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Abstract We consider a system of d non-linear stochastic heat equations in spatial
dimension k ≥ 1, whose solution is an R

d -valued random field u = {u(t , x), (t, x)
∈ R+ × R

k}. The d-dimensional driving noise is white in time and with a spatially
homogeneous covariance defined as a Riesz kernel with exponent β, where 0 < β <

(2 ∧ k). The non-linearities appear both as additive drift terms and as multipliers of
the noise. Using techniques of Malliavin calculus, we establish an upper bound on
the two-point density, with respect to Lebesgue measure, of the R

2d -valued random
vector (u(s, y), u(t, x)), that, in particular, quantifies how this density degenerates as
(s, y) → (t, x). From this result, we deduce a lower bound on hitting probabilities
of the process u, in terms of Newtonian capacity. We also establish an upper bound
on hitting probabilities of the process in terms of Hausdorff measure. These estimates
make it possible to show that points are polar when d > 4+2k

2−β and are not polar when
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d < 4+2k
2−β . In the first case, we also show that the Hausdorff dimension of the range

of the process is 4+2k
2−β a.s.

Keywords Hitting probabilities · Systems of non-linear stochastic heat equations ·
Spatially homogeneous Gaussian noise · Malliavin calculus
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1 Introduction and main results

Consider the following system of stochastic partial differential equations:

⎧
⎪⎨

⎪⎩

∂

∂t
ui (t, x) = 1

2
�x ui (t, x)+

d∑

j=1

σi, j (u(t, x)) Ḟ j (t, x)+ bi (u(t, x)),

ui (0, x) = 0, i ∈ {1, . . . , d},
(1.1)

where t ≥ 0, x ∈ R
k, k ≥ 1, σi, j , bi : R

d → R are globally Lipschitz functions, i,
j ∈ {1, . . . , d}, and the �x denotes the Laplacian in the spatial variable x .

The noise Ḟ = (Ḟ1, . . . , Ḟd) is a spatially homogeneous centered Gaussian gen-
eralized random field with covariance of the form

E [Ḟ i (t, x)Ḟ j (s, y)] = δ(t − s)‖x − y‖−βδi j , 0 < β < (2 ∧ k). (1.2)

Here, δ(·) denotes the Dirac delta function, δi j the Kronecker symbol and ‖ · ‖ is the
Euclidean norm. In particular, the d-dimensional driving noise Ḟ is white in time and
with a spatially homogeneous covariance given by the Riesz kernel f (x) = ‖x‖−β .

The solution u of (1.1) is known to be a d-dimensional random field (see Sect. 2,
where precise definitions and references are given), and the aim of this paper is to
develop potential theory for u. In particular, given a set A ⊂ R

d , we want to deter-
mine whether or not the process u hits A with positive probability. For systems of
linear and/or nonlinear stochastic heat equations in spatial dimension 1 driven by a
d-dimensional space-time white noise, this type of question was studied in Dalang,
Khoshnevisan, and Nualart [5] and [6]. For systems of linear and/or nonlinear stochas-
tic wave equations, this was studied first in Dalang and Nualart [7] for the reduced
wave equation in spatial dimension 1, and in higher spatial dimensions in Dalang and
Sanz-Solé [9,10]. The approach of this last paper is used for some of our estimates
(see Proposition 5.7).

We note that for the Gaussian random fields, and, in particular, for (1.1) when b ≡ 0
andσ = Id , the d×d-identity matrix, there is a well-developed potential theory [2,27].
The main effort here concerns the case where b and/or σ are not constant, in which
case u is not Gaussian.

Let us introduce some notation concerning potential theory. For all Borel sets
F ⊆ R

d , let P(F) denote the set of all probability measures with compact support
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in F . For all α ∈ R and μ ∈ P(Rk), we let Iα(μ) denote the α-dimensional energy
of μ, that is,

Iα(μ) :=
∫∫

Kα(‖x − y‖) μ(dx) μ(dy),

where

Kα(r) :=
⎧
⎨

⎩

r−α if α > 0,
log(N0/r) if α = 0,
1 if α < 0,

(1.3)

where N0 is a constant whose value will be specified later (at the end of the proof of
Lemma 2.3).

For allα ∈ R and Borel sets F ⊂ R
k, Capα(F) denotes theα-dimensional capacity

of F , that is,

Capα(F) :=
[

inf
μ∈P(F)

Iα(μ)

]−1

,

where, by definition, 1/∞ := 0.
Given α ≥ 0, the α-dimensional Hausdorff measure of F is defined by

Hα(F) = lim
ε→0+ inf

{ ∞∑

i=1

(2ri )
α : F ⊆

∞⋃

i=1

B(xi , ri ), sup
i≥1

ri ≤ ε

}

, (1.4)

where B(x , r) denotes the open (Euclidean) ball of radius r > 0 centered at x ∈ R
d .

When α < 0, we define Hα(F) to be infinite.
Consider the following hypotheses on the coefficients of the system of equa-

tions (1.1), which are common assumptions when using Malliavin calculus:

P1 The functions σi, j and bi are C∞ and have bounded partial derivatives of all
positive orders, and the σi, j are bounded, i, j ∈ {1, . . . , d}.
P2 The matrix σ = (σi, j )1≤i, j≤d is strongly elliptic, that is, there is ρ > 0 such

that ‖σ(x) · ξ‖2 ≥ ρ2 > 0, for all x ∈ R
d and ξ ∈ R

d with ‖ξ‖ = 1.

Remark 1.1 Note that because σ is a square matrix,

inf
x∈Rd

inf‖ξ‖=1
‖σ(x) · ξ‖2 = inf

x∈Rd
inf‖ξ‖=1

‖ξT · σ(x)‖2

(for non square matrices, this equality is false in general). Therefore, it follows from
P2 that ‖ξT · σ(x)‖2 ≥ ρ2 > 0, for all x ∈ R

d and ξ ∈ R
d with ‖ξ‖ = 1.

For T > 0 fixed, we say that I × J ⊂ (0, T ]×R
k is a closed non-trivial rectangle if

I ⊂ (0, T ] is a closed non-trivial interval and J is of the form [a1, b1]×· · ·×[ak, bk],
where ai , bi ∈ R and ai < bi , i = 1, . . . , k.

The main result of this article is the following.
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Theorem 1.2 Let u denote the solution of (1.1). Assume conditions P1 and P2. Fix
T > 0 and let I × J ⊂ (0, T ] × R

k be a closed non-trivial rectangle. Fix M > 0 and
η > 0.

(a) There exists C > 0 such that for all compact sets A ⊆ [−M ,M]d ,

P {u(I × J ) ∩ A = ∅} ≤ C Hd−( 4+2k
2−β )−η(A).

(b) There exists c > 0 such that for all compact sets A ⊆ [−M ,M]d ,

P {u(I × J ) ∩ A = ∅} ≥ c Capd−( 4+2k
2−β )+η(A).

As a consequence of Theorem 1.2, we deduce the following result on the polarity
of points. Recall that A is a polar set for u if P{u(I × J ) ∩ A = ∅} = 0, for any
I × J as in Theorem 1.2.

Corollary 1.3 Let u denote the solution of (1.1). Assume P1 and P2. Then points are
not polar for u when d < 4+2k

2−β , and are polar when d > 4+2k
2−β (if 4+2k

2−β is an integer,

then the case d = 4+2k
2−β is open).

