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Abstract

We obtain a lower bound for the density of a d-dimensional random variable on the Wiener space under
exponential moment condition of the divergence of covering vector fields.
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1. Introduction

Finding lower bounds for densities of random variables on the Wiener space has been a current
subject of research in probability theory for the last twenty years. As is well known, the use of
stochastic calculus of variations (Malliavin calculus) is a tool for studying existence, smoothness
of densities of random variables on the Wiener space, as well as finding explicit lower bounds.
The work by Kusuoka and Stroock became the starting point of the use of Malliavin calculus to
obtain lower bounds for densities. In [9], they obtained a lower bound of Gaussian type for the
density of a uniformly hypoelliptic diffusion whose drift is a smooth combination of its diffusion
coefficient. Their results are the first known extensions of the analytical results obtained in [5,15].
Fifteen years later, Kohatsu-Higa [7,8] extended the result by Kusuoka and Stroock by giving
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a general definition of uniformly elliptic random variables on the Wiener space and obtained
Gaussian type lower bounds for those random variables. He applied his results to the solution of
the non-linear heat equation and to non-homogeneous uniformly elliptic diffusions. The result
by Kohatsu-Higa was applied in [4] to solutions of non-linear hyperbolic SPDEs to derive results
on potential theory. Later on, Bally [2] relaxed the uniformly elliptic condition of Kohatsu-Higa.
The ideas of Bally were used in [6] to obtain a lower bound for the density of a non-linear Landau
process with a degenerate diffusion coefficient.

In this paper we are interested in finding lower bounds for densities of abstract random vari-
ables on the Wiener space; we extend the one-dimensional result obtained in [13], which is a
lower bound for the density of a real random variable F on the Wiener space, under an exponen-
tial moment on the divergence of a covering vector field of F ; the methodology used in [13] was
the resolution of a one-dimensional variational problem. The present work will use the following
tricks to solve the case of Rd valued random variables: radial averaging combined with Riesz
transform estimates on the sphere and Riesz transform estimates on balls.

2. Notations and main theorem

We first introduce some elements of the differential calculus on Gaussian probability spaces
(see for instance [11,14]). Let W = {W(h), h ∈ H } be an isonormal Gaussian process associated
with a Hilbert space H .

Let S denote the class of smooth random variables of the form F = f (W(h1), . . . ,W(hn)),
where h1, . . . , hn are in H , n � 1, and f belongs to C∞

P (Rn), the set of functions f such that f

and all its partial derivatives have at most polynomial growth. Given F in S, its derivative is the
H -valued random variable given by

DF =
n∑

i=1

∂if
(
W(h1), . . . ,W(hn)

)
hi.

For h ∈ H fixed, we define the operator Dh on the set S by DhF = 〈DF,h〉H .
More generally, the kth order derivative of F ∈ S is obtained by iterating the derivative oper-

ator k times and is denoted DkF . Then for every p � 1 and any natural number k, we denote by
D

p
k the clousure of S with respect to the norm ‖ · ‖k,p defined by

‖F‖p
k,p = E

[|F |p] +
k∑

j=1

E
[∥∥DjF

∥∥p

H⊗j

]
.

The derivative operator D is a closed and unbounded operator with values in L2(Ω;H); it is
defined on the dense subset D2

1 of L2(Ω). We denote by δ the adjoint of the operator D, which
is an unbounded operator on L2(Ω,H) taking values in L2(Ω). In particular, if u belongs to
Dom δ, then δ(u) is the element of L2(Ω) characterized by the duality relation:

E
[
Fδ(u)

] = E
[〈DF,u〉H

]
, for any F ∈ D2

1 . (2.1)a

The operator δ is called the divergence operator.
An important application of Malliavin calculus is the following criterion for existence and

smoothness of densities:
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We say that an Rd -valued random variable F is non-degenerated if F ∈ D∞
2 and

(detγF )−1 ∈ Lp(Ω) for all p > 1, where γF denotes the Malliavin matrix of F , that is,

(γF )ij = 〈DFi,DFj 〉H , 1 � i, j � d. (2.1)b

Then the law of a non-degenerated Rd -valued random variable F has a probability density
function which is Hölderian (see for instance [11, p. 72, Theorem 4.1], [14]).

