cx > 0, which implies that condition 5.1 is fulfilled
with γ = 1.

Before turning to the study of the Malliavin differentiability of the solution to
(2.1), let us recall that the underlying Gaussian space on which to perform Malliavin
calculus is given by the isonormal Gaussian process on the Hilbert space H :=
L2([0, T] → L2

Q), which can be naturally associated to the cylindrical Wiener process
W̄ with covariance Q. With a slight (but harmless) abuse of notation we shall write
W instead of W̄ for notational convenience.



Densities for Parabolic Semilinear SPDEs 301

5.1 Malliavin Differentiability

The purpose of this subsection is to prove regularity of the collection of random
variables {u(t, x)}(t,x)∈OT in the sense of Malliavin. Proposition 5.5 concerns the
Malliavin differentiability of order one, while Proposition 5.7 treats higher-order
Malliavin derivatives.

Proposition 5.5 Assume that

(i) u0 ∈ C(O);
(ii) f is increasing and belongs to C1

pol(R);
(iii) Q is positivity preserving.

Let u ∈ ⋂
q≥1 Cq be the mild solution to (2.1). Then, for any (t, x) ∈ OT, one has

u(t, x) ∈ D
1,∞. Moreover, the Malliavin derivative Du(t, x) satisf ies the following

linear equation in H:

Du(t, x) = v0(t, x) +
∫ t

0

∫
O

Gt−s(x, y)(η − f ′(u(s, y)))Du(s, y) dy, ds (5.2)

where v0(t, x) := (τ, z) �→ Gt−τ (x, z) 1[0,t](τ ). Furthermore, one has, for all q ≥ 1,

sup
(t,x)∈OT

E‖Du(t, x)‖q
H < ∞. (5.3)

Proof Since fλ is Lipschitz continuous and of class C1, slight modifications of the
“classical” results (cf. e.g. [25]) imply that, for any (t, x) ∈ OT , uλ(t, x) belongs to
D

1,∞ and satisfies the following linear deterministic integral equation with random
coefficients:

Duλ(t, x) = v0(t, x) +
∫ t

0

∫
O

Gt−s(x, y)(η − f ′
λ(uλ(s, y)))Duλ(s, y) dy, ds.

Recall that, by Proposition 5.5, one has, for any q ≥ 1,

E|uλ(t, x) − u(t, x)|q → 0

as λ → 0, for all (t, x) ∈ OT . Therefore, by Lemma 4.1, in order to conclude that
u(t, x) belongs to D

1,∞ for all (t, x) ∈ OT , it suffices to show that for all q ≥ 1 and
(t, x) ∈ OT , one has

sup
λ>0

E‖Duλ(t, x)‖q
H < ∞. (5.4)

Let {hk}k∈N be an orthonormal basis of H, and set

ϕk
λ(t, x) := 〈Duλ(t, x), hk〉H, (t, x) ∈ OT .

Then ϕk
λ(t) := ϕk

λ(t, ·), 0 ≤ t ≤ T, satisfies the deterministic evolution equation with
random coefficients

d
dt

ϕk
λ(t) − �ϕk

λ(t) + Fλ(t)ϕk
λ(t) = �k(t), ϕk

λ(0) = 0, (5.5)
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where Fλ(t) := f ′
λ(uλ(t, ·)) − η and �k(t) := Qhk(t). In fact, one has

〈v0(t, x), hk〉H =
∫ t

0
〈Gt−s(x, ·), hk(s)〉L2

Q
ds =

∫ t

0

∫
O

Gt−s(x, y)
[
Qhk(s)

]
(y) dy, ds

=
[∫ t

0
S(t − s)Qhk(s) ds

]
(x).

From now we assume, without loss of generality, that η = 0 (if not, it is enough
to write the corresponding equation for t �→ e−ηtϕλ(t), multiplying by e−ηt the term
�k(t)).

