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Abstract

The aim of this paper is to develop a variance reduction technique, based on
importance sampling in conjunction with the stochastic Robbins-Monro algorithm,
for option prices of jump-diffusion models with stochastic volatility. This is done
by combining the work developed by Arouna [2, 3] for pricing diffusion models,
and extended by Kawai [19, 20] for Lévy processes without Brownian component.
We apply this technique to improve the numerical computation of derivative price
sensitivities for general Lévy processes, allowing both Brownian and jump parts.
Numerical examples are performed for the Black-Scholes and Heston models with
jumps, and the Barndorff-Nielsen and Shephard model to illustrate the efficiency of
this numerical technique. The numerical results support that the proposed method-
ology improves the efficiency of the usual Monte Carlo procedures.

1 Introduction

Monte Carlo simulation techniques are widely used for pricing and hedging complex fi-
nancial assets. Due to the increasing complexity of the models and the number of state
variables, since Monte Carlo estimations have rate of convergence of order N−1/2, in most
cases the implementation of variance reduction techniques is needed to increase this ratio
of convergence. In this sense, there are different techniques, such as control variates (see
Glasserman [18] and the references therein), localization technique (see Fournier and al.
[14]) or importance sampling technique (see Su and Fu [24] and Arouna [2, 3]). However,
as noted in [2], importance sampling has not been widely used in Finance. The main
idea of the importance sampling technique is to determine a change of drift to reduce the
variance of the sample, and therefore obtain more efficient estimates.
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Although Arouna [2] was not the first to use this technique for financial models (see
also [24]), he proposes the use of the importance sampling technique in conjunction with
the stochastic Robbins-Monro algorithm for the numerical computation of option prices
of diffusion models. The idea is to use this stochastic algorithm to find the optimal drift
in the Girsanov transform, that is, the change of probability measure under which the
variance of the estimate is minimal.

Subsequently, Kawai [19, 20] extends Arouna’s work by applying this technique to
Lévy processes without Brownian component. In this case, the change of probability
measure is performed using the Esscher transform. In this approach the parameter used
in the measure transform may be restricted into a specific compact set. This differs from
the Brownian case, where the drift can take any real value, depending on the structure of
the Lévy measure.

In this paper we generalize these works considering general diffusion models with in-
dependent Brownian and jump parts, and stochastic volatility. The purpose is to reduce
the variance of the estimates by changing the probability measure with the use of the
Esscher transform. In a recent the paper by Alaya and al. [1], they also apply the impor-
tance sampling technique to a general class of Lévy process, using instead the statistical
Romberg method to simulate the process. In our case, we also extend the application
of the importance sampling technique for the numerical computation of derivative price
sensitivities, known as Greeks.

Specifically, let (St, t ≥ 0) denote the price of an underlying asset under the risk-
neutral probability P, adapted to the filtration of an independent Brownian motion and
jump process. Consider a path-dependent and square integrable payoff h(St, t ≤ T ) with
maturity T > 0. The price of a contingent claim is expressed as

F = e−rTEP[h(St, t ≤ T )],

where r > 0 is the risk-free interest rate. The Greeks are the derivatives of the price F
with respect to the different parameters of the model dynamics of St. The most common
Greeks are the Delta and the Gamma, which are the first and second derivatives of F
with respect to S0, respectively.

If z denotes a generic parameter of the model, the simplest method in order to compute
numerically the derivative of F with respect to z is to apply the finite difference scheme
given by

∂F

∂z
≈ F (z + ε)− F (z − ε)

2ε
,

for sufficiently small ε. Although this method is easy to implement, the finite difference
estimator has a large bias and variance, especially for discontinuous payoffs.

Different alternative methods to compute these derivatives have been proposed in
the literature (see Glasserman [18] for a review). More recently, [16] proposes the so
called COS method, based on the Fourier-cosine series. In this paper, we concentrate on
the Malliavin calculus approach. This method, introduced by Fournier and al. [14, 15],
consists of using the integration by parts formula of the Malliavin calculus to obtain closed
formulas for the Greeks as the expectation of the original payoff multiplied by some explicit
weights. That is, the sensitivity with respect to z obtained via the Malliavin calculus has
the form

∂F

∂z
= e−rTEP [h(St, t ≤ T )π] , (1)
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where π is a random variable that depends on the Brownian motion and jump component
of the asset price along the interval [0, T ]. These closed formulas allow a direct Monte
Carlo simulation for discontinuous payoffs.

While the pioneer papers only dealt with the case where St satisfies a diffusion pro-
cesses on the Wiener space (see [22] for a review), much has been done in order to extend
this technique in the presence of price jumps. See for example [4, 6, 7, 12, 13, 21].

However, an important computational problem arises from this technique. As ex-
plained in [14, 15], the weights π that appear in (1) increase the variance with respect to
the variance of the random variable h(St, t ≤ T ), which makes the numerical computation
very unstable. In order to overcome this problem, Fournier and al. [14, 15] propose a
localization technique that consists on applying the Malliavin calculus, or integration by
parts, to a piece of the functional whose expectation has to be computed. This allows
several probabilistic expressions to be written that share the same expectation and the
aim is thus to seek a reduced variance. Two problems arise in the use of this approach: a)
one needs to perform different integration by parts depending on the model considered,
and b) the choice of the localization parameter remains unclear. In fact, most papers
applying this localization procedure (for example [4, 6, 14, 15]) consider a random choice
of the localization parameter. For a digital call option, the localization parameter choice
is illustrated in [15], which shows how this is not an easy task. A numerical procedure
for the choice of this parameter is proposed in [11]. Other papers (for example [12, 21])
only show that the numerical simulation of the Greeks obtained via the Malliavin calculus
(Monte Carlo with no variance reduction) outperforms the finite difference scheme. In
fact, there is no optimal selection procedure of the location parameter for this task, so
this methodology is not suitable for variance reduction to compute the Greeks.