Consider a non-degenerated Rd -valued random variable F . Let us recall the definition of
system of covering vector fields of F (see for instance [12]):

An H⊗d -valued random variable (A1, . . . ,Ad) is a system of covering vector fields of F if
Ai ∈ Dom δ, and if

(∂iφ) ◦ F = DAi
(φ ◦ F) (2.1)c

for all φ smooth and i = 1, . . . , d .
For instance, denoting γ

i,j
F the inverse of the Malliavin matrix γF , then

Ai :=
∑
j

γ
i,j
F DFj (2.1)d

is system of covering vector fields of F (there exist many other possible choices of covering
vector fields of F ).

Then, for any system of covering vector fields, we have (see for instance [11,12,14])

E
[
∂iφ(F )

] = E
[
φ(F )δ(Ai)

]
, for all i = 1, . . . , d. (2.1)e

The main theorem of this paper is the following (see [13] for the one-dimensional case).

Theorem. Assume that there exists a system of covering vector fields Ai of F , γ > 1 and c > 0
such that,

E

[
exp

(
c

d∑
i=1

|δ(Ai)|γ
)]

< ∞. (2.2)a

Then the law of F has a probability density function p in Rd such that there exists cγ > 0
satisfying

p(x) � cγ exp
(−cγ ‖x‖ γ

γ−1
)
, for all x ∈ Rd. (2.2)b

Reduction to an inequality on Rd

Let φ : Rd 
→ R be smooth. By the integration by parts formula and (2.1)e ,

∫
d

φ(x)∂ip(x) dx =
∫
d

φ(x)E
[
δ(Ai)

∣∣ F = x
]
p(x)dx.
R R
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Therefore,

∂ip

p
(x) = E

[
δ(Ai)

∣∣ F = x
]
, for all i = 1, . . . , d. (2.3)a

Moreover, writing qi := E[δ(Ai) | F ], for any γ > 1, it holds that

‖∇p‖γ

pγ
(F ) = ‖q‖γ �

d∑
i=1

|qi |γ ,

and, thus, for any γ > 1 and c > 0, using Jensen’s inequality,

E

[
exp

(
c
‖∇p‖γ

pγ
(F )

)]
� E

[
exp

(
c

d∑
i=1

|qi |γ
)]

� E

[
exp

(
c

d∑
i=1

∣∣δ(Ai)
∣∣γ )]

. (2.3)b

Hence, hypothesis (2.2)a , implies that there exists γ > 1 and c > 0 such that

∫
Rd

exp
(
c
∥∥∇ logp(x)

∥∥γ )
p(x)dx < +∞.

That is, we have that

∫
Rd

exp
(
c
∥∥∇f (x)

∥∥γ − f (x)
)
dx < +∞, where f = − logp. (2.3)c

We want to prove that (2.3)c implies that

f (x) � cγ ‖x‖ γ
γ−1 , for all x ∈ Rd, ‖x‖ � 1. (2.3)d

This would prove (2.2)b .
We have reduced our problem to an implication on Rd : does (2.3)c → (2.3)d? The method-

ology used to prove this implication will depend on three steps: a radial averaging method, an
estimation of Riesz transform on the unit sphere of Rd and, finally, an estimation of Riesz trans-
form on the unit ball of Rd .

3. Radial averaging

For any C1 positive function f on Rd , γ > 1, and c > 0, we define the functional

Iγ (f ) :=
∫
d

exp
(
c
∥∥∇f (x)

∥∥γ )
exp

(−f (x)
)
dx. (3.1)a
R
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The average of a function over the orthogonal group G with respect its Haar measure σ is defined
as

f ∗(x) :=
∫
G

f (gx)σ (dg), for all x ∈ Rd. (3.1)b

Theorem. For any C1 positive function f on Rd and for all γ > 1,

Iγ (f ∗) � Iγ (f ). (3.1)c

Proof. In two dimensions, the average of f can be written as

f ∗(x) := 1

2π

2π∫
0

f (Rθx)dθ, for all x ∈ R2,

where Rθ is the rotation matrix

Rθ =
(

cos θ − sin θ

sin θ cos θ

)
.