Fix ω ∈ �, and let (s, t) �→ Uλ(t, s), s ≤ t, denote the family of evolution operators
generated by the time-dependent linear operator −� + Fλ(t). Then we can write

ϕk
λ(t) =

∫ t

0
Uλ(t, s)�k(s) ds,

thus also, denoting the integral kernel of Uλ(t, s) (that exists by Proposition 4.3 (iv)),
by kλ(t, s; ·, ·),

ϕk
λ(t, x) =

∫ t

0

∫
O

kλ(t, s; x, y)�k(s, y) dy, ds.

This yields

‖Duλ(t, x)‖2
H =

∑
k∈N

|ϕk
λ(t, x)|2 =

∑
k∈N

∣∣∣
∫ t

0

∫
O

kλ(t, s; x, y)�k(s, y) dy, ds
∣∣∣2

=
∑
k∈N

∣∣〈kλ(t, ·; x, ·)1[0,t](·), hk〉L2([0,T]→L2
Q)

∣∣2

=
∫ t

0
‖kλ(t, s; x, ·)‖2

L2
Q

ds.

Note that Proposition 4.3 (ii) implies kλ(t, s) ≤ Gt−s pointwise for all 0 ≤ s < t ≤ T.
Using that Q is positivity preserving, we are left with

‖Duλ(t, x)‖2
H ≤

∫ t

0
‖Gt−s(x, ·)‖2

L2
Q

ds = ‖v0(t, x)‖2
H. (5.6)

Let us now show that ‖v0(t, x)‖2
H is uniformly bounded over t and x. In fact, one has

‖v0(t, x)‖2
H =

∫ t

0
‖Gt−τ (x, ·)‖2

L2
Q

dτ =
∫ t

0
‖B∗Gt−τ (x, ·)‖2

2 dτ

=
∫ t

0

∑
k∈N

〈Gt−τ (x, ·), Bek〉2
2 dτ =

∫ t

0

∑
k≥1

(∫
O

Gt−τ (x, y)[Bek](y) dy
)2

dτ

=
∑
k∈N

∫ t

0

[
S(t − τ)Bek](x)2 dτ
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where {ek}k∈N is an orthonormal basis of L2. The identities

E|WA(t, x)|2 = E

∣∣∣ ∑
k∈N

∫ t

0

[
S(t − s)Bek](x) dwk(s)

∣∣∣2 =
∑
k∈N

∫ t

0

[
S(t − s)Bek](x)2 ds

yield ‖v0(t, x)‖2
H = E|WA(t, x)|2 for all (t, x) ∈ OT . Thanks to Hypothesis 2.3 we infer

that there exists a constant N = N(q), independent of λ, such that

sup
(t,x)∈OT

E‖Duλ(t, x)‖q
H < N.

We have thus proved that u(t, x) ∈ D
1,∞ for all (t, x) ∈ OT . It is therefore lawful to

apply the Malliavin derivative to the equation satisfied by u, obtaining

Du(t, x) = v0(t, x) −
∫ t

0

∫
O

Gt−s(x, y)Df (u(s, y) dy, ds.

Then, appealing to the chain rule proved in Lemma 4.2, we obtain that the Malliavin
derivative Du(t, x) satisfies equation (5.2).

In order to conclude, we only have to show that estimate (5.3) holds true. The
argument is essentially the same as above, hence it is only sketched. Still assuming
η = 0 without loss of generality, setting F(t, x) := f ′(u(t, x)), one has that ϕk(t, x) :=
〈Du(t, x), hk〉H satisfies the linear deterministic evolution equation with random
coefficients

d
dt

ϕk(t) − �ϕk(t) + F(t)ϕk(t) = �k(t), ϕk(0) = 0.