In this paper, we apply the variance reduction technique exposed in Section 2 to
improve the numerical computation of the Greeks formulas obtained via the Malliavin
calculus, with no need for any localization procedure. We present numerical examples such
as the Black-Scholes model with jumps, the Heston model with jumps, and the Barndorff-
Nielsen and Shephard model. The formulas for the Greeks via the Malliavin calculus for
these models are computed in [12] and [6]. We compare the numerical computation of
these formulas with and without the use of the variance reduction technique, and we
observe that the variance is significantly reduced.

The paper is organized as follows. Section 2 introduces the variance reduction tech-
nique based on the Esscher transform. In particular, we prove the convergence in our
setting of the algorithm that combines the Robbins-Monro algorithm with the projection
method introduced by Chen and al. In Section 3 we apply this technique to several Greeks
obtained via the Malliavin calculus, and present some numerical examples. Finally, Sec-
tion 4 concludes.

2 Variance reduction technique

2.1 Importance sampling technique

Let B = (Bt, t ≥ 0) be a d-dimensional Brownian motion and let Z = (Zt, t ≥ 0) be an
m-dimensional pure jump Lévy process with no drift and independent of B, with Lévy
measure ν. That is, Z is an m-dimensional process with stationary and independent
increments, continuous in probability, and such that Z0 = 0, a.s.

By the independence of B and Z, we can assume that they are defined on the product
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filtered probability space

(Ω,F , (Ft)t≥0,P) = (Ω1 × Ω2,F1 ⊗F2, (F1
t ⊗F2

t )t≥0,P1 × P2), (2)

where (Ω1,F1, (F1
t )t≥0,P1) and (Ω2,F2, (F2

t )t≥0,P2) are the filtered probability spaces
of B and Z, respectively. We denote by EP, EP1 and EP2 the expectations under the
probability measures P, P1 and P2, respectively.

By the Lévy-Khintchine representation theorem, the characteristic function of Z is
uniquely given by

EP2

[
ei〈u,Zt〉

]
= exp

(
t

∫
Rm

0

(
ei〈u,z〉 − 1− i〈u, z〉1(0,1](|z|)

)
ν(dz)

)
, u ∈ Rm,

where Rm
0 = Rm \ {0}, and ν is a positive σ-finite measure on Rm

0 such that
∫
Rm

0
(|z|2 ∧

1)ν(dz) < ∞. Here 〈·, ·〉 and | · | denote respectively the Euclidean scalar product and
norm.

We are interested in numerically computing by Monte Carlo simulation quantities of
the form

V = EP[f(St, 0 ≤ t ≤ T )] = EP[g(Bt, Zt, 0 ≤ t ≤ T )], (3)

where T > 0 is fixed, f and g are real-valued functions and (St, t ∈ [0, T ]) is a stochastic
process adapted to the filtration Ft.

In order to improve the efficiency of the Monte Carlo simulation of V , our aim is
to apply a variance reduction technique that consists of computing the optimal change
of measure that attains the minimal variance of V . That is, we change the law of the
processes (Bt, t ∈ [0, T ]) and (Zt, t ∈ [0, T ]) by considering two parameters µ ∈ Rd and
θ ∈ Λ1, where

Λ1 =
{
u ∈ Rm : EP2 [e

〈u,Z1〉] <∞
}

=

{
u ∈ Rm :

∫
|z|>1

e〈u,z〉ν(dz) <∞
}
.

We assume that Leb(Λ1) > 0 and we observe that Λ1 contains the origin and is convex.
We consider the probability measures Q = Q1×Q2 on (Ω,F), where Q1 and Q2 are given
by the Esscher transforms

dQ1

dP1

∣∣∣∣
F1
t

=
e〈µ,Bt〉

EP1 [e
〈µ,Bt〉]

= e〈µ,Bt〉−
1
2
|µ|2t,

dQ2

dP2

∣∣∣∣
F2
t

=
e〈θ,Zt〉

EP2 [e
〈θ,Zt〉]

= e〈θ,Zt〉−tϕ(θ), (4)

where

ϕ(θ) = log EP2 [e
〈θ,Z1〉] =

1

t
log EP2 [e

〈θ,Zt〉].

Note that ϕ(θ) is continuous and ∇ϕ(θ) exists for θ ∈ Λ1.
We use EQ, EQ1 and EQ2 to denote the expectations under Q, Q1 and Q2, respectively.

Observe that, under Q, the process Bt− µt is a d-dimensional Brownian motion, and the
law of the process Zt under Q can be determined from its characteristic function

EQ2

[
ei〈u,Zt〉

]
= EP2

[
ei〈u,Zt〉e〈θ,Zt〉−tϕ(θ)

]
= exp

(
it〈u,

∫
|z|≤1

z(e〈z,θ〉 − 1)ν(dz)〉+ t

∫
Rm

0

(
ei〈u,z〉 − 1− i〈u, z〉1(0,1](|z|)

)
e〈z,θ〉ν(dz)

)
,
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for u ∈ Rm. That is, under Q, Zt is still an m-dimensional Lévy process with Lévy density
e〈θ,z〉ν(dz) and drift

∫
|z|≤1

z(e〈z,θ〉 − 1)ν(dz).

We can now rewrite the quantity (3) under the new probability measure Q, that is,

V = EQ[g(Bt, Zt, 0 ≤ t ≤ T )e−〈µ,BT 〉+
1
2
|µ|2T−〈θ,ZT 〉+Tϕ(θ)]. (5)

At this point, the goal is to find the optimal parameters (µ∗, θ∗) ∈ Rd × Λ1 that
minimize the variance of V , which is given by

Var(V ) = H(µ, θ)− V 2, (6)

where

H(µ, θ) = EQ[g2(Bt, Zt, 0 ≤ t ≤ T )e−2〈µ,BT 〉+|µ|2T−2〈θ,ZT 〉+2Tϕ(θ)]

= EP[g2(Bt, Zt, 0 ≤ t ≤ T )e−〈µ,BT 〉+
1
2
|µ|2T−〈θ,ZT 〉+Tϕ(θ)].