Let γ > 1 be fixed and let f1, f2 be C1 functions on Rd . Then∥∥∥∥∇ f1 + f2

2

∥∥∥∥
γ

� 1

2
‖∇f1‖γ + 1

2
‖∇f2‖γ , (3.2)a

as ∥∥∥∥∇ f1 + f2

2

∥∥∥∥ � 1

2

(‖∇f1‖ + ‖∇f2‖
)

and the function ξ 
→ ξγ is convex. Hence,

Iγ

(
f1 + f2

2

)
�

∫
Rd

exp

(
c

2
‖∇f1‖γ

)
exp

(
c

2
‖∇f2‖γ

)
exp

(
−1

2
f1

)
exp

(
−1

2
f2

)
dx

�
√

Iγ (f1) × Iγ (f2), (3.2)b

the last inequality obtained using Cauchy–Schwarz inequality.
We set Φx(θ) = f (Rθx) and

fn(x) = 1

2n

∑
0�k<2n

Φx

(
kπ

2n

)
, n � 0.

Iterating the last inequality in R2 it holds that for all n � 0, Iγ (fn(x)) � Iγ (f ). In particular,

lim inf Iγ

(
fn(x)

)
� Iγ (f ). (3.2)c
n→∞
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Moreover, for all x ∈ R2, limn→+∞ fn(x) = f ∗(x). Hence,

lim
n→+∞ exp

(
c
∥∥∇fn(x)

∥∥γ )
exp

(−fn(x)
) = exp

(
c
∥∥(∇f )∗(x)

∥∥γ )
exp

(−f ∗(x)
)
.

By Fatou’s lemma,

Iγ (f ∗) �
∫
R2

lim
n→+∞ exp

(
c
∥∥∇fn(x)

∥∥γ )
exp

(−f (x)
)
dx � lim inf

n→∞ Iγ (fn). (3.2)d

This proves the result in dimension 2. In dimension d , we pick an orthonormal basis of the Lie
algebra of G and we average on the rotations corresponding to each of these elements. �
Corollary. Let f be a C1 positive function on Rd such that for some γ > 1 and c > 0,
Iγ (f ) < +∞. Then, there exists a constant cγ > 0 such that for all x ∈ Rd sufficiently large,

f ∗(x) � cγ ‖x‖ γ
γ−1 . (3.2)e

Proof. By the last Theorem, Iγ (f ∗) < +∞. Because f ∗ is a radial, changing variables ‖x‖ = r ,

Iγ (f ∗) = ωd

+∞∫
0

exp
(
c
(
f ′(r)

)γ )
exp

(−f (r)
)
rd−1 dr.

Because the last integral can be bounded below by

+∞∫
1

exp
(
c
(
f ′(r)

)γ )
exp

(−f (r)
)
dr,

Appendix A implies the desired result. �
4. Riesz transform on the sphere

Set G the orthogonal group of Rd ; set G its Lie algebra of infinitesimal derivations on the left;
then G is isomorphic to d × d antisymmetric matrices a, aT + a = 0.

The unit sphere S of Rd is an homogeneous space under the action of G. Choosing a point
s0 ∈ S we get a map Ψ : G 
→ S defined by Ψ (g) = g−1(s0); functional spaces on S are lifted by
Ψ ∗ to functional spaces on G. Instead of establishing Riesz transform on S it will be at the same
time easier and more general to establish Riesz transform on G.

Denote by ad the adjoint action of G on itself:

ad(a)(X) = [a,X] = aX − Xa, a,X ∈ G.