Let �′ ⊂ � with P(�′) = 1 such that (t, x) �→ u(t, x, ω) ∈ C([0, T] × Ō) for all ω ∈ �′.
Fix ω ∈ �′. Then (t, x) �→ F(t, x) is positive and continuous, hence bounded on the
compact set [0, T] × Ō. One can then construct the evolution operator associated to
−� + F, and proceeding exactly as above one arrives at

sup
(t,x)∈OT

E‖Du(t, x)‖q
H < ∞,

so that the proof is complete. ��

Remark 5.6 Condition (iii) in Proposition 5.5 above does not have to be considered
an important restriction. Indeed, this condition is satisfied in the spatially homoge-
neous counterpart when dealing with existence and smoothness of the density for
stochastic heat and wave equations in R

d (see e.g. [26]).

Proposition 5.7 Let m ∈ N, m ≥ 2. Assume that

(i) u0 ∈ C(O);
(ii) f is increasing and belongs to Cm

pol(R);
(iii) Q is positivity preserving.
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Let u ∈ ∩q∈NCq be the unique mild solution to (2.1). Then, for any (t, x) ∈ OT, one
has u(t, x) ∈ D

m,∞ and

sup
(t,x)∈OT

‖u(t, x)‖Dm,q < ∞ ∀q ≥ 1.

Proof Let p ∈ N be such that | f (x) + | f ′(x)| + · · · + | f (m)(x)| � 1 + |x|p for all r ∈
R. By Proposition 5.5, we have that u(t, x) ∈ D

1,∞ for all (t, x) ∈ OT . Let us consider
the regularized equation (2.4): since fλ needs not have bounded derivatives of order
two and higher, we cannot apply “classical” results (cf. e.g. [25]) to deduce that, for
any (t, x) ∈ OT , uλ(t, x) belongs to D

m,∞. For this reason, we introduce a further
regularization: let {ζβ}β be a family of mollifiers as in Lemma 4.5 above. Note that
f (n)
λβ = f ′

λ ∗ ζ
(n−1)
β for all n ≥ 1, hence fλβ has bounded derivatives of every order. Let

uλβ be the unique mild solution in ∩q∈NCq to the equation

duλβ(t) − �uλβ(t) dt + fλβ(uλβ(t)) dt = ηuλβ(t) dt + B dW(t), uλβ(0) = u0. (5.7)

We split the rest of the proof in three steps: first we show that, for any (t, x) ∈ OT ,
one has uλβ(t, x) → u(t, x) in L

q as β → 0. Then we obtain the uniform bound

sup
(t,x)∈OT

E
∥∥Dnuλβ(t, x)

∥∥
H⊗n < N, (5.8)

where N is a constant independent of λ and β. Finally we pass to the limit as β → 0
and λ → 0.

Step 1. We assume again, without loss of generality, that η = 0. It is easily seen that
it holds

uλβ(t) − uλ(t) =
∫ t

0
S(t − s)

(
fλ(uλ(s)) − fλβ(uλβ(s))

)
ds,

hence, recalling that S(t) is contracting in L∞(O) and denoting the norm of this space
by ‖ · ‖,

∥∥uλβ(t) − uλ(t)
∥∥ ≤

∫ t

0

∥∥ fλ(uλ(s)) − fλβ(uλβ(s))
∥∥ ds.

This yields, by the triangle inequality,

∥∥uλβ(t) − uλ(t)
∥∥ ≤

∫ t

0

∥∥ fλβ(uλβ(s)) − fλβ(uλ(s))
∥∥ ds

+
∫ t

0

∥∥ fλβ(uλ(s)) − fλ(uλ(s))
∥∥ ds

≤ 1

λ

∫ t

0

∥∥uλβ(s) − uλ(s)
∥∥ ds + Iβ,

where

Iβ :=
∫ T

0

∥∥ fλβ(uλ(s)) − fλ(uλ(s))
∥∥ ds.
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By Gronwall’s inequality and some obvious manipulations, one arrives at

E sup
t≤T

∥∥uλβ(t) − uλ(t)
∥∥q ≤ eqT/λ

EIq
β .