Another consequence of Theorem 1.2 is the Hausdorff dimension of the range of
the process u.

Corollary 1.4 Let u denote the solution of (1.1). Assume P1 and P2. If d > 4+2k
2−β ,

then a.s.,

dimH

(
u
(
R+ × R

k
))

= 4 + 2k

2 − β
.

The result of Theorem 1.2 can be compared to the best result available for the
Gaussian case, using the result of [27, Theorem 7.6].

Theorem 1.5 Let v denote the solution of (1.1) when b ≡ 0 andσ ≡ Id . Fix T,M > 0
and let I × J ⊂ (0, T ]×R

k be a closed non-trivial rectangle. There exists c > 0 such
that for all compact sets A ⊆ [−M ,M]d ,

c−1 Cap
d−
(

4+2k
2−β

)(A) ≤ P
{
v (I × J ) ∩ A = ∅

}
≤ c H

d−
(

4+2k
2−β

)(A).

Theorem 1.5 is proved in Sect. 2. Comparing Theorems 1.2 and 1.5, we see that
Theorem 1.2 is nearly optimal.

In order to prove Theorem 1.2, we shall use techniques of Malliavin calculus in
order to establish first the following result. Let pt,x (z) denote the probability density
function of the R

d -valued random vector u(t, x) = (u1(t, x), . . . , ud(t, x)) and for
(s, y) = (t, x), let ps,y; t,x (z1, z2) denote the joint density function of the R

2d -valued
random vector

(u(s, y), u(t, x)) = (u1(s, y), . . . , ud(s, y), u1(t, x), . . . , ud(t, x)) .
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The existence (and smoothness) of pt,x (·) when d = 1 follows from [13, Theorem
2.1] and Lemma 6.1 (see also [18, Theorem 6.2]). The extension of this fact to d ≥ 1
is proved in Proposition 4.2. The existence (and smoothness) of ps,y; t,x (·, ·) is a
consequence of Theorem 5.8 and [16, Theorem 2.1.2 and Corollory 2.1.2].

The main technical effort in this paper is the proof of the following theorem.

Theorem 1.6 Assume P1 and P2. Fix T > 0 and let I × J ⊂ (0, T ]×R
k be a closed

non-trivial rectangle.

(a) The density pt,x (z) is a C∞ function of z and is uniformly bounded over z ∈ R
d

and (t, x) ∈ I × J .
(b) For all η > 0 and γ ∈ (0, 2 − β), there exists c > 0 such that for any
(s, y), (t, x) ∈ I × J, (s, y) = (t, x), z1, z2 ∈ R

d , and p ≥ 1,

ps,y; t,x (z1, z2) ≤ c(|t − s| 2−β
2 + ‖x − y‖2−β)−(d+η)/2

×
[ |t − s|γ /2 + ‖x − y‖γ

‖z1 − z2‖2 ∧ 1

]p/(2d)

. (1.5)

Statement (a) of this theorem is proved at the end of Sect. 4, and statement (b) is
proved in Sect. 5.3.

Remark 1.7 (a) Theorem 1.6(a) remains valid under a slightly weaker version of P1,
in which the σi, j need not be bounded (but their derivatives of all positive orders
are bounded).

(b) The last factor on the right-hand side of (1.5) is similar to the one obtained in [10,
Remark 3.1], while in the papers [5,6], which concern spatial dimension 1, it was
replaced by

exp

(

− ‖z1 − z2‖2

c
(|t − s|γ /2 + ‖x − y‖γ )

)

.

This exponential factor was obtained by first proving this bound in the case where
bi ≡ 0, i = 1, . . . , d, and then using Girsanov’s theorem. In the case of higher spatial
dimensions that we consider here, we can obtain this same bound when bi ≡ 0, i = 1,
. . . , d (see Lemma 5.12 in Sect. 5.3). Since there is no applicable Girsanov’s theorem
in higher spatial dimensions and for equations on all of R

d , we establish (1.5) and,
following [10], show in Sect. 2.4 that this estimate is sufficient for our purposes.

One further fact about pt,x (·) that we will need is provided by the following recent
result of Nualart [19].

Theorem 1.8 Assume P1 and P2. Fix T > 0 and let I × J ⊂ (0, T ]×R
k be a closed

non-trivial rectangle. Then for all z ∈ R
d and (t, x) ∈ (0, T ]×R

k , the density pt,x (z)
is strictly positive.

123



Stoch PDE: Anal Comp (2013) 1:94–151 99

2 Proof of Theorems 1.2, 1.5 and Corollaries 1.3, 1.4 (assuming Theorem 1.6)

We first define precisely the driving noise that appears in (1.1). Let D(Rk)

be the space of C∞ test-functions with compact support. Then F = {F(φ)
= (F1(φ), . . . , Fd(φ)), φ ∈ D(Rk+1)} is an L2(�,F ,P)d -valued mean zero
Gaussian process with covariance

E
[

Fi (φ)F j (ψ)
]

= δi j

∫

R+

dr
∫

Rk

dy
∫

Rk

dz φ(r, y)‖y − z‖−βψ(r, z).

Using elementary properties of the Fourier transform (see Dalang [3]), this covari-
ance can also be written as

E
[

Fi (φ)F j (ψ)
]

= δi j ck,β

∫

R+

dr
∫

Rk

dξ ‖ξ‖β−kFφ(r, ·)(ξ)Fψ(r, ·)(ξ),

where ck,β is a constant and F f (·)(ξ) denotes the Fourier transform of f , that is,

F f (·)(ξ) =
∫

Rk

e−2π iξ ·x f (x) dx .

Since Eq. (1.1) is formal, we first provide, following Walsh [25, pp. 289–290],
a rigorous formulation of (1.1) through the notion of mild solution as follows. Let
M = (M1, . . . ,Md), Mi = {Mi

t (A), t ≥ 0, A ∈ Bb(R
k)} be the d-dimensional

worthy martingale measure obtained as an extension of the process Ḟ as in Dalang
and Frangos [4]. Then a mild solution of (1.1) is a jointly measurable R

d -valued
process u = {u(t, x), t ≥ 0, x ∈ R

k}, adapted to the natural filtration generated by
M , such that

ui (t, x) =
t∫

0

∫

Rk

S(t − s, x − y)
d∑

j=1

σi, j (u(s, y))M j (ds, dy)

+
t∫

0

ds
∫

Rk

dy S(t − s, x − y) bi (u(s, y)), i ∈ {1, . . . , d}, (2.1)

where S(t, x) is the fundamental solution of the deterministic heat equation in
R

k , that is,

S(t, x) = (2π t)−k/2 exp

(

−‖x‖2

2t

)

,

and the stochastic integral is interpreted in the sense of [25]. We note that the covari-
ation measure of Mi is
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Q ([0, t] × A × B) = 〈Mi (A),Mi (B)〉t = t
∫

Rk

dx
∫

Rk

dy 1A(x) ‖x − y‖−β 1B(y),

and its dominating measure is K ≡ Q. In particular,

E

⎡

⎢
⎣

⎛

⎜
⎝

t∫

0

∫

Rk

S(t − s, x − y)Mi (ds, dy)