For i < j set ai,j ∈ G the matrix having all its coefficients equal to zero at the exception of the
i ( or j ) line and of the j (or i) column, the absolute value of the non-vanishing coefficients
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being equal to 1. Then {ai,j }i<j constitutes a basis of G ; we define an euclidean metric on G by
imposing that the basis {ai,j }i<j will be orthonormal.

The euclidean structure so choosen on G defines on G a structure of Riemannian manifold.
Using [3] formula (2.1)d we obtain that the Ricci tensor of G is equal to

Ricci = −1

4

∑
i<j

[
ad(ai,j )

]2 = d − 1

4
× Identity. (4.1)a

Set �0 the Laplace Beltrami operator of G operating on functions; it generates a diffusion process
on G; it can be proved (see [3]) that this diffusion can be defined by solving the following
Stratonovitch stochastic differential equation

dgb(t) =
( ∑

i<j

ai,j ◦ dbi,j (t)

)
gb(t), gb(0) = Identity, (4.1)b

where bi,j are independent scalar valued Brownian motions. The law of gb(t) converges when
t → ∞ towards the Haar measure σ of G.

Using the right invariant parallelism on G it is possible to construct a 1-differential form on
G to a map G 
→ G .

Set �1 the Hodge–Laplace–Beltrami operator operating on 1-differential forms, set d the
exterior differential sending p-differential forms into p + 1-differential forms and set d∗ its
adjoint. We then have

�0 = d∗d, �1 = dd∗ + d∗d,

together with the basic Hodge commutations:

d�0 = �1d, �0d
∗ = d∗�1. (4.1)c

Theorem (Riesz transform). Let f be a C1 function on G with vanishing mean value. Then there
exists a kernel K ∈ L1

σ (G; G) such that

f (g0) = ∇f ∗ K(g0) :=
∫
G

∇f
(
g−1g0

)
K(g)σ (dg), (4.2)a

where ∫
G

∥∥K(g)
∥∥p

G σ(dg) =: ‖K‖p

L
p
σ (G;G)

< ∞,

for all p < d ′+2
d ′+1 , where d ′ = d(d−1)

2 is the dimension of G.

Proof. Set λ = ∇f = df . Then,

�0f = d∗λ.
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Therefore,

f = �−1
0 d∗λ. (4.2)b

Using the commutation �−1
0 d∗ = d∗�−1

1 , we get

f = d∗�−1
1 λ. (4.2)c

Using [10], we must lift the situation to the orthonormal frame bundle O(G) of G. Set H the
orthogonal group of the euclidean space G , and set H its Lie algebra then O(M) = H × G. The
explicit expression of the Christoffel symbol characterizing the Levi–Civita connection has been
computed in [3] formula (2.1)a , as

∇aX = 1

2
ad(a)(X) := aX − Xa, then ad(a) ∈ H, (4.2)d

and the lift ãi,j of the vector field ai,j to H × G is defined as

ãi,j (γ, g) =
(

1

2
ad(ai,j )γ, ai,j g

)
.

The lifted Laplacian �̃0 of �0 defines the process (γ
b̃
(t), gb(t)), where γ

b̃
(t) satisfies the system

of equations

dγ
b̃
(t) = 1

2

( ∑
i<j

ad
(
aij ◦ db̃i,j (t)

))
γ
b̃
(t), γ

b̃
(0) = Identity,

db(t) = γ
b̃
(t)

(
db̃(t)

)
, (4.2)e

and gb(t) is given in (4.1)b (see [1, Section 3]). According to [10, Proposition 2.4.1],

�1 = �̃0 − Ricci.