(7)

Observe that since V in (6) does not depend on (µ, θ), it suffices to minimize the second
moment H(µ, θ) in order to minimize the variance of V . The next result therefore gives
sufficient conditions that ensure that the function H(µ, θ) has a unique minimum.

Proposition 1. Assume that the following conditions hold:

(1) P(g(Bt, Zt, 0 ≤ t ≤ T ) > 0) 6= 0.

(2) There exists p > 1 such that EP[|g(Bt, Zt, 0 ≤ t ≤ T )|2p] <∞.

Consider the set

Λ2 = Λ1 ∩
{
u ∈ Rm :

∫
|z|>1

|z|2qe−q〈u,z〉ν(dz) <∞, 1

q
+

1

p
= 1

}
,

and assume that Leb(Λ2) > 0. Then, the set Λ2 is convex, and the function H(µ, θ) is
twice differentiable and strictly convex in Rd × Λ2.

Proof. The convexity of Λ2 is proved as in [19] applying Hölder’s inequality. We next
show the second statement. Consider the functions

F (µ, θ) = (Tµ−BT )G, J(µ, θ) = (T∇ϕ(θ)− ZT )G, (8)

where
G = g2(Bt, Zt, 0 ≤ t ≤ T )e−〈µ,BT 〉+

1
2
|µ|2T−〈θ,ZT 〉+Tϕ(θ).

If |µ| ≤ K, using Hölder’s inequality twice (first with respect to P1 and second with
respect to P2, using the independence between Z and B) and proceeding as in the proof
of Proposition 1 in [2], we obtain that

EP [|F (µ, θ)|] ≤ CKEP[|g(Bt, Zt, 0 ≤ t ≤ T )|2p]1/peTϕ(θ)EP2

[
e−q〈θ,ZT 〉

]1/q
,

which is finite if θ ∈ Λ2. Similarly,

EP [|J(µ, θ)|] ≤ CKEP[|g(Bt, Zt, 0 ≤ t ≤ T )|2p]1/peTϕ(θ)EP2

[
|T∇ϕ(θ)− ZT |qe−q〈θ,ZT 〉

]1/q
,
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which is finite if θ ∈ Λ2. Therefore, from hypothesis (2) and the dominated convergence
theorem, we obtain that H(µ, θ) is differentiable and

∇H(µ, θ) = (EP [F (µ, θ)] ,EP [J(µ, θ)]). (9)

By an analogous argument, H is twice differentiable and its Hessian matrix is given by(
EP

[
(TIm + (Tµ−BT )(Tµ−BT )T)G

]
EP

[
(Tµ−BT )(T∇ϕ(θ)− ZT )TG

]
EP

[
(T∇ϕ(θ)− ZT )(Tµ−BT )TG

]
EP [(THess(ϕ(θ)) +WG]

)
,

where W = (T∇ϕ(θ)−ZT )(T∇ϕ(θ)−ZT )T), Im denotes the m×m identity matrix and
AT denotes the transpose of a matrix A.

Then, using hypothesis (1), we get that this Hessian matrix is positive definite and
thus H is strictly convex on Rd × Λ2.

Remark 1. If there exists (µ∗, θ∗) ∈ Rd × Λ2 such that

∇H(µ∗, θ∗) = 0, (10)

then, under the hypotheses of Proposition 1, since H is strictly convex, we conclude that
(µ∗, θ∗) is the unique minimum of H in Rd × Λ2.

2.2 Robbins-Monro algorithm and projection method

The aim of this section is to apply the Robbins-Monro algorithm adapted by Chen and
al. in order to compute the minimum (µ∗, θ∗) of the function H(µ, θ) numerically. Since
in some cases it is difficult to check condition (10), we need to distinguish between un-
constrained and constrained algorithms in order to ensure the existence and uniqueness
of this minimum. The algorithms for each case are discussed, with the corresponding
propositions to state the conditions for the convergence.

2.2.1 Unconstrained algorithms

The Robbins-Monro (RM) algorithm is an stochastic algorithm that allows to find nu-
merically the minimum of a function that is defined by the expectation of a random
variable. Due to the exponential growth of our gradient function (9), if this method is
applied directly, we will obtain a explosive numerical behavior. Alternatively, Chen and
Zhu [9] and Chen, Guao and Gao [10] propose a new algorithm consisting of truncating
the RM algorithm at randomly varying bounds, in order to avoid the explosion of the
algorithm. As pointed out in [19], in order to apply these techniques, we need to assume
the uniqueness of the minimum of the objective function, in the whole space. These are
called unconstrained algorithms. That is, we assume (i) Λ2 = Rm and (ii) there exists a
unique minimum (µ∗, θ∗) ∈ Rd × Rm of H(µ, θ), defined in (7). For assumption (ii) to
hold, by Proposition 1, it suffices to assume hypotheses (1) and (2), and that

lim
|µ|+|θ|↑+∞

H(µ, θ) = +∞. (11)

The main steps of the Robbins-Monro algorithm adapted by Chen described in [10]
are as follows:

1. Consider two independent sequences (Bn
t , t ∈ [0, T ])n≥0 and (Zn

t , t ∈ [0, T ])n≥0,
which are iid copies of the processes (Bt, t ∈ [0, T ]) and (Zt, t ∈ [0, T ]).
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2. Choose a sufficiently large constant M > 0, and two increasing sequence of positive
numbers (un)n≥0 and (vn)n≥0 tending to infinity such that u0 > M and v0 > M .