⎞

⎟
⎠

2⎤

⎥
⎦

=
t∫

0

ds
∫

Rk

dy
∫

Rk

dz S(t − s, x − y) ‖y − z‖−β S(t − s, x − z)

= ck,β

t∫

0

ds
∫

Rk

dξ ‖ξ‖β−k |F S(t − s, ·)(ξ)|2, (2.2)

where we have used elementary properties of the Fourier transform (see also Dalang
[3], Nualart and Quer-Sardanyons [18], and Dalang and Quer-Sardanyons [8] for
properties of the stochastic integral). This last formula is convenient since

F S(r, ·)(ξ) = exp
(
−2π2 r‖ξ‖2

)
. (2.3)

The existence and uniqueness of the solution of (1.1) is studied in Dalang [3] for
general space correlation functions f which are non-negative, non-negative definite
and continuous on R

k \{0} (in the case where k = 1; for these properties, the extension
to k > 1 is straightforward). In particular, it is proved that if the spectral measure of
Ḟ , that is, the non-negative tempered measure μ on R

k such that Fμ = f , satisfies
∫

Rk

μ(dξ)

1 + ‖ξ‖2 < +∞, (2.4)

then there exists a unique solution of (1.1) such that (t, x) �→ u(t, x) is L2-continuous,
and condition (2.4) is also necessary for existence of a mild solution.

In the case of the noise (1.2), f (x) = ‖x‖−β and μ(dξ) = cd‖ξ‖β−k dξ , where cd

is a constant (see Stein [24, Chap.V, Sect. 1, Lemma 2(b)]), and the condition (2.4) is
equivalent to

0 < β < (2 ∧ k). (2.5)

Therefore, by Dalang [3], there exists a unique L2-continuous solution of (1.1),
satisfying

sup
(t,x)∈[0,T ]×Rk

E

[

|ui (t, x)|p
]

< +∞, i ∈ {1, . . . , d},

for any T > 0 and p ≥ 1.
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2.1 Hölder continuity of the solution

Let T > 0 be fixed. In Sanz-Solé and Sarrà [23, Theorem 2.1] it is proved that for any
γ ∈ (0, 2 − β), s, t ∈ [0, T ], s ≤ t, x, y ∈ R

k, p > 1,

E
[‖u(t, x)− u(s, y)‖p] ≤ Cγ,p,T

(
|t − s|γ /2 + ‖x − y‖γ

)p/2
. (2.6)

In particular, the trajectories of u are a.s. γ /4-Hölder continuous in t and γ /2-Hölder
continuous in x .

The next result shows that the estimate (2.6) is nearly optimal (the only possible
improvement would be to include the value γ = 2 − β).

Proposition 2.1 Let v denote the solution of (1.1) with σ ≡ 1 and b ≡ 0. Then for
any 0 < t0 < T, p > 1 and K a compact set, there exists c1 = c1(p, t0, K ) > 0 such
that for any t0 ≤ s ≤ t ≤ T, x, y ∈ K , i ∈ {1, . . . , d},

E
[|vi (t, x)− vi (s, y)|p] ≥ c1

(
|t − s| 2−β

4 p + ‖x − y‖ 2−β
2 p
)
. (2.7)

Proof Since v is Gaussian, it suffices to check (2.7) for p = 2. Setting t = s + h and
x = y + z, we observe from (2.2) that

E
[
|vi (s + h, y + z)− vi (s, y)|2

]
= ck,β (I1 + I2) ,

where

I1 =
s+h∫

s

dr
∫

Rk

dξ ‖ξ‖β−k |F S(s + h − r, ·)(ξ)|2,

I2 =
s∫

0

dr
∫

Rk

dξ ‖ξ‖β−k |F S(s + h − r, ·)(ξ) e−2π iξ ·(y+z)

− F S(s − r, ·)(ξ) e−2π iξ ·y |2.

Case 1. h ≥ ‖z‖2. In this case, we notice from (2.3) that

I1 + I2 ≥ I1 =
s+h∫

s

dr
∫

Rk

dξ ‖ξ‖β−k exp(−4π2(s + h − r)‖ξ‖2)

=
∫

Rk

dξ ‖ξ‖β−k
(

1 − exp(−4π2h‖ξ‖2)

4π2‖ξ‖2

)

.
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We now use the change of variables ξ̃ = h1/2ξ to see that the last right-hand side is
equal to

h
2−β

2

∫

Rk

d ξ̃ ‖ξ̃‖β−k
(

1 − exp(−4π2‖ξ̃‖2)

4π2‖ξ̃‖2

)

.

Note that the last integral is positive and finite. Therefore, when h ≥ ‖z‖2,

E
[
|vi (t + h, y + z)− vi (s, y)|2

]
≥ c

(
max

(
h, ‖z‖2

)) 2−β
2
.

Case 2. ‖z‖2 ≥ h. In this case, we notice that

I1 + I2 ≥ I2 =
s∫

0

dr
∫

Rk

dξ ‖ξ‖β−k exp
(
−4π2(s − r)‖ξ‖2

)

×
∣
∣
∣1 − exp

(
−4π2h‖ξ‖2

)
exp (−2π i ξ · z)

∣
∣
∣
2
.

We use the elementary inequality |1 − reiθ | ≥ 1
2 |1 − eiθ |, valid for all r ∈ [0, 1] and

θ ∈ R, and we calculate the dr -integral, to see that

I2 ≥
∫

Rk

dξ ‖ξ‖β−k
(

1 − exp(−4π2s‖ξ‖2)

4π2‖ξ‖2

)

|1 − exp(−2π i ξ · z)|2.

Because z ∈ K − K and K is compact, fix M > 0 such that ‖z‖ ≤ M . When z = 0,
we use the change of variables ξ̃ = ‖z‖ξ and write e = z/‖z‖ to see that the last
right-hand side is equal to

c‖z‖2−β
∫

Rk

d ξ̃ ‖ξ̃‖β−k−2
(

1 − exp
(
−4π2t‖ξ̃‖2/‖z‖2

))
|1 − exp(−2π i ξ̃ · e)|2

≥ c‖z‖2−β
∫

Rk

d ξ̃ ‖ξ̃‖β−k−2
(

1−exp
(
−4π2t0‖ξ̃‖2/M2

))
|1−exp(−2π i ξ̃ · e)|2.

The last integral is a positive constant. Therefore, when ‖z‖2 ≥ h,

E
[
|vi (t + h, y + z)− vi (s, y)|2

]
≥ c

(
max

(
h, ‖z‖2

)) 2−β
2
.

Cases 1 and 2 together establish (2.7). ��
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2.2 Proof of Theorem 1.5

Under the hypotheses on b andσ , the components of v = (v1, . . . , vd) are independent,
so v is a (1 + k, d)-Gaussian random field in the sense of [27]. We apply Theorem 7.6
in [27]. For this, we are going to verify Conditions (C1) and (C2) of [27, Sect. 2.4, p.
158] with N = k + 1, H1 = (2 − β)/4, Hj = (2 − β)/2, j = 1, . . . , k.