Let us show that EIq
β → 0 as β → 0: since fλ is continuous, fλβ converges uniformly

to fλ as β → 0. Therefore, as uλ(s) ∈ C(O) P-a.s., we also have that the integrand in
the definition of Iβ converges to zero P-a.s. as β → 0. Taking into account that

∥∥ fλβ(uλ(s)) − fλ(uλ(s))
∥∥q �λ 1 + ‖uλ(s)‖q,

and that E
∫ T

0 ‖uλ(s)‖q ds < ∞, we get, by the dominated convergence theorem, that
EIq

β → 0, hence also

E sup
t≤T

∥∥uλβ(t) − uλ(t)
∥∥q

C(O)
→ 0

as β → 0, for any q ≥ 1.

Step 2. For n = 1 it is easily seen that (5.8) holds true, simply by the previous
proposition, noting that f ′

λβ = f ′
λ ∗ ζβ ≥ 0. For the sake of clarity, let us explicitly

show, in the case n = 2, how estimate (5.8) is implied by the corresponding one
with n = 1. Then the general induction step will be clear. As before, we shall
assume, without loss of generality, that η = 0. Since, as already observed before, fλβ
has bounded derivatives of every order, we infer that uλβ(t, x) ∈ D

2,∞, the iterated
Malliavin derivative D2uλβ(t, x) takes values in H⊗2 and satisfies

D2uλβ(t, x) +
∫ t

0

∫
O

Gt−s(x, y) f ′′
λβ(uλβ(s, y))(Duλβ(s, y))⊗2 dy, ds

+
∫ t

0

∫
O

Gt−s(x, y) f ′
λβ(uλβ(s, y)))D2uλβ(s, y) dy, ds = 0.

Let {hk}k∈N be an orthonormal basis of H⊗2 and set

ϕk
λβ(t, x) := 〈D2uλβ(t, x), hk〉H⊗2 , k ∈ N.

Then ϕk
λβ(t) := ϕk

λβ(t, ·) satisfies the following linear deterministic evolution equation
with random coefficients

d
dt

ϕk
λβ(t) − �ϕk

λβ(t) + Fλβ(t)ϕk
λβ(t) = �k

λβ(t), ϕk
λβ(0) = 0, (5.9)

where

Fλβ(t) := f ′
λβ(uλβ(t, ·)), �k

λβ(t) := f ′′
λβ(uλβ(t, ·))〈(Duλβ(t, ·))⊗2, hk〉H⊗2 .

Then we have

ϕk
λβ(t) =

∫ t

0
Uλβ(t, s)�k

λβ(s) ds,



306 C. Marinelli et al.

hence also, denoting the kernel of Uλβ(t, s) by kλβ(t, s; ·, ·),

|ϕk
λβ(t, x)|2 =

∣∣∣
∫ t

0

∫
O

kλβ(t, s; x, y)�k
λβ(s, y) dy, ds

∣∣∣2

≤
(∫ t

0

∫
O

kλβ(t, s; x, y)|�k
λβ(s, y)| dy, ds

)2

≤
(∫ t

0

∫
O

Gt−s(x, y)|�k
λβ(s, y)| dy, ds

)2

� T

∫ t

0

∫
O

Gt−s(x, y)|�k
λβ(s, y)|2 dy, ds,

where we have used the estimate kλβ ≤ G in the first inequality, and Cauchy-
Schwarz’ inequality in the third inequality, recalling that S(t) is contracting in L∞
(cf. (3.1)).

Summing over k, Tonelli’s theorem yields

‖D2uλβ(t, x)‖2
H⊗2 =

∑
k∈N

|ϕk
λβ(t, x)|2 �T

∫ t

0

∫
O

Gt−s(x, y)
∑
k∈N

|�k
λβ(s, y)|2 dy, ds

=
∫ t

0

∫
O

Gt−s(x, y)‖�λβ(s, y)‖2
H⊗2 dy, ds.

where

�λβ(t, x) := f ′′
λβ(uλβ(t, x))(Duλβ(t, x))⊗2.