3. Choose an initial condition (µ0, θ0) ∈ Rd ×Rm.

4. Define the sequence (µn, θn)n≥1 by

(µn+1, θn+1) =


(µn, θn)− β

n+1
(Fn+1, Jn+1), if |µn − β

n+1
Fn+1| ≤ uσ(n) and

|θn − β
n+1

Jn+1| ≤ vσ(n),

(µ0, θ0), otherwise,

(12)

where σ(n) is the number of projections after n iterations. That is,

σ(n) =
n−1∑
k=0

1{|µn− β
n+1

Fn+1|≥uσ(n),|θn− β
n+1

Jn+1|≥vσ(n)}, σ(0) = 0, (13)

β > 0, and

(Fn+1, Jn+1) = (F (µn, θn, (B
n+1
t , Zn+1

t ∈ [0, T ])), J(µn, θn, (B
n+1
t , Zn+1

t ∈ [0, T ]))),

where it should be recalled that F and J are defined in (8).

Under all the conditions mentioned above, it is shown in [10] that the sequence (θn, µn)
defined by this algorithm converges to the unique minimum (µ∗, θ∗) of the function H in
Rd × Rm. However, several remarks are in order to choose the different parameters to
apply this algorithm in practice.

Remark 2. 1. The term β
n+1

can be replaced by a general sequence of positive number
(γn)n≥0 satisfying that∑

n≥0

γn = +∞, and
∑
n≥0

γ2
n < +∞.

For example in [2], the author uses the series β
n+α

, with α > 0.

2. If there can be an intuitive idea of a sufficiently small neighborhood of (µ∗, θ∗), then
it is natural to choose the initial condition (µ0, θ0) in this neighborhood. Otherwise, a
natural choice is to start the algorithm at (0, 0), as it is the case in all our numerical
simulations.

3. Observe that in [10] the authors show the convergence of the algorithm for any se-
quence un and vn increasing towards infinity and M > 0 a sufficiently large constant.
However, in practice, these sequences need to be chosen according to the growth of
the variables Fn+1 and Jn+1. In the next subsection we give an example of the choice
of these sequences for the case of a Poisson process.

4. Observe that in [10] the authors choose two arbitrary points in order to re-initialize
the algorithm when the two conditions in (12) are not satisfied. Then, the choice of
the constant M > 0 depends on the choice of these points. However, in practice we
have observed that it is enough to re-initialize the algorithm at the initial value, and
to choose a large enough M > 0 as it will be discussed in the numerical examples.
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2.2.2 Example: Poisson process

Assume that the Lévy process Z is an m-dimensional Poisson process denoted N =
(Nt, t ≥ 0) with intensity λ > 0. In this case,

ϕ(θ) = 〈λ, eθ − 1〉, ∇ϕ(θ) = λeθ, Λ1 = Λ2 = Rm.

Observe that we have used the abuse of notation 〈λ, eθ− 1〉 = λ
∑m

i=1(eθi − 1). Of course,
the case λ ∈ Rm can also be considered.

This is an example of unconstrained algorithm. Therefore, if g satisfies conditions (1)
and (2) of Proposition 1, together with (11), then, H has a unique minimum (µ∗, θ∗) in
Rd ×Rm.

The next result show the convergence of the Robbins-Monro algorithm adapted by
Chen and al. in this particular case.

Proposition 2. Assume condition (1) of Proposition 1, condition (11), and replace con-
dition (2) in Proposition 1 by the stronger condition

(2’) There exists p > 1 such that EP[|g(Bt, Nt, 0 ≤ t ≤ T )|4p] <∞.

We can then choose two increasing sequence of positive numbers (un)n≥0 and (vn)n≥0 such
that the sequence (µn, θn) defined in (12) converges a.s. to the unique minimum (µ∗, θ∗)
of H in Rd ×Rm.

Proof. Let FnT denote the σ-algebra generated by the random vectors

(θk, µk, (B
k
t , Z

k
t , t ∈ [0, T ]), k ≤ n).

Since (µn, θn) are FnT -measurable and (Bn+1
t , Zn+1

t , t ∈ [0, T ]) are independent of FnT , we
have that

∇H(µn, θn) = (EP[Fn+1|FnT ],EP[Jn+1|FnT ]).

Consider the FnT -martingale (Mn)n≥0, where M0 = (0, 0) and for n ≥ 1,

Mn =
n−1∑
i=0

β

i+ 1
(Fi+1 − EP[Fi+1|F iT ], Ji+1 − EP[Ji+1|F iT ]).

Given the results in [2, 3], it suffices to choose the sequences un and vn such that the
martingale Mn converges a.s. as n tends to∞. The brackets process clearly satisfies that

〈Mn〉 ≤
n−1∑
i=0

(
β

n+ 1

)2

EP[|Fi+1|2 + |Ji+1|2|F iT ].

Moreover, since (µn, θn) is FnT -measurable and (Bn+1
t , Nn+1

t , t ∈ [0, T ]) are independent of
FnT , we have that

EP[|Fi+1|2 + |Ji+1|2|F iT ] = s2(µi, θi),

where

s2(µ, θ) = EP[|F (µ, θ, (Bt, Nt, t ∈ [0, T ]))|2] + EP[|J(µ, θ, (Bt, Nt, t ∈ [0, T ]))|2].

To ease the exposition, we assume in the rest of the proof that T = 1. Following as in [2],
for any p > 1, we have that

EP[|F (µ, θ)|2] = C1(p, q)e9|µ|2EP

[
|e−2〈θ,N1〉+2〈λ,eθ−1〉|

pq
q−1

] q−1
pq
.
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We now treat the expectation on the rhs. We have

EP

[
|e−2〈θ,N1〉+2〈λ,eθ−1〉|p′

] 1
p′

= e
2〈λ,eθ−1〉+ 1

p′ 〈λ,e
−2p′θ−1〉

≤ e
2λm(e|θ|−1)+ 1

p′ λm(e2p
′|θ|−1)

.