Given a differential form ω ∈ C0(G; G), we have

(
exp(t�1)ω

)
(g0) = E

(
exp

(
−d − 1

4
t

)
× γ

b̃
(t)

(
ω

(
gb(t)g0

)))
, (4.2)f

and

(
�−1

1 ω
)
(g0) =

∞∫ (
exp(t�1)ω

)
(g0) dt.
0



P. Malliavin, E. Nualart / Journal of Functional Analysis 256 (2009) 4197–4214 4205
In order to realize (4.2)c we have to apply d∗ to (4.2)f , that is to differentiate one-time relatively
to the initial condition g0; it is well known that such derivation can be obtained by a Girsanov
transformation (see [11, p. 245]);

(
d∗ exp(t�1)ω

)
(g0) =

∑
i<j

E

(
bi,j (t)

t
× exp

(
−d − 1

4
t

)
× (

γ
b̃
(t)

(
ω(gb(t)g0)

))i,j
)

. (4.2)g

Set πt (g) the probability density of the law of gb(t) relatively to the measure σ . We deduce from
(4.2)g that

‖K‖p

L
p
σ (G;G)

�
∞∫

0

exp

(
−p

d − 1

4
t

)
dt

∫
G

[
πt (g)√

t

]p

σ(dg);

finally

∫
G

[
πt (g)√

t

]p

σ(dg) � 1

t
p
2

∫
Rd′

exp

(
−p

|ξ |2
2t

)
dξ

t
pd′

2

� t−
p
2 −(p−1) d′

2 . �

Theorem. Let ϕ be a C1 function on the d-dimensional unit sphere S. Then

∫
S

exp(ϕ) dσ �
∫
S

exp
(‖K‖L1

σ (G;G)‖∇ϕ‖G
)
dσ × exp

( ∫
S

ϕ dσ

)
. (4.3)a

Moreover, there exist two constants c1, c2 such that

exp
(‖ϕ‖L∞(S)

)
<

(
c1 + 2

∫
S

exp
(
c2‖∇ϕ‖G

)
dσ

)
× exp

( ∫
S

ϕ dσ

)
. (4.3)b

Proof. By substracting a constant to ϕ we reduce to the case where the mean value vanishes:
then, expanding in Taylor serie the exponential, we get that∫

S

exp(ϕ) dσ =
∑ 1

p!
∫
S

|ϕ|p dσ.

By convexity of the norm Lp , we have

‖∇ϕ ∗ K‖Lp � ‖∇ϕ‖Lp × ‖K‖L1 .

Then, using (4.2)a we obtain (4.3)a .

Let us proceed to the proof of (4.3)b; set q > d ′ + 1 the conjugate exponent of p < d ′+2
d ′+1 .

Then, using (4.2)a together with Hölder’s inequality,

‖ϕ‖L∞ � ‖K‖Lp‖∇ϕ‖Lq . (4.3)c
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On the other hand,

exp
(‖ϕ‖L∞

) =
∑
n<q

1

n! ‖ϕ‖n
L∞ +

∑
n�q

1

n! ‖ϕ‖n
L∞ .

Using (4.3)c ,

∑
n�q

1

n! ‖ϕ‖n
L∞ �

∑
n�q

1

n! ‖K‖n
Lp‖∇ϕ‖n

Lq ,

where

‖∇ϕ‖n
Lq =

[ ∫
S

‖∇ϕ‖q

G dσ

] n
q

,

and, using the fact that n � q , it yields that

[ ∫
S

‖∇ϕ‖q

G dσ

] n
q

�
∫
S

‖∇ϕ‖n dσ.

Hence,

∑
n�q

1

n! ‖ϕ‖n
L∞ �

∫
S

exp
(‖K‖Lp × ‖∇ϕ‖G

)
dσ.

In (4.3)b , we choose,

c2 := ‖K‖Lp > ‖K‖L1 .

Consider the polynomial

P(ξ) =
∑
n<q

1

n!ξ
n, ξ > 0.

Then,

lim
ξ→+∞ exp(−ξ)P (ξ) = 0.

Set R such that

P(ξ) � 1

2
exp(ξ), ξ > R.

Then,

P(ξ) � exp(ξ) − P(ξ), ξ > R.
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Finally, we take

c1 := max
ξ∈[0,R]

P(ξ),

which concludes the proof of (4.3)b . �
4.1. Exceptional set of radius

Set

ϕr(σ ) = f (rσ ), and note that ‖∇ϕr‖G = 1

r
‖∇f ‖G .