Hölder’s inequality and Tonelli’s theorem then imply

E‖D2uλβ(t, x)‖q
H⊗2 �T

∫ t

0

∫
O

Gt−s(x, y)E‖�λβ(s, y)‖q
H⊗2 dy, ds,

that is,

sup
(t,x)∈OT

E‖D2uλβ(t, x)‖q
H⊗2 �T sup

(t,x)∈OT

E‖�λβ(t, x)‖q
H⊗2 .

Let us show that the right-hand side is finite: by Cauchy-Schwarz’ inequality, we have

E‖�λβ(t, x)‖q
H⊗2 �

(
E| f ′′

λβ(uλβ(t, x))|2q)1/2
(
E‖Duλβ(t, x)‖4q

H

)1/2
.

Assume, without loss of generality, λ ≤ 1, β ≤ 1. Since f ′′
λβ = f ′′

λ ∗ ζβ , and, by Lemma
4.4, there exists σ ∈ N such that | f ′′

λ (x)| � 1 + |x|σ , by Lemma 4.5 we also have
| f ′′

λβ(x)| � 1 + |x|σ . Therefore

E‖�λβ(t, x)‖q
H⊗2 �

(
1 + E|uλβ(t, x)|2qσ

)1/2
(
E‖Duλβ(t, x)‖4q

H

)1/2
,

where both terms on the right hand side are uniformly bounded over t, x, λ, and β

by results already proved; in fact, as for uλ itself, the boundedness of the first term
on the right-hand side above follows from Proposition 6.2.2 in [4], since fλβ is also
monotone. The claim is then verified for n = 2.
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The general case is proved by induction in a completely similar way. In particular,
assume that, given 3 ≤ n < m, one has the uniform bound

sup
(t,x)∈OT

‖uλβ(t, x)‖Dn−1,q < N,

with N independent of λ and β. Let {hk}k∈N be an orthonormal basis of H⊗n, and set

ϕk
λβ(t, x) := 〈Dnuλβ(t, x), hk〉H⊗n .

Then ϕk(t, ·) satisfies an equation of the form (5.9), where �k is a sum of finitely
many terms depending on uλβ and on its Malliavin derivatives of order not greater
than n − 1, whence

sup
(t,x)∈OT

E‖�λβ(t, x)‖q
H⊗n < N,

with N a constant that does not depend on λ nor on β. Moreover, by an argument
completely analogous to one already used before, one shows that

sup
(t,x)∈OT

E‖Dnuλβ(t, x)‖q
H⊗n � sup

(t,x)∈OT

E‖�λβ(t, x))‖q
H⊗n < N,

where N is the same constant of the previous inequality.

Step 3. Let q > 1. By the previous steps and Lemma 4.1, passing to the limit as β → 0,
we obtain uλ(t, x) ∈ D

m,q for all (t, x) ∈ OT , and also, by lower semicontinuity of the
norm with respect to weak convergence,

E‖Dnuλ(t, x)‖q
H⊗n ≤ lim inf

β→0
E‖Dnuλβ(t, x)‖q

H⊗n ,

which implies, together with the last inequality,

sup
(t,x)∈OT

E‖Dnuλ(t, x)‖q
H⊗n < N.