On the other hand, for any p > 1,

EP[|J(µ, θ)|2] ≤ C2(p, q)EP

[
|e−2〈µ,B1〉+1|µ|2|

pq
q−1

] q−1
pq

(EP[f
p
p−1 (B1, N1)])

p−1
p ,

where
f(B1, N1) = |λeθ −N1|2e−2〈θ,N1〉+2〈λ,eθ−1〉.

It is easy to see that

EP

[
|e−2〈µ,B1〉+|µ|2|

pq
q−1

] q−1
pq

= e(1+ 2pq
q−1

)|µ|2

and

(EP[f
p
p−1 (B1, N1)])

p−1
p ≤ c(p)e2λm(e|θ|−1)

(
(λme|θ|)

2p
p−1 eλm(e

2p
p−1 |θ|−1) + e

4p2

(p−1)2
|θ|2
) p−1

p

.

Therefore, taking p = q = 2, we obtain that

s2(µ, θ) ≤ ce2λm(e|θ|−1)+9|µ|2
(
e

1
4
λm(e8|θ|−1) + (λme|θ|)2e

1
2
λm(e4|θ|−1) + e8|θ|2

)
≤ ce(4λm+8)e8|θ|+9|µ|2 .

Since |µn| ≤ un and |θn| ≤ vn, it suffices to choose

un =
√
c1 lnn and vn =

1

8
ln(c2 lnn),

so that

lim
n→∞
〈Mn〉 ≤ c lim

n→∞

n−1∑
i=0

n9c1+4λmc2

n2
<∞.

2.2.3 Constrained algorithms

As pointed out in [19], if we apply the Robbins-Monro stochastic algorithm constrained on
the convex set Rd×Λ2, where Λ2 6= Rm, we cannot ensure that the limit of the sequence
constructed with the algorithm will converge to a point (µ∗, θ∗) such that ∇H(µ∗, θ∗) = 0.
In order to ensure this fact, Proposition 1 shows that it is sufficient that (µ, θ) ∈ Rd×Λ2

exists such that ∇H(µ, θ) = 0. Since in general this is not clear form a theoretical point
of view, we need to apply in those cases the Robbins-Monro algorithm adapted by Chen
and al. constrained on the set Λ2, and then numerically to analyze the behavior of the
gradient in the applications.

In this case, the steps of the Robbins-Monro algorithm that differ from the uncon-
strained algorithm defined in Section 2.2.2. are steps 2. and 4. which need to be replaced
by
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2. Choosing a sufficiently large constant M > 0, and an increasing sequence of positive
numbers (un)n≥0 tending to infinity such that u0 > M .

4. Defining the sequence (µn, θn)n≥1 by

(µn+1, θn+1) =


(µn, θn)− β

n+1
(Fn+1, Jn+1), if |µn − β

n+1
Fn+1| ≤ uσ(n) and

θn − β
n+1

Jn+1 ∈ Λ2,

(µ0, θ0), otherwise,

where σ(n) is the number of projections after n iterations. That is,

σ(n) =
n−1∑
k=0

1{|µn− β
n+1

Fn+1|≥Uσ(n), θn− β
n+1

Jn+1 /∈Λ2}, σ(0) = 0.

We then have the following analogue of Proposition 2 in this case.

Proposition 3. Assume that the following conditions hold:

(1) P(g(Bt, Zt, 0 ≤ t ≤ T ) > 0) 6= 0.

(2) There exists p > 1 such that EP[|g(Bt, Zt, 0 ≤ t ≤ T )|4p] <∞.

We can then choose the increasing sequence of positive numbers (un)n≥0 such that the
sequence (µn, θn) converges a.s. to a point (µ∗, θ∗) in Rd × Λ2. Moreover, H(µ∗, θ∗) ≤
H(0, 0).

Proof. We assume that T = 1 to ease the exposition. As in Proposition 2, for any p > 1,
we have that

EP[|F (µ, θ)|2] = C1(p, q)e9|µ|2EP

[
|e−2〈θ,Z1〉+2ϕ(θ)|

pq
q−1

] q−1
pq
,

which is finite since θ ∈ Λ2. On the other hand, for any p > 1,

EP[|J(µ, θ)|2] ≤ C2(p, q)EP

[
|e−2〈µ,B1〉+|µ|2|

pq
q−1

] q−1
pq

(EP[f
p
p−1 (B1, Z1)])

p−1
p ,

where
f(B1, Z1) = |∇ϕ(θ)− Z1|2e−2〈θ,Z1〉+2ϕ(θ).

It is easy to see that

EP

[
|e−2〈µ,B1〉+|µ|2|

pq
q−1

] q−1
pq

= e(1+ 2pq
q−1

)|µ|2 ,

and
(EP[f

p
p−1 (B1, Z1)])

p−1
p ≤ C.

Therefore, taking p = q = 2, we obtain that

s2(µ, θ) ≤ ce9|µ|2 .

In this case, since |µn| ≤ un it suffices to choose un =
√

1
10

lnn, so that

lim
n→∞
〈Mn〉 ≤ c lim

n→∞

n−1∑
i=0

n9/10

n2
<∞.

The last statement follows due to the strict convexity of H in Rd × Λ2.

10



2.2.4 Example: Compound Poisson process

Assume that the Z is one-dimensional and has Lévy density w(z)dz, where w(z) =
γηe−ηz1z>0. That is, Z is a compound Poisson process of the form Zt =

∑Nt
i=1 Ji, where

Nt is a Poisson process with parameter γ > 0, and Ji are iid exponential random variables
with parameter η > 0.

In this case, Λ1 = {u ∈ R : u < η}, ϕ(θ) = γθ
η−θ , ϕ

′(θ) = ηγ
(η−θ)2 , and

Λ2 =

{
u ∈ R : −η

q
< u < η

}
.