In particular, for (C1), we must check that there are positive constants c1, . . . , c4
such that for all (t, x) and (s, y) in I × J ,

c1 ≤ E
(
v1(t, x)2

)
≤ c2, (2.8)

and

c3

(
|t − s| 2−β

2 + ‖x − y‖2−β) ≤ E
[
(v1(t, x)− v1(s, y))2

]

≤ c4

(
|t − s| 2−β

2 + ‖x − y‖2−β) . (2.9)

Condition (2.8) is satisfied because E[v1(t, x)2] = Ct (2−β)/2 (see (2.2), (2.3) and
Lemma 6.1). The lower bound of (2.9) follows from Proposition 2.1. The upper bound
is a consequence of [22, Propositions 2.4 and 3.2].

Finally, in order to establish Condition (C2) it suffices to apply the fourth point of
Remark 2.2 in [27]. Indeed, it is stated there that Condition (C1) implies condition
(C2) when (t, x) �→ E[v1(t, x)2] = Ct (2−β)/2 is continuous in I × J with continuous
partial derivatives, and this is clearly the case.

This completes the proof of Theorem 1.5. ��

2.3 Proof of Theorem 1.2(a)

Fix T > 0 and let I × J ⊂ (0, T ] × R
k be a closed non-trivial rectangle.

Let γ ∈ (0, 2 − β). For all positive integers n, i ∈ {0, . . . , n} and j = ( j1, . . . , jk)

∈ {0, . . . , n}k , set tn
i = i2− 4n

γ , xn
j = (xn

j1
= j12− 2n

γ , . . . , xn
jk

= jk2− 2n
γ ), and

I n
i, j = [

tn
i , tn

i+1

]×
[
xn

j1 , xn
j1+1

]
× · · · ×

[
xn

jk , xn
jk+1

]
.

The proof of the following lemma uses Theorem 1.6a and (2.6), but follows along
the same lines as [5, Theorem 3.3] with�((t, x); (s, y)) there replaced by |t −s|γ /2 +
‖x − y‖γ , β there replaced by d − η and ε in Condition (3.2) there replaced by 2−n .
It is therefore omitted.

Lemma 2.2 Fix η > 0 and M > 0. Then there exists c > 0 such that for all z
∈ [−M,M]d , n large and I n

i, j ⊂ I × J ,

P
{

u
(

I n
i, j

)
∩ B

(
z , 2−n) = ∅

}
≤ c2−n(d−η).
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Proof of the upper bound in Theorem 1.2 Fix ε ∈ (0, 1) and n ∈ N such that 2−n−1

< ε ≤ 2−n , and write

P {u (I × J ) ∩ B(z , ε) = ∅} ≤
∑

(i, j):I n
i, j ∩(I×J ) =∅

P{u(I n
i, j ) ∩ B(z , ε) = ∅}.

The number of (1 + k)-tuples (i, j) involved in the sum is at most c 2n( 4
γ

+ 2
γ

k).
Lemma 2.2 implies therefore that for all z ∈ A, η > 0 and large n,

P {u (I × J ) ∩ B(z , ε) = ∅} ≤ C̃(2−n)d−η 2n 4+2k
γ .

Let η′ = η +
(

1
γ

− 1
2−β

)
(4 + 2k). Then this is equal to

2−n(d−( 4+2k
2−β +η′)) ≤ Cεd− 4+2k

2−β −η′
,

because 2−n−1 < ε ≤ 2−n . Note that C does not depend on (n , ε), and η′ can be
made arbitrarily small by choosing γ close to 2 −β and η small enough. In particular,
for all ε ∈ (0, 1),

P {u (I × J ) ∩ B(z , ε) = ∅} ≤ C εd− 4+2k
2−β −η′

. (2.10)

Now we use a covering argument: Choose ε̃ ∈ (0, 1) and let {Bi }∞i=1 be a sequence
of open balls in R

d with respective radii ri ∈ [0, ε̃) such that

A ⊂ ∪∞
i=1 Bi and

∞∑

i=1

(2ri )
d− 4+2k

2−β −η′ ≤ Hd− 4+2k
2−β −η′(A)+ ε̃. (2.11)

Because P {u (I × J ) ∩ A = ∅} is at most
∑∞

i=1 P {u(I × J ) ∩ Bi = ∅}, the bounds
in (2.10) and (2.11) together imply that

P {u (I × J ) ∩ A = ∅} ≤ C
(
Hd− 4+2k

2−β −η′(A)+ ε̃
)
.

Let ε̃ → 0 to conclude. ��

2.4 Proof of Theorem 1.2(b)

The following preliminary lemmas are the analogues needed here of [5, Lemma 2.2]
and [5, Lemma 2.3], respectively.

Lemma 2.3 Fix T > 0 and let I × J ⊂ (0, T ]×R
k be a closed non-trivial rectangle.

Then for all N > 0, b > 0, γ̃ > γ > 0 and p > 2d
γ
(γ̃ b − 2k − 4), there exists a

finite and positive constant C = C(I, J, N , b, γ, γ̃ , p) such that for all a ∈ [0 , N ],
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∫

I

dt
∫

I

ds
∫

J

dx
∫

J

dy (|t − s|γ̃ /2 + ‖x − y‖γ̃ )−b/2

×
( |t − s|γ /4 + ‖x − y‖γ /2

a
∧ 1

)p/(2d)

≤ C K γ̃
γ

b− 4+2k
γ

(a). (2.12)

Proof Let |J | denote the diameter of the set J . Using the change of variables ũ = t −s
(t fixed), ṽ = x − y (x fixed), we see that the integral in (2.12) is bounded above by

|I |λk(J )

|I |∫

0

dũ
∫

B(0,|J |)
d ṽ (ũγ̃ /2 + ‖ṽ‖γ̃ )−b/2

(
ũγ /4 + ‖ṽ‖γ /2

a
∧ 1

)p/(2d)

,

where λk denotes Lebesgue measure in R
k . A change of variables [ũ = a4/γ u2,

ṽ = a2/γ v] implies that this is equal to

C a
4+2k
γ

− γ̃
γ

b
∫ a−2/γ (|I |)1/2

0
udu

×
∫

B(0,|J |a−2/γ )

dv (uγ̃ + ‖v‖γ̃ )−b/2
((

uγ /4 + ‖v‖γ /2
)

∧ 1
)p/(2d)

.

We pass to polar coordinates in the variable v, to see that this is bounded by

C a
4+2k
γ

− γ̃
γ

b

a−2/γ (|I |)1/2∫

0

du

|J |a−2/γ
∫

0

dx xk−1 u (uγ̃ + x γ̃ )−b/2

×
((

uγ /2 + xγ /2
)p/(2d) ∧ 1

)

.

Bounding xk−1u by (u + x)k and using the fact that all norms in R
2 are equivalent,

we bound this above by

C a
4+2k
γ

− γ̃
γ

b

a−2/γ (2|I |)1/2∫

0

du

2|J |a−2/γ
∫

0

dx (u + x)k− γ̃ b
2

(
(u + x)γ p/(4d) ∧ 1

)
.

We now pass to polar coordinates of (u, x), to bound this by

C a
4+2k
γ

− γ̃
γ

b
(I1 + I2(a)), (2.13)
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where

I1 =
K N−2/γ
∫

0

dρ ρk+1− γ̃ b
2 (ργ p/(4d) ∧ 1),

I2(a) =
K a−2/γ
∫

K N−2/γ

dρ ρk+1− γ̃ b
2 ,

where K = 2(
√|I | ∨ |J |). Clearly, I1 ≤ C < ∞ since k + 1 − γ̃

2 b + γ p
4d > −1 by

the hypothesis on p. Moreover, if k + 2 − γ̃ b
2 = 0, then

I2(a) = K k+2− γ̃ b
2

a
γ̃
γ

b− 4+2k
γ − N

γ̃
γ

b− 4+2k
γ

k + 2 − γ̃ b
2

.