Then, by (2.3)c ,

∞∫
0

rd−1 dr

∫
S

exp
(
cr−γ ‖∇ϕr‖γ − ϕr

)
dσ �

∫
Rd

exp
(
c
∥∥∇f (x)

∥∥γ − f (x)
)
dx < +∞.

Set

Θ =
{
r ∈ [1,+∞[;

∫
S

exp
(
cr−γ ‖∇ϕr‖γ − ϕr

)
dσ < 1

}
. (4.4)a

Then,

∫
Θc

rd−1 dr < ∞. (4.4)b

Using Cauchy–Schwarz inequality,

[∫
S

exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ

]2

�
∫
S

exp
(
cr−γ ‖∇ϕr‖γ − ϕr

)
dσ ×

∫
S

exp(ϕr) dσ,

and, in particular,

[ ∫
S

exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ

]2

�
∫
S

exp(ϕr) dσ, ∀r ∈ Θ. (4.4)c

Using (4.3)a , setting c̃ := ‖K‖L1
σ (G;G), we have

[ ∫
exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ

]2

�
∫

exp
(
c̃‖∇ϕr‖

)
dσ × exp

( ∫
ϕr dσ

)
, ∀r ∈ Θ.
S S S
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Using (3.2)e ,

[ ∫
S

exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ

]2

� exp
(
c′
γ r

γ
1−γ

) ×
∫
S

exp
(
c̃‖∇ϕr‖

)
dσ, ∀r ∈ Θ.

Finally,

∫
S

exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ � sup(A,B) where A := exp

(
c′
γ r

γ
1−γ

)
, (4.4)d

and

B =
∫
S

exp
(
c2‖∇ϕr‖

)
dσ.

Theorem. We have

‖ϕr‖L∞(S) � c′′
γ r

γ
1−γ , ∀r ∈ Θ. (4.5)a

Proof. Looking to the inequality (4.4)d , we have two cases to consider, either A � B or A < B .
In the first case we have

exp
(
c′
γ r

γ
1−γ

)
�

∫
S

exp
(
c2‖∇ϕr‖

)
dσ ;

we conclude by using (4.3)b and (3.2)e .
In the second case, we have

∫
S

exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ �

∫
S

exp
(
c2‖∇ϕr‖

)
dσ. (4.5)b

Consider the set

E :=
{
s ∈ S; c

2
r−γ ‖∇ϕr‖γ � 2c2‖∇ϕr‖

}
= {

s ∈ S; ‖∇ϕr‖ � c3r
γ

1−γ
}
, (4.5)c

and set

ζ =
∫

E

exp
(
c2‖∇ϕr‖

)
dσ,

then ∫
exp

(
c2‖∇ϕr‖

)
dσ =

∫
+

∫
c

� ζ + exp
(
c3r

γ
1−γ

)
(4.5)d
S E E
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and ∫
E

exp

(
c

2
r−γ ‖∇ϕr‖γ

)
dσ �

∫
E

exp
(
2c2‖∇ϕr‖

)
dσ. (4.5)e

By Cauchy–Schwarz inequality,

∫
E

exp
(
2c2‖∇ϕr‖

)
dσ �

[ ∫
E

exp
(
c2‖∇ϕr‖

)
dσ

]2

= ζ 2.

Using (4.5)b together with (4.5)e and (4.5)d , we get

ζ 2 � ζ + exp
(
c3r

γ
1−γ

)
,

which implies that

ζ < exp

(
1

2
c3r

γ
1−γ

)
.

Going back to (4.5)d we conclude (4.5)a by using (4.3)b . �
5. Riesz transform on the unit ball

In the last section we have given the wanted estimate on all Rd at the exception of a very thin
set of spheres corresponding to the spheres which have their radius in Θ ; we fill these missing
places by using now Riesz transform on balls of Rd .