Under Q2 defined in (4), Zt is a compound Poisson process with drift Γ =
∫ 1

0
z(eθz −

1)w(z)dz, and Lévy density w̃(z) = ezθw(z). For all θ ∈ Λ1,
∫
w̃ = ηγ

η−θ . That is, under
Q2, Zt can be written as

Zt = Γt+
Nt∑
k=1

Pk,

where Nt is a Poisson process with parameter ηγ
η−θ and Pk are iid exponential random

variables with parameter η − θ.

3 Application to numerical computation of Greeks

3.1 General algorithm

We denote by St the price of an underlying asset at time t > 0 under the risk-neutral
probability measure P. We assume that St is adapted to the filtration defined in (2). We
consider a square integrable payoff h(St, t ≤ T ) with maturity T > 0 and contingent claim

F = e−rTEP[h(St, t ≤ T )],

where r > 0 denotes the risk-free interest rate. We denote by z a generic parameter of
the model dynamics of St. We assume that the techniques of the Malliavin calculus can
be applied to compute the sensitivity with respect to z, which has the form

Vz =
∂F

∂z
= EP[f(St, 0 ≤ t ≤ T )] = EP[g(Bt, Zt, 0 ≤ t ≤ T )],

as in (3). Then, in order to compute numerically this quantity, following Section 2, we
proceed with the algorithm as follows:

1. Run the Robbins-Monro algorithm defined in Section 2.2.1 (or 2.2.3 if it is a con-

strained algorithm) to obtain a numerical estimation (µ̂∗, θ̂∗) of (µ∗, θ∗).

2. Insert this estimation in formula (5) for Vz under Q:

Vz = EQ[g(Bt, Zt, 0 ≤ t ≤ T )e−〈µ̂
∗,BT 〉+ 1

2
|µ̂∗|2T−〈θ̂∗,ZT 〉+Tϕ(θ̂∗)],

and from this formula compute a numerical estimation of Vz applying the usual
Monte Carlo method.

11



The implementation of this algorithm adds an extra computational cost to the numer-
ical computation of the Greeks. As explained in [2], the numerical cost of this algorithm is
equivalent to Cm(n+N), where C is a constant, m is the number of step discretizations,
and n and N are respectively the number of the Robbins-Monro algorithm and Monte
Carlo runs. As we observe in the numerical examples, the standard deviation ratio of the
estimation (with and without the variance reduction) goes up to 7, which corresponds to
a variance reduction of 50. Thus as in [2, 20], this gain justifies the additional cost, since
at most 50% simulated paths are used to estimate the optimal drift in addition to those
used for the standard Monte Carlo simulation. Note also that multilevel Monte Carlo
methods could be applied in order to reduce this computational cost (see for example
[17]).

3.2 Numerical examples

3.2.1 Black-Scholes model with jumps

Assume that the price St of the underlying asset under the risk-neutral probability measure
P follows the following jump diffusion model

dSt = rStdt+ σStdBt + (α− 1)St(dNt − λdt), S0 = x, (14)

where r > 0 is the risk-free constant interest rate, α > 0, Bt is a standard Brownian
motion, Nt is a standard Poisson process with intensity λ > 0 independent of the Brownian
motion, x is fixed, and σ is a positive constant.

Consider a square integrable payoff h(ST ) with maturity T > 0. Using the Malliavin
calculus technique it is shown in [12] that for a contingent claim

F = e−rTEP[h(ST )],

the Delta and Gamma of this model are given by

∆ =
∂F

∂x
= e−rTEP [h(ST )π∆] , Γ =

∂2F

∂x2
= e−rTEP [h(ST )πΓ] ,

where

π∆ =
BT

xσT
, πΓ =

1

x2σT

(
B2
T

σT
−BT −

1

σ

)
.

We now apply the algorithm exposed in Section 3.1 to numerically compute the values
of ∆ and Γ. By Itô’s formula, the unique solution to equation (14) is explicit and given
by

St = x exp
(
(r − (α− 1)λ− σ2/2)t+ σBt +Nt log(α)

)
.

Moreover, we are in the case of an unconstrained algorithm (Section 2.2.1) and the under-
lying jump process is a Poisson process (Example 2.2.2). Therefore, the function H(µ, θ)
we need to minimize is given by

H(µ, θ) = e−rTEP[h2(ST )π2
∆,Γe

−〈µ,BT 〉+ 1
2
|µ|2T−〈θ,NT 〉+T 〈λ,eθ−1〉],

where (µ, θ) ∈ R×R.
Tables 1 and 2 present the values obtained for the Delta and the Gamma of a European

call with payoff function h(x) = (x−K)+. DeltaMC and GammaMC are computed with
a direct run of N = 90, 000 Monte Carlo simulations, while DeltaRM and GammaRM

12



include the variance reduction technique with n = 20, 000. The StdRatio is the ratio of
the standard deviations of both estimators. DeltaRef and GammaRef are the reference
values. See for example [8] and the references therein for analytical formulas of the Greeks
for the Black-Scholes and Heston models with jumps.

INSERT TABLE 1 AND TABLE 2 ABOUT HERE

The Robbins-Monro algorithm is implemented with initial value (µ0, θ0) = (0, 0). In
Proposition 2 the sequences un and vn for which this stochastic algorithm converges are
computed. That is,

un =
√
c1 lnn+M and vn =

1

8
ln(c2 lnn) +M,

for M > 0 a sufficiently large constant. In practice, for this example it is sufficient to
choose M = 50 as in [2]. The choice of this value depends on the growth of the function
inside the expectation of the function H(µ, θ). As likewise remarked in [2], the value of the
ratio K/S0 plays an important role in the simulations, also in the presence of jumps. We
have observed much less effect in the choice of the other parameters. In particular, since
we are implementing the Robbins-Monro algorithm with n = 20, 000, we have observed
no significant effect on the choice of the parameter β as soon as it ranges in the interval
[1, 1000] (see also [2]).

We observe in Tables 1 and 2 that the values of DeltaRM and GammaRM are closer
to the reference value than the others. Moreover, the value of the StdRatio goes up to 7,
which shows the efficiency of the method in this example.