There are three separate cases to consider. (i) If k + 2 − γ̃ b
2 < 0, then I2(a) ≤ C

for all a ∈ [0, N ]. (ii) If k+2− γ̃ b
2 > 0, then I2(a) ≤ c a

γ̃
γ

b− 4+2k
γ . (iii) If k+2− γ̃ b

2 = 0,
then

I2(a) = 2

γ

[

ln
1

a
+ ln N

]

.

We combine these observations to conclude that the expression in (2.13) is bounded by
C K γ̃

γ
b− 4+2k

γ

(a), provided that N0 in (1.3) is sufficiently large. This proves the lemma.

��
For all a, ν, ρ > 0, define

�a,ν(ρ) :=
a∫

0

dx
xk−1

ρ + xν
. (2.14)

Lemma 2.4 For all a, ν, T > 0, there exists a finite and positive constant C =
C(a , ν , T ) such that for all 0 < ρ < T ,

�a,ν(ρ) ≤ CK(ν−k)/ν(ρ).

Proof If ν < k, then limρ→0�a,ν(ρ) = ∫ a
0 xk−1−ν dx < ∞. In addition, ρ

�→ �a,ν(ρ) is nonincreasing, so �a,ν is bounded on R+ when ν < k. In this case,
K(ν−k)/ν(ρ) = 1, so the result follows in the case that ν < k.
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For the case ν ≥ k, we change variables (y = xρ−1/ν) to find that

�a,ν(ρ) = ρ−(ν−k)/ν

aρ−1/ν
∫

0

dy
yk−1

1 + yν
.

When ν > k, this gives the desired result, with c = ∫ +∞
0 dy yk−1 (1 + yν)−1. When

ν = k, we simply evaluate the integral in (2.14) explicitly: this gives the result for
0 < ρ < T , given the choice of K0(r) in (1.3). We note that the constraint “0 < ρ < T ”
is needed only in this case. ��
Proof of the lower bound of Theorem 1.2 The proof of this result follows along the
same lines as the proof of [5, Theorem 2.1(1)], therefore we will only sketch the steps
that differ. We need to replace their β − 6 by our d − 4+2k

γ̃
+ η.

Note that our Theorem 1.6(a) and Theorem 1.8 prove that

inf‖z‖≤M

∫

I

dt
∫

J

dx pt,x (z) ≥ C > 0, (2.15)

which proves hypothesis A1’ of [5, Theorem 2.1(1)] (see [5, Remark 2.5(a)]).
Moreover, Theorem 1.6(b) proves a property that is weaker than hypothesis A2 of

[5, Theorem 2.1(1)] with their β = d + η, γ ∈ (0, 2 − β) and

�((t, x) ; (s, y)) = |t − s|γ /2 + ‖x − y‖γ ,

but which will be sufficient for our purposes.
Let us now follow the proof of [5, Theorem 2.1(1)]. Define, for all z ∈ R

d and
ε > 0, B̃(z , ε) := {y ∈ R

d : |y − z| < ε}, where |z| := max1≤ j≤d |z j |, and

Jε(z) = 1

(2ε)d

∫

I

dt
∫

J

dx 1B̃(z,ε)(u(t , x)), (2.16)

as in [5, (2.28)].
Assume first that d + η < 4+2k

2−β . Using Theorem 1.6(b), we find, instead of [5,
(2.30)],

E
[
(Jε(z))

2
]

≤ c
∫

I

dt
∫

I

ds
∫

J

dx
∫

J

dy
(
|t − s| 2−β

2 + ‖x − y‖2−β)−(d+η)/2
.

Use the change of variables u = t − s (t fixed), v = x − y (x fixed) to see that the
above integral is bounded above by
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c̃

|I |∫

0

dũ
∫

B(0,|J |)
d ṽ
(

ũ
2−β

2 + ‖ṽ‖2−β)−(d+η)/2

= c

|I |∫

0

du

|J |∫

0

dx xk−1
(

u
2−β

2 + x2−β)−(d+η)/2

≤ c

|I |∫

0

du�|J |,(2−β)(d+η)/2
(

u(2−β)(d+η)/4) .

Hence, Lemma 2.4 implies that for all ε > 0,

E
[
(Jε(z))

2
]

≤ C

|I |∫

0

du K1− 2k
(2−β)(d+η)

(
u(2−β)(d+η)/4) .

We now consider three different cases: (i) If 0 < (2−β)(d +η) < 2k, then the integral
equals |I |. (ii) If 2k < (2 − β)(d + η) < 4 + 2k, then K1− 2k

(2−β)(d+η)
(u(2−β)(d+η)/4) =

u(k/2)−(2−β)(d+η)/4 and the integral is finite. (iii) If (2 − β)(d + η) = 2k, then
K0(uk/2) = log(N0/uk/2) and the integral is also finite. The remainder of the proof of
the lower bound of Theorem 1.2 when d +η < 4+2k

2−β follows exactly as in [5, Theorem
2.1(1) Case 1 ].

Assume now that d + η > 4+2k
2−β . Define, for all μ ∈ P(A) and ε > 0,

Jε(μ) = 1

(2ε)d

∫

Rd

μ(dz)
∫

I

dt
∫

J

dx 1B̃(z,ε)(u(t , x)),

as [5, (2.35)].
In order to prove the analogue of [5, (2.41)], we use Theorem 1.6(b) and Lemma

2.3 (instead of [5, Lemma 2.2(1)]), to see that for all μ ∈ P(A), ε ∈ (0, 1) and
γ ∈ (0, 2 − β),

E
[
(Jε(μ))

2
]

≤ c

[

Cap 2−β
γ
(d+η)− 4+2k

γ
(A)

]−1

= c
[
Capd+η̃− 4+2k

2−β
(A)

]−1
.

The remainder of the proof of the lower bound of Theorem 1.2 when d + η > 4+2k
2−β

follows as in [5, Proof of Theorem 2.1(1) Case 2].
The case d + η = 4+2k

2−β is proved exactly along the same lines as the proof of [5,
Theorem 2.1(1) Case 3], appealing to (2.15), Theorem 1.6(b) and Lemma 2.3. ��
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2.5 Proof of Corollaries 1.3 and 1.4

Proof of Corollary 1.3 Let z ∈ R
d . If d < 4+2k

2−β , then there is η > 0 such that

d − 4+2k
2−β + η < 0, and thus

Capd− 4+2k
2−β +η({z}) = 1.

Hence, Theorem 1.2(b) implies that {z} is not polar. On the other hand, if d > 4+2k
2−β ,

then there is η > 0 such that d − 4+2k
2−β − η > 0. Therefore,

Hd− 4+2k
2−β −η({z}) = 0

and Theorem 1.2(a) implies that {z} is polar. ��
Proof of Corollary 1.4 We first recall, following Khoshnevisan [12, Chap. 11, Sect. 4],
the definition of stochastic codimension of a random set E in R

d , denoted codim(E),
if it exists: codim(E) is the real number α ∈ [0, d] such that for all compact sets
A ⊂ R

d ,

P{E ∩ A = ∅}
{
> 0 whenever dimH(A) > α,

= 0 whenever dimH(A) < α.