Let P(x, y) and G(x,y) denote, respectively, the Poisson kernel and the Green function of
the d-dimensional ball B of radius 1, that is,

P(x, y) = 1 − ‖x‖2

ωd‖x − y‖d
, y ∈ ∂B = S, (5.1)a

and, for d � 3,

G(x,y) = 1

d(d − 2)ωd

(
‖x − y‖2−d − ‖y‖ ×

∥∥∥∥ y

‖y‖2
− x

∥∥∥∥
2−d)

, (5.1)b

where ωd = 2πd/2

Γ (d/2)
; remark that

G(x,y) = 0, ∀x ∈ ∂B or ∀y ∈ ∂B and that �xG(x, y) = δy, (5.1)c

where δy denotes the Dirac mass at y.
For d = 2 the Green function has the following expression:

G(x,y) = 1

2π

(
log‖x − y‖ − log

∥∥∥∥ 1

‖y‖y − ‖y‖x
∥∥∥∥
)

;

we shall not discuss later in detail the case d = 2, it is left to the reader.
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Lemma. We have

∥∥∥∥ y

‖y‖2
− x

∥∥∥∥ � ‖y − x‖, ∀x, y ∈ B. (5.1)d

Proof. Considering the plane containing x and y the statement is a statement in dimension 2;
use the formalism of complex number set y = ρ real and x = λ = ξ + iη complex of modulus
smaller than 1. We have to check that

(λ − ρ)(λ̄ − ρ) �
(
λ − ρ−1)(λ̄ − ρ−1) or − 2ρξ + ρ2 � −2ρ−1ξ + ρ−2,

the inequality is satisfied for ξ = 0; it stays valid until the solution ξ0 of the equation

−2ρξ0 + ρ2 = −2ρ−1ξ0 + ρ−2 −→ ξ0 = ρ + ρ−1

2
> 1. �

Lemma. We have

∀x, y ∈ B,
∥∥∇yG(x, y)

∥∥ � h(x − y) where h(z) := c‖z‖1−d × 1‖z‖<2. (5.1)e

Proof. For the terms where do not appear the differential of ‖y‖−2 the estimate results from
(5.1)c and (5.1)d ; the differential of ‖y‖−2 contributes as

1

‖y‖ ×
∥∥∥∥ y

‖y‖2
− x

∥∥∥∥
1−d

.

As the singularity is in y = 0, we can assume that ‖y‖ < 1
2 . Then for all x ∈ B , we have

1

‖y‖ ×
∥∥∥∥ y

‖y‖2
− x

∥∥∥∥
1−d

� 2

‖y‖ ×
∥∥∥∥ y

‖y‖2

∥∥∥∥
1−d

= 2

‖y‖ × ‖y‖d−1 → 0 when y → 0. �

Remark. The indicator function 1‖z‖<2 is needed to realize that ‖h‖Lp < ∞ for all p < d
d−1 .

Theorem (Riesz transform). Let f be a C1 positive function on the d-dimensional ball B of
radius 1. Then, for all x ∈ B ,

f (x) =
∫
∂B

f (y)P (x, y)σ (dy) −
∫
B

(∇yG) · (∇f (y)
)
dy. (5.2)a

Proof. By the Green representation formula, for any x ∈ B , and for any f of class C2, we have

f (x) =
∫

f (y),P (x, y)σ (dy) +
∫

G(x,y)�f (y)dy.
∂B B
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Decomposing the laplacian in a sum of second derivatives and making an integration by parts,
taking into account the vanishing of the Green function at the boundary, it yields

f (x) =
∫
∂B

f (y)P (x, y)σ (dy) −
∫
B

(∇yG) · (∇f (y)
)
dy,

approximating a C1 function by a sequence of C2 functions and passing to the limit we
prove (5.2)a . �
Theorem. There exist two constants c1, c2 such that for any C1 function ϕ on the unit ball B , we
have

exp
(‖ϕ‖L∞(B)

)
<

(
c1 + 2

∫
S

exp
(
c2‖∇ϕ‖Rd

)
dx

)
× exp

(‖ϕ‖L∞(∂B)

)
. (5.3)a

Proof. We use the decomposition (5.2)a ; the norm L∞(B) of the Poisson integral is equal to the
norm in L∞(∂B) as for all x ∈ B , ∫

∂B

P (x, y)σ (dy) = 1.