In Figures 1 and 2 we compute the value of Delta and Gamma for several Monte Carlo
paths. We clearly observe that the variance reduction technique with the Robbins-Monro
algorithm (Malliavin Reduction) gives a more accurated convergence to the reference value
(exact) than the crude Monte Carlo method (Malliavin).

INSERT FIGURE 1 AND FIGURE 2 ABOUT HERE

3.2.2 Heston model with jumps

We now assume that the underlying asset dynamics under a risk-neutral probability mea-
sure P is given by the stochastic volatility model{

dSt = rStdt+
√
VtStdBt + (α− 1)St(dNt − λdt), S0 = x,

dVt = κ(θ − Vt)dt+ σ
√
VtdWt, V0 = y,

where Bt and Wt are two correlated standard Brownian motions with E[WtBt] = ρt, and
κ, θ and σ are positive constants.

Consider now a square integrable payoff h(ST ) with maturity T > 0. Given the results
in [12], for a contingent claim

F = e−rTEP[h(ST )],

the Delta and Gamma of this model are given by

∆ = e−rTEP [h(ST )π∆] , Γ = e−rTEP [h(ST )πΓ] ,

where

π∆ =
1

xT

(∫ T

0

dBt√
Vt
− ρ√

1− ρ2

∫ T

0

dWt√
Vt

)
,
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and

πΓ = π2
∆ −

1

x
π − 1

x2T 2

1

1− ρ2

∫ T

0

dt

Vt
.

In order to apply the setting of Section 2 to numerically compute the values of these
Greeks, observe that we are again in the case of an unconstrained algorithm and the
underlying jump process is a Poisson process. However, in general there is no close formula
for the solution to this equation, thus need to proceed with a discretization scheme. For
example, the Euler scheme given by

Sti+1
= Sti + rStiδ + σ(Yti)StiXi

√
δ + (α− 1)Sti(∆Ni − λδ),

Yti+1
= Yti + b(Yti)δ + a(Yti)(ρXi +

√
1− ρ2Xi+m)

√
δ,

where 0 = t0 < t1 < · · · < tm = T , δ = ti+1 − ti = T
m

, (X1, . . . , Xm, Xm+1, . . . , X2m) is a
sequence of 2m iid Normal(0,1) random variables, and (∆Ni = Nti+1

− Nti , i = 1, ...,m)
is a sequence of m iid Poisson(δλ) random variables.

Therefore, the function we need to minimize is

H(µ, θ) = e−rTEP[h2(ST )π2
∆,Γe

−〈µ,BT 〉+ 1
2
|µ|2T−〈θ,NT 〉+T 〈λ,eθ−1〉],

where (µ, θ) ∈ R2m ×Rm.
As for the Black-Scholes model, Tables 3 and 4 present different values obtained for

the Delta and Gamma of a European call. We use the same number of runs of the
Monte Carlo and Robbins Monro algorithms, and m = 100 for the discretization. For
the Robbins-Monro algorithm we again set (µ0, θ0) = (0, 0) as initial value and choose
M = 100 for the truncation which is larger than the last example due to the stochastic
volatility (as in [2]).

INSERT TABLES 3 AND 4 ABOUT HERE

Again, we obtain more accurated values of the Greeks and the StdRatio takes values
roughly from 2 to 4. Finally, in Figures 3 and 4 we also observe better convergences to
the reference value.

INSERT FIGURES 3 AND 4 ABOUT HERE

3.2.3 Barndorff-Nielsen and Shephard model

The Barndorff-Nielsen and Shephard (BNS) model was introduced in [5] and can be used,
for example, to fit high-frequency stock price data. We consider this model with no
leverage effect. In this case, it is shown in Nicolato and Venaros [23] that there exists a
risk neutral measure P on (Ω,F), under which the asset price St writes as

dSt = St(rdt+ σtdBt), S0 = x,

where r > 0 is the constant market interest rate, Bt is a standard Brownian motion, and
the stochastic volatility σ2

t is given by the Lévy-Ornstein-Uhlenbeck process

dσ2
t = −λσ2

t dt+ dZλt, σ2
0 > 0,

where λ > 0 is the mean-reversion rate, and Zt is a pure jump Lévy process with no
drift and positive increments, independent of the Brownian motion, with Lévy measure ν
having density w with respect to the Lebesgue measure, that is, ν(dz) = w(z)dz.

14



Consider now a square integrable payoff h(ST ), where h is a locally integrable functions
whose set of discontinuities has Lebesgue measure zero. Then, Benth and al. [6] obtain
formulas for the Greeks for a contingent claim

F = e−rTEP[h(ST )].

For example, they show that the Delta of this model is given by

∆ = e−rTEP [h(ST )π] , π =
1

xT

∫ T

0

1

σt
dBt.

We assume that the invariant distribution of σ2
t is a Gamma distribution with param-

eters γ > 0 and η > 0. In this case, it is shown in [23] that Zt is the compound Poisson
process of Example 2.2.4.

We apply the variance reduction technique of Section 2. As pointed out in Example
2.2.4, this is a constrained algorithm, so we need to analyze the numerical behavior of the
gradient when applying the Robbins-Monro algorithm.

As for the Heston model, we consider the Euler discretization scheme given by

Sti+1
= Sti + rStiδ + σtiStiXi

√
δ,

σ2
ti+1

= σ2
ti
− λσ2

ti
δ +

∆Ni∑
k=1

J ik,

where 0 = t0 < t1 < · · · < tm = T , δ = ti+1 − ti = T
m

, (X1, . . . , Xm) is a sequence of m
iid Normal(0,1) random variables, (∆Ni, i = 1, ...,m) is a sequence of m iid Poisson(δγλ)
random variables, and (J ik, i = 1, ...,m) is a sequence ofm iid exponential random variables
with parameter η.