By Theorem 1.2, codim(u(R+ × R
k)) = (d − 4+2k

2−β )
+. Moreover, in Khoshnevisan

[12, Theorem 4.7.1, Chap.11], it is proved that given a random set E in R
d whose

codimension is strictly between 0 and d,

dimH(E)+ codim(E) = d, a.s.

This implies the desired statement. ��

3 Elements of Malliavin calculus

Let S (Rk) be the Schwartz space of C ∞ functions on R
k with rapid decrease.

Let H denote the completion of S (Rk) endowed with the inner product

〈φ(·), ψ(·)〉H =
∫

Rk

dx
∫

Rk

dy φ(x)‖x − y‖−βψ(y)

=
∫

Rk

dξ ‖ξ‖β−kFφ(·)(ξ)Fψ(·)(ξ),

φ, ψ ∈ S (Rk). Notice that H may contain Schwartz distributions (see [3]).
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For h = (h1, . . . , hd) ∈ H d and h̃ = (h̃1, . . . , h̃d) ∈ H d , we set 〈h, h̃〉H d =
∑d

i=1〈hi , h̃i 〉H . Let T > 0 be fixed. We set H d
T = L2([0, T ];H d) and for 0 ≤ s ≤

t ≤ T , we will write H d
s,t = L2([s, t];H d).

The centered Gaussian noise F can be used to construct an isonormal Gaussian
process {W (h), h ∈ H d

T } (that is, E[W (h)W (h̃)] = 〈h, h̃〉H d
T

) as follows. Let

{e j , j ≥ 0} ⊂ S (Rk) be a complete orthonormal system of the Hilbert space H .
Then for any t ∈ [0, T ], i ∈ {1, . . . , d} and j ≥ 0, set

W i
j (t) =

t∫

0

∫

Rk

e j (x) · Fi (ds, dx),

so that (W i
j , j ≥ 1) is a sequence of independent standard real-valued Brownian

motions such that for any φ ∈ D([0, T ] × R
k),

Fi (φ) =
∞∑

j=0

T∫

0

〈
φ(s, ·), e j (·)

〉

H dW i
j (s),

where the series converges in L2(�,F ,P). For hi ∈ HT , we set

W i (hi ) =
∞∑

j=0

T∫

0

〈
hi (s, ·), e j (·)

〉

H
dW i

j (s),

where, again, this series converges in L2(�, F, P). In particular, for φ ∈ D([0, T ] ×
R

k), Fi (φ) = W i (φ). Finally, for h = (h1, . . . , hd) ∈ H d
T , we set

W (h) =
d∑

i=1

W i (hi ).

With this isonormal Gaussian process, we can use the framework of Malli-
avin calculus. Let S denote the class of smooth random variables of the form
G = g(W (h1), . . . ,W (hn)), where n ≥ 1, g ∈ C ∞

P (Rn), the set of real-valued
functions g such that g and all its partial derivatives have at most polynomial growth,
hi ∈ H d

T . Given G ∈ S , its derivative (Dr G = (D(1)
r G, . . . , D(d)

r G), r ∈ [0, T ]),
is an H d

T -valued random vector defined by

Dr G =
n∑

i=1

∂g

∂xi
(W (h1), . . . ,W (hn))hi (r).

For φ ∈ H d and r ∈ [0, T ], we write Dr,φG = 〈Dr G, φ(·)〉H d . More generally, the
derivative Dm G = (Dm

(r1,...,rm )
G, (r1, . . . , rm) ∈ [0, T ]m) of order m ≥ 1 of G is the
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(H d
T )

⊗ j -valued random vector defined by

Dm
(r1,...,rm )

G =
n∑

i1,...,im=1

∂

∂xi1

· · · ∂

∂xim

g(W (h1), . . . ,W (hn))hi1(r1)⊗ · · · ⊗ him (rm).

For p,m ≥ 1, the space D
m,p is the closure of S with respect to the seminorm ‖·‖m,p

defined by

‖G‖p
m,p = E

[|G|p]+
m∑

j=1

E

[

‖D j G‖p
(H d

T )
⊗ j

]

.

We set D
∞ = ∩p≥1 ∩m≥1 D

m,p.
The derivative operator D on L2(�) has an adjoint, termed the Skorohod integral

and denoted by δ, which is an unbounded operator on L2(�,H d
T ). Its domain, denoted

by Dom δ, is the set of elements u ∈ L2(�,H d
T ) for which there exists a constant c

such that |E[〈DF, u〉H d
T

]| ≤ c‖F‖0,2, for any F ∈ D
1,2. If u ∈ Dom δ, then δ(u) is

the element of L2(�) characterized by the following duality relation:

E [Fδ(u)] = E
[
〈DF, u〉H d

T

]
, for all F ∈ D

1,2.

An important application of Malliavin calculus is the following global criterion for
existence and smoothness of densities of probability laws.

Theorem 3.1 [16, Thm.2.1.2 and Cor.2.1.2] or [21, Thm.5.2] Let F = (F1, . . . , Fd)

be an R
d -valued random vector satisfying the following two conditions:

(i) F ∈ (D∞)d;
(ii) the Malliavin matrix of F defined by γF = (〈DFi , DF j 〉H d

T
)1≤i, j≤d is invert-

ible a.s. and (det γF )
−1 ∈ L p(�) for all p ≥ 1.

Then the probability law of F has an infinitely differentiable density function.

A random vector F that satisfies conditions (i) and (ii) of Theorem 3.1 is said to
be nondegenerate. The next result gives a criterion for uniform boundedness of the
density of a nondegenerate random vector.

Proposition 3.2 [6, Proposition 3.4] For all p > 1 and � ≥ 1, let c1 = c1(p) > 0
and c2 = c2(�, p) ≥ 0 be fixed. Let F ∈ (D∞)d be a nondegenerate random vector
such that

(a) E[(det γF )
−p] ≤ c1;

(b) E[‖Dl(Fi )‖p
(H d

T )
⊗�] ≤ c2, i = 1, . . . , d.

Then the density of F is C∞ and uniformly bounded, and the bound does not depend
on F but only on the constants c1(p) and c2(�, p).
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In [13], the Malliavin differentiability and the smoothness of the density of u(t, x)
was established when d = 1, and the extension to d > 1 can easily be done by working
coordinate by coordinate. These results were extended in [18, Proposition 5.1]. In
particular, letting · denote the spatial variable, for r ∈ [0, t] and i, l ∈ {1, . . . , d}, the
derivative of ui (t, x) satisfies the system of equations

D(l)
r (ui (t, x)) = σil(u(r, ·)) S(t − r, x − ·)

+
t∫

r

∫

Rk

S(t − θ, x − η)

d∑

j=1

D(l)
r

(
σi, j (u(θ, η))

)
M j (dθ, dη)

+
t∫

r

dθ
∫

Rk

dη S(t − θ, x − η)D(l)
r (bi (u(θ, η))) , (3.1)

and D(l)
r (ui (t, x)) = 0 if r > t . Moreover, by [18, Proposition 6.1], for any

p > 1, m ≥ 1 and i ∈ {1, . . . , d}, the order m derivative satisfies

sup
(t,x)∈[0,T ]×Rk

E

[
∥
∥Dm(ui (t, x))

∥
∥p
(H d

T )
⊗m

]

< +∞, (3.2)

and Dm also satisfies the system of stochastic partial differential equations given in
[18, (6.29)] and obtained by iterating the calculation that leads to (3.1). In particular,
u(t, x) ∈ (D∞)d , for all (t, x) ∈ [0, T ] × R

k .