Recalling that, by Proposition 2.5, uλ(t, x) → u(t, x) in L
q as λ → 0 for all (t, x) ∈ OT ,

appealing again to Lemma 4.1, we arrive at u(t, x) ∈ D
m,q for all (t, x). Since q is

arbitrary, we conclude that u(t, x) ∈ D
m,∞ for all (t, x). ��

Remark 5.8 As briefly pointed out in the Introduction, trying to adapt the techniques
developed in the previous sections to the case of SPDEs with multiplicative noise
gives rise to major difficulties. In particular, while well-posedness and approximation
results analogous to those of Section 2 are available (cf. [5, 15, 18, 19]), the equation
satisfied (formally, at least) by the Malliavin derivative of the solution to an SPDE
with multiplicative noise is no longer a PDE with random coefficient, but a further
SPDE (with solutions taking values in a different Hilbert space) whose coefficients
depends on the solution of the original SPDE, and whose inital datum, which also
depends on the solution of the original SPDE, is very singular (a Dirac delta in the
time variable). Therefore, in order to adapt the proofs of Propositions 5.5 and 5.7,
one needs at least to establish a comparison principle for such “bad” SPDEs. It is
unfortunately far from clear, at least for us, how to address these problems, to which
we hope to return elsewhere.
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5.2 Analysis of the Malliavin Matrix

In this subsection, we shall use a standard method in order to prove that the inverse of
the Malliavin matrix (which reduces, in our case, to a random variable) has moments
of all orders (see e.g. [26, Theorem 6.2]).

Proposition 5.9 Assume that f ∈ C1
pol(R) is increasing and that there exists γ ∈ (0, 2)

such that, for all x ∈ O, there exists a constant cx > 0 such that, for any t ∈ (0, 1),

g(x, t) =
∫ t

0
‖Gs(x, ·)‖2

L2
Q

ds ≥ cx tγ .

Then, for any (t, x) ∈]0, T] × O, one has

E‖Du(t, x)‖−q
H < ∞ ∀q ≥ 1.

Proof By [24, Lemma 2.3.1], it suffices to prove that, for any q ≥ 2, there exists
ε0(q) > 0 such that, for all ε ≤ ε0,

P
(‖Du(t, x)‖2

H < ε
)
� εq. (5.10)

Let (t, x) ∈]0, T] × O be fixed. Observe that we are assuming the same hypotheses
as in Proposition 5.5. Hence u(t, x) belongs to D

1,∞ and the Malliavin derivative
Du(t, x) satisfies equation (5.2). Then, using the latter equation, we can infer that,
for δ > 0 sufficiently small,

‖Du(t, x)‖2
H =

∫ t

0
‖Dτ u(t, x)‖2

L2
Q

dτ ≥
∫ t

t−δ

‖Dτ u(t, x)‖2
L2

Q
dτ ≥ 1

2
g(x, δ) − I(t, x, δ),

where g(x, δ) is as in assumption 5.1 and

I(t, x, δ) :=
∫ δ

0

∥∥∥∥
∫ t

t−τ

∫
O

Gt−s(x, y)(η − f ′(u(s, y)))Dt−τ u(s, y) dy ds

∥∥∥∥
2

L2
Q

dτ.

Hence, using Chebyshev’s inequality, we have, for all ε > 0,

P
(‖Du(t, x)‖2

H < ε
) ≤ P

{
I(t, x; δ) ≥ g(x, δ)

2
− ε

}
≤

(
g(x, δ)

2
− ε

)−p

E|I(t, x, δ)|p.

(5.11)
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Let us now find an upper bound for the p-th moment of I(t, x, δ). For this, we start
by applying Minkowski’s and Hölder’s inequalities, the latter with respect to the
measure on [t − δ, t] × O given by Gt−s(x, y)dy ds, to obtain that

E|I(t,x,δ)|p ≤ E

(∫ t

t−δ

∫
O

Gt−s(x, y)|η − f ′(u(s, y))|‖Dt−·u(s, y)‖L2([0,δ];L2
Q) dy ds

)2p

≤
(∫ t

t−δ

∫
O

Gt−s(x, y) dy ds
)2p−1

×
∫ t

t−δ

∫
O

Gt−s(x, y)E
(
(η+| f ′(u(s, y))|)2p‖Dt−·u(s, y)‖2p

L2([0,δ];L2
Q)