Therefore, the function we need to minimize is

H(µ, θ) = e−rTEP[h2(ST )π2e
−〈µ,BT 〉+ 1

2
|µ|2T−〈θ,ZT 〉+T

∑m
i=1

γθi
η−θi ],

where (µ, θ) ∈ Rm × Λm
2 , and

Λ2 =

{
u ∈ R : −η

q
< u < η

}
.

The Robins-Monro algorithm is initialized at (µ0, θ0) = (0, 0) and we choose M = 100
for the truncation. Table 5 contains the different values obtained for the Delta of a
European call, where we again observe a clear gain in the accuracy of the estimation and
the reduction of the variance.

INSERT TABLE 5 ABOUT HERE

Finally, Figures 5 presents the convergence of one of the cases in the table, and we have
numerically checked that the gradient evaluated at the Robbins-Monro sequence (µn, θn)
indeed converges to zero.

INSERT FIGURE 5 ABOUT HERE
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4 Conclusions

In this paper we have developed a procedure to reduce the variance when numerically
computing the Greeks obtained via the Malliavin calculus for jump-diffusion models with
stochastic volatility. These include Heston with jumps and the Barndorff-Nielsen and
Shephard models. The procedure is validated theoretically and outperforms the usual
Monte Carlo methodology. The simulation study shows that the standard deviation gets
substantially diminished and that we obtain more accurate values for the Greeks. Al-
though the implementation of this algorithm adds an extra computational cost to the
numerical computation of the Greeks, the numerical examples in Section 3 show that the
gain in variance reduction compensates the relatively small additional cost.
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5 Tables and Figures

σ K/S0 DeltaMC DeltaRef DeltaRM StdRatio

0.1 0.8 0.9376 0.9510 0.9504 1.0406
1 0.8168 0.8115 0.8104 3.5242

1.2 0.2093 0.2089 0.2091 6.1567
0.3 0.8 0.8538 0.8536 0.8520 4.0177

1 0.6522 0.6540 0.6534 5.8366
1.2 0.4258 0.4295 0.4287 6.1948

Table 1: European call under Black-Scholes model with jumps. Parameters: S0=50, r = 0.05, T=1,
α = 0.5, λ = 0.1, β = 1000.

σ K/S0 GammaMC GammaRef GammaRM StdRatio

0.1 0.8 -0.0009 0.0001 0.0003 1.3707
1 0.0115 0.0114 0.0113 2.2844

1.2 0.0383 0.0366 0.0365 7.2398
0.3 0.8 0.0045 0.0052 0.0050 2.6818

1 0.0105 0.0104 0.0104 3.8576
1.2 0.0132 0.0127 0.0127 6.7382

Table 2: European call under Black-Scholes model with jumps. Parameters: S0=100, r = 0.1, T=1,
α = 0.5, λ = 0.1, β = 1000.

λ K/S0 DeltaMC DeltaRef DeltaRM StdRatio

0.1 0.8 0.5653 0.5531 0.5508 3.2562
1 0.4545 0.4460 0.4475 3.9337

1.2 0.3512 0.3476 0.3491 3.7939
1 0.8 0.5598 0.5551 0.5598 2.1040

1 0.4911 0.4852 0.4887 2.2720
1.2 0.4188 0.4300 0.4268 2.5998

Table 3: European call for Heston with jumps. Parameters: S0 = 50, r = 0.05, κ = 2, θ = 0.4, σ =
0.2, ρ = 0.5, α = 0.5, T = 1, β = 1, V0 = 0.04.
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λ K/S0 GammaMC GammaRef GammaRM StdRatio

0.1 0.8 0.0171 -0.0173 -0.0171 2.1517
1 -0.0088 -0.0091 -0.0088 2.4984

1.2 -0.0043 -0.0035 -0.0038 2.8132
1 0.8 -0.0241 -0.0246 -0.0250 1.6967

1 -0.0173 -0.0173 -0.0173 1.8948
1.2 -0.0119 -0.0117 -0.0119 1.9958

Table 4: European call for Heston with jumps. Parameters: S0 = 50, r = 0.05, κ = 0.1, θ = 0.4, σ =
0.3, ρ = 0.5, α = 0.5, T = 1, β = 1, V0 = 0.05.

K/S0 DeltaMC DeltaRef DeltaRM StdRatio

0.8 0.8134 0.8006 0.8090 3.7985
1 0.5909 0.5965 0.5886 3.3446

1.2 0.3981 0.3838 0.3853 3.5117

Table 5: European call for Barndorff-Nielsen and Shephard model. Parameters: S0 = 100, r = 0.01, η =
1, σ2

0 = 0.1, γ = 3, T = 1, β = 1, λ = 0.1.

Figure 1: European call under Black-Scholes model with jumps. Parameters: S0 = 50, K = 50,
r = 0.05, T = 1, σ = 0.3, α = 0.5, λ = 0.1, β = 1.
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Figure 2: European call under Black-Scholes model with jumps. Parameters: S0 = 100, K = 120,
r = 0.1, T = 1, σ = 0.1, α = 0.5, λ = 0.1, β = 100.

Figure 3: European call under Heston model with jumps. Parameters: S0 = 50, K = 50, r = 0.05,
κ = 2, ρ = 0.5, α = 0.5, θ = 0.4, V0 = 0.04, β = 10, λ = 0.1, T = 1, σ = 0.1.
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Figure 4: European call for Heston model with jumps. Parameters S0 = 50, K = 60, r = 0.05, κ = 2,
ρ = 0.5, α = 0.5, θ = 0.4, V0 = 0.04, β = 1, λ = 0.1, T = 1, σ = 0.2.

Figure 5: European call for Barndorff-Nielsen and Shephard model. Parameters S0 = 100, K = 120,
σ2
0 = 0.1, r = 0.01, T = 1, λ = 0.1, γ = 3, η = 1, β = 1.
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