4 Existence, smoothness and uniform boundedness of the density

The aim of this section is to prove Theorem 1.6(a). For this, we will use Proposition
3.2. The following proposition proves condition (a) of Proposition 3.2.

Proposition 4.1 Fix T > 0 and assume hypotheses P1 and P2. Then, for any
p ≥ 1, E

[
(det γu(t,x))

−p
]

is uniformly bounded over (t, x) in any closed non-trivial
rectangle I × J ⊂ (0, T ] × R

k .

Proof Let (t, x) ∈ I × J be fixed, where I × J is a closed non-trivial rectangle of
(0, T ] × R

k . We write

detγu(t,x) ≥
(

infξ∈Rd :‖ξ‖=1(ξ
T γu(t,x)ξ )

)d

.
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Let ξ ∈ R
d with ‖ξ‖ = 1 and fix ε ∈ (0, 1). Using (3.1), we see that

ξ T γu(t,x)ξ ≥
d∑

l=1

t∫

t−ε
dr

∥
∥
∥
∥

d∑

i=1

D(l)
r (ui (t, x))ξi

∥
∥
∥
∥

2

H

=
d∑

l=1

t∫

t−ε
dr

∥
∥
∥
∥

d∑

i=1

σi,l(u(r, ·))S(t − r, x − ·)ξi +
d∑

i=1

ai (l, r, t, x)ξi

∥
∥
∥
∥

2

H
,

where, for r < t ,

ai (l, r, t, x) =
t∫

r

∫

Rk

S(t − θ, x − η)

d∑

j=1

D(l)
r

(
σi, j (u(θ, η))

)
M j (dθ, dη)

+
t∫

r

dθ
∫

Rk

dη S(t − θ, x − η)D(l)
r (bi (u(θ, η))) . (4.1)

We use the inequality

‖a + b‖2
H ≥ 2

3
‖a‖2

H − 2‖b‖2
H , (4.2)

to see that

ξTγu(t,x)ξ ≥ 2

3

d∑

l=1

t∫

t−ε
dr
∥
∥
∥

(
ξT · σ(u(r, ·))

)

l
S(t − r, x − ·)

∥
∥
∥

2

H
− 2A3,

where

A3 =
t∫

t−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

ai (l, r, t, x) ξi

∥
∥
∥
∥

2

H
.

The same inequality (4.2) shows that

d∑

l=1

t∫

t−ε
dr
∥
∥
∥

(
ξT · σ(u(r, ·))

)

l
S(t − r, x − ·)

∥
∥
∥

2

H
≥ 2

3
A1 − 2A2,
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where

A1 =
t∫

t−ε
dr

d∑

l=1

∥
∥
∥

(
ξT · σ(u(r, x))

)

l
S(t − r, x − ·)

∥
∥
∥

2

H
,

A2 =
t∫

t−ε
dr

d∑

l=1

∥
∥
∥

(
ξT · (σ (u(r, ·))− σ(u(r, x)))

)

l
S(t − r, x − ·)

∥
∥
∥

2

H
. (4.3)

Note that we have added and subtracted a “localized” term so as to be able to use the
ellipticity property of σ (a similar idea is used in [15] in dimension 1).

Hypothesis P2 (see also Remark 1.1) and Lemma 6.1 together yield A1 ≥ Cε
2−β

2 ,
where C is uniform over (t, x) ∈ I × J .

Now, using the Lipschitz property of σ and Hölder’s inequality with respect to the
measure ‖y − z‖−β S(t − r, x − y)S(t − r, x − z) drdydz, we get that for q ≥ 1,

E

[

sup
ξ∈Rd : ‖ξ‖=1

|A2|q
]

≤
( t∫

t−ε
dr
∫

Rk

dy
∫

Rk

dz ‖y − z‖−β S(t − r, x − y)S(t − r, x − z)

)q−1

×
( t∫

t−ε
dr
∫

Rk

dy
∫

Rk

dz ‖y − z‖−β S(t − r, x − y)S(t − r, x − z)

× E
[‖u(r, y)− u(r, x)‖q‖u(r, z)− u(r, x)‖q]

)

.

Using Lemma 6.1 and (2.6) we get that for any q ≥ 1 and γ ∈ (0, 2 − β),

E
[|A2|q

] ≤ Cε(q−1) 2−β
2 ×�,

where

� =
ε∫

0

dr
∫

Rk

dy
∫

Rk

dz ‖y − z‖−β S(r, x − y)S(r, x − z)‖y − x‖ γ q
2 ‖z − x‖ γ q

2 .

Changing variables [ỹ = x−y√
r
, z̃ = x−z√

r
], this becomes
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� =
ε∫

0

dr r− β
2 + γ q

2

∫

Rk

d ỹ
∫

Rk

d z̃ S(1, ỹ)S(1, z̃)‖ỹ − z̃‖−β‖ỹ‖ γ q
2 ‖z̃‖ γ q

2

= Cε
2−β

2 + γ q
2 .

Therefore, we have proved that for any q ≥ 1 and γ ∈ (0, 2 − β),

E

[

sup
ξ∈Rd :‖ξ‖=1

|A2|q
]

≤ Cε
2−β

2 q+ γ
2 q , (4.4)

where C is uniform over (t, x) ∈ I × J .
On the other hand, applying Lemma 6.2 with s = t , we find that for any q ≥ 1,

E

[

sup
ξ∈Rd :‖ξ‖=1

|A3|q
]

≤ Cε(2−β)q ,

where C is uniform over (t, x) ∈ I × J .
Finally, we apply [6, Proposition 3.5] with Z := inf‖ξ‖=1(ξ

Tγu(t,x)ξ ), Y1,ε =
Y2,ε = sup‖ξ‖=1(|A2| + |A3|), ε0 = 1, α1 = α2 = 2−β

2 , and β1 = β2 = 2−β
2 + γ

2 ,
for any γ ∈ (0, 2 − β), to conclude that for any p ≥ 1,

E
[(

det γu(t,x)
)−p

]
≤ C(p),

where the constant C(p) < ∞ does not depend on (t, x) ∈ I × J . ��
In [13, Theorem 3.2] the existence and smoothness of the density of the solution of

equation (1.1) with one single equation (d = 1) was proved (see also [18, Theorem
6.2]). The extension of this fact for a system of d equations is given in the next
proposition.

Proposition 4.2 Fix t > 0 and x ∈ R
k . Assume hypotheses P1 and P2. Then the law

of u(t, x), solution of (1.1), is absolutely continuous with respect to Lebesgue measure
on R

d . Moreover, its density pt,x (·) is C∞.