)
dy ds

� δ2p−1
∫ t

t−δ

∫
O

Gt−s(x,y)E
(
(η+| f ′(u(s,y))|)2p‖Dt−·u(s,y)‖2p

L2([0,δ];L2
Q)

)
dy ds,

(5.12)

where we have also used the estimate (3.1). Thus, applying the Cauchy-Schwarz
inequality and appealing to the polynomial growth condition on f ′ (say | f ′(z)| �
1 + |z|r for all z ∈ R), the right hand side of (5.12) can be estimated, up to a positive
constant, by

δ2p−1 sup
(s,y)∈[t−δ,t]×O

(
E‖Dt−·u(s, y)‖4p

L2([0,δ];L2
Q)

)1/2

×
∫ t

t−δ

∫
O

Gt−s(x, y)
(
1 + (E|u(s, y)|4rp)1/2

)
dy ds.

We can now appeal to (5.3) to get

sup
(s,y)∈[t−δ,t]×O

(
E‖Dt−·u(s, y)‖4p

L2([0,δ];L2
Q)

)1/2 ≤ C(T).

Taking into account again estimate (3.1), and the uniform bound (3.2), we get

E|I(t, x, δ)|p �T δ2p.

This estimate and (5.11) imply that

P
(‖Du(t, x)‖2

H < ε
)
�T

(
g(x, δ)

2
− ε

)−p

δ2p.

On the other hand, (5.1) yields g(x, δ) ≥ cxδ
γ . Thus, if we choose δ = δ(ε, x)

sufficiently small in such a way that cxδ
γ = 4ε, we get

P
(‖Du(t, x)‖2

H < ε
)
�T

δ2p

εp
�x,T ε

p( 2
γ
−1)

,

where 2
γ

− 1 > 0 by hypothesis. Therefore, going back to (5.10), it suffices to take
p = qγ

2−γ
and the proof is completed. ��

Remark 5.10 We should point out that, in fact, in order to prove the existence of the
density (i.e. Theorem 5.1(a)), condition 5.1 may be slightly weakened. Precisely, one
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needs to prove that ‖Du(t, x)‖H > 0 P-a.s.. First, by (5.6) and the lower semiconti-
nuity of the norm with respect to weak convergence, one gets that, for any δ ∈ (0, 1)

and q ≥ 1,

E‖Du(t, x)‖q
L2([t−δ,t];L2

Q)
≤ g(x, δ)

q
2 .

Then, similarly as above (see also [26, Theorem 5.2]), one proves that

E|I(t, x, δ)| � δ

∫ δ

0

∫
O

Gs(x, y)g(y, δ) dy, ds, (5.13)

and that, for any n ≥ 1 and δ ∈ (0, 1),

P

(
‖Du(t, x)‖2

H <
1

n

)
≤

(
g(x, δ)

2
− 1

n

)−1

E|I(t, x, δ)|.

Passing to the limit as n → ∞ and using (5.13), we end up with

P(‖Du(t, x)‖2
H = 0) � g(x, δ)−1δ

∫ δ

0

∫
O

Gs(x, y)g(y, δ) dy, ds.

In conclusion, u(t, x) has a density provided that the following two conditions are
satisfied:

(i) for any x ∈ O, one has g(x, δ) > 0 for all δ > 0;
(ii) for any x ∈ O, it holds

lim
δ→0

δ

g(x, δ)

∫ δ

0

∫
O

Gs(x, y)g(y, δ) dy, ds = 0.

5.3 Proof of Theorem 5.1

It is now just a matter of putting pieces together. In particular, in view of Bouleau-
Hirsch’ criterion (see e.g. [24, Theorem 2.1.3]), (a) follows by Propositions 5.5 and
5.9. Similarly, (b) follows by Propositions 5.7 and 5.9, applying a general criterion of
the Malliavin calculus (see e.g. [24, Proposition 2.1.5] or [17, Theorem 4.1]).
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