It remains to evaluate the Green kernel integral; set

ψ(x) = ‖∇ϕ‖Rd × 1B(x).

Then, using (5.1)e , ∥∥∥∥
∫
B

(∇yG) · (∇ϕ(y)
)
dy

∥∥∥∥
L∞(B)

� ‖ψ ∗ h‖L∞(Rd). (5.3)b

As h ∈ Lp(Rd) for all p < d
d−1 , we proceed as for the proof of (4.3)b . �

Theorem. Set

ϕr(x) = f (rx), x ∈ B, r ∈ Θ. (5.4)a

Then,

‖ϕr‖L∞(B) � c′′
γ r

γ
1−γ . (5.4)b

Proof.
We proceed as for the proof of (4.5)a . �

Proof of main theorem. Then (2.3)b results from (5.4)b combined with the fact that (4.4)b
implies that

Θ ∩ [r,2r] is always non-empty for r > r0.
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That is, we conclude that for x sufficiently large

f (x) � sup
y∈B(0,‖x‖)

f (y) � c′′
γ ‖x‖ γ

1−γ ,

which proves (2.2)b . �
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Appendix A

The one-dimensional version of theorem was proved in [13]. For the sake of completeness of
this paper, we supply a sketch of the original proof.

Theorem. Let f be a C1 real positive function such that there exists γ > 1 and c > 0 such that

∞∫
0

exp
(
c
(
f ′(x)

)γ )
exp

(−f (x)
)
dx < +∞.

Then, there exists c̃ > 0 such that for all x > 0 sufficiently large,

f (x) < c̃x
γ

γ−1 f.

Proof. For all n ∈ N , define

αn = inf
{
x � 0: f (x) � n

}
.

Write

∞∫
0

exp
(
c
(
f ′(x)

)γ )
exp

(−f (x)
)
dx =

∞∑
n=0

αn+1∫
αn

exp
(
c
(
f ′(x)

)γ )
exp

(−f (x)
)
dx

�
∞∑

n=0

exp
(−(n + 1)

) αn+1∫
αn

exp
(
c
(
f ′(x)

)γ )
dx.

Consider the functional

Jn(f ) :=
αn+1∫

exp
(
c
(
f ′(x)

)γ )
dx.
αn
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We want to find the minimum of Jn(f ) over all the C1 positive decreasing functions f :
[αn,αn+1] 
→ R such that

αn+1∫
αn

f ′(x) dx = 1.

By the Lagrange multipliers method it suffices to find the minimum of the functional

Jn(f ) − λ

αn+1∫
αn

f ′(x) dx,

where λ is a constant. The corresponding Euler–Lagrange equation is

γ cf ′(x)γ−1 exp
(
c
(
f ′(x)

)γ ) = const,

this implies that f ′(x) is a constant determined by the condition
∫ αn+1
αn

f ′(x) dx = 1. If we denote

ln = αn+1 − αn we obtain that the minimum of Jn(f ) is reached when f ′(x) = l−1
n .

Thus,

∞∫
0

exp
(
c
(
f ′(x)

)γ )
exp

(−f (x)
)
dx �

∞∑
n=0

ln exp
(−(n + 1) + cl

−γ
n

)
.

By hypothesis, this serie is convergent. Hence, ln exp(−(n+1)+cl
−γ
n ) converges to 0 as n → ∞.

This implies that there exists n0 > 0 such that for all n � n0,

(n + 1) − cl
−γ
n > 0.

In particular, for any q � n0, we have that

q∑
n=n0

ln = αq+1 − αn0 >

q∑
n=n0

c1/γ

(n + 1)1/γ
> c1/γ

q+1∫
n0+1

1

x1/γ
dx.

This implies that αq+1 > cγ (q +1)
γ−1
γ . But if x is such that x < αq+1, then f (x) < q +1. Hence,

the desired result follows. �
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