Proof This is a consequence of Theorem 3.1 and Proposition 4.1. ��
Proof of Theorem 1.6(a) This follows directly from Proposition 4.1 and (3.2), using
Proposition 3.2. ��

5 Gaussian upper bound for the bivariate density

The aim of this section is to prove Theorem 1.6(b).
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5.1 Upper bound for the derivative of the increment

Proposition 5.1 Assume hypothesis P1. Then for any T > 0 and p ≥ 1, there exists
C := C(T, p) > 0 such that for any 0 ≤ s ≤ t ≤ T, x, y ∈ R

k, m ≥ 1, i ∈
{1, . . . , d}, and γ ∈ (0, 2 − β),

‖Dm(ui (t, x)− ui (s, y))‖L p(�;(H d
T )

⊗m ) ≤ C
(
|t − s|γ /2 + ‖x − y‖γ

)1/2
.

Proof Assume m = 1 and fix p ≥ 2, since it suffices to prove the statement in this
case. Let

gt,x;s,y(r, ·) := S(t − r, x − ·)1{r≤t} − S(s − r, y − ·)1{r≤s}.

Using (3.1), we see that

‖D (ui (t, x)− ui (s, y)) ‖p
L p(�;H d

T )
≤ cp

(
A1 + A2,1 + A2,2 + A3,1 + A3,2

)
,

where

A1 = E

[( T∫

0

dr
d∑

j=1

∥
∥gt,x;s,y(r, ·)σi j (u(r, ·))

∥
∥2

H

)p/2]

,

A2,1 = E

[∥
∥
∥
∥

T∫

0

∫

Rk

gt,x;t,y(θ, η)
d∑

j=1

D(σi, j (u(θ, η)))M
j (dθ, dη)

∥
∥
∥
∥

p

H d
T

]

,

A2,2 = E

[∥
∥
∥
∥

T∫

0

∫

Rk

gt,y;s,y(θ, η)
d∑

j=1

D(σi, j (u(θ, η)))M
j (dθ, dη)

∥
∥
∥
∥

p

H d
T

]

,

A3,1 = E

[∥
∥
∥
∥

T∫

0

dθ
∫

Rk

dη gt,x;t,y(θ, η)D(bi (u(θ, η)))

∥
∥
∥
∥

p

H d
T

]

,

A3,2 = E

[∥
∥
∥
∥

T∫

0

dθ
∫

Rk

dη gt,y;s,y(θ, η)D(bi (u(θ, η)))

∥
∥
∥
∥

p

H d
T

]

.

Using Burkholder’s inequality, (2.2) and (2.6), we see that for any γ ∈ (0, 2 − β),

A1 ≤ cpE

[∣
∣
∣
∣

T∫

0

∫

Rk

gt,x;s,y(θ, η)
d∑

j=1

σi j (u(θ, η))M
j (dθ, dη)

∣
∣
∣
∣

p]

. (5.1)

In order to bound the right-hand side of (5.1), one proceeds as in [23], where
the so-called “factorization method” is used. In fact, the calculation used in [23]
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in order to obtain [23, (10)] and [23, (19)] (see in particular the treatment of the
terms I2(t, h, x), I3(t, h, x), and J2(t, x, z) in this reference) show that for any
γ ∈ (0, 2 − β),

A1 ≤ cp

(
|t − s| γ2 + ‖x − y‖γ

) p
2
.

We do not expand on this further since we will be using this method several times
below, with details

In order to bound the terms A2,1 and A2,2, we will also apply the factorisation
method used in [23]. That is, using the semigroup property of S, the Beta function and
a stochastic Fubini’s theorem (whose assumptions can be seen to be satisfied, see e.g.
[25, Theorem 2.6]), we see that, for any α ∈ (0, 2−β

4 ),

t∫

0

∫

Rk

S(t − θ, x − η)

d∑

j=1

D(σi, j (u(θ, η)))M
j (dθ, dη)

= sin(πα)

π

t∫

0

dr
∫

Rk

dz S(t − r, x − z)(t − r)α−1Y i
α(r, z), (5.2)

where Y = (Y i
α(r, z), r ∈ [0, T ], z ∈ R

k) is the H d
T -valued process defined by

Y i
α(r, z) =

r∫

0

∫

Rk

S(r − θ, z − η)(r − θ)−α
d∑

j=1

D(σi, j (u(θ, η)))M
j (dθ, dη).

Let us now bound the L p(�;H d
T )-norm of the process Y . Using [18, (3.13)] and

the boundedness of the derivatives of the coefficients of σ , we see that for any p ≥ 2,

E

[

‖Y i
α(r, z)‖p

H d
T

]

≤ cp

d∑

i=1

sup
(t,x)∈[0,T ]×Rk

E

[

‖D(ui (t, x))‖p
H d

T

]

(νr,z)
p/2,

where

νr,z := ‖S(r − ∗, z − ·)(r − ∗)−α‖H d
r
. (5.3)

We have that

νr,z =
r∫

0

ds
∫

Rk

dξ ‖ξ‖β−k(r − s)−2α exp
(
−2π2(r − s)‖ξ‖2

)
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=
r∫

0

ds (r − s)−2α− β
2

∫

Rk

d ξ̃ ‖ξ̃‖β−k exp
(
−2π2‖ξ̃‖2

)

= r
2−β

2 −2α. (5.4)

Hence, we conclude from (3.2) that

sup
(r,z)∈[0,T ]×Rk

E

[

‖Y i
α(r, z)‖p

H d
T

]

< +∞. (5.5)

Now, in order to bound A2,1, first note that by (5.2) we can write

A2,1 ≤ E

[∥
∥
∥
∥

t∫

0

dr
∫

Rk

dz (ψα(t − r, x − z)− ψα(t − r, y − z))Y i
α(r, z)

∥
∥
∥
∥

p

H d
T

]

,

where ψα(t, x) = S(t, x)tα−1. Then, appealing to Minkowski’s inequality, (5.5) and
Lemma 5.2(a) below, we find that, for any γ ∈ (0, 4α),

A2,1 ≤ cp

( t∫

0

dr
∫

Rk

dz |ψα(t − r, x − z)− ψα(t − r, y − z)|
)p

× sup
(r,z)∈[0,T ]×Rk

E

[

‖Y i
α(r, z)‖p

H d
T

]

≤ cp‖x − y‖ γ
2 p.

We next treat A2,2. Using (5.2), we have that A2,2 ≤ cp,α(A2,2,1 + A2,2,2), where

A2,2,1 = E

[∥
∥
∥
∥

s∫

0

dr
∫

Rk

dz (ψα(t − r, x − z)− ψα(s − r, x − z)) Y i
α(r, z)

∥
∥
∥
∥

p

H d
T

]

,

A2,2,2 = E

[∥
∥
∥
∥

t∫

s

dr
∫

Rk

dz ψα(t − r, x − z)Y i
α(r, z)

∥
∥
∥
∥

p

H d
T

]

.
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Now, by Minkowski’s inequality, (5.5) and Lemma 5.2(b) below, we find that, for any
γ ∈ (0, 4α),

A2,2,1 ≤ cp

( s∫

0

dr
∫

Rk

dz |ψα(t − r, x − z)− ψα(s − r, x − z)|
)p

× sup
(r,z)∈[0,T ]×Rk

E

[

‖Y i
α(r, z)‖p

H d
T

]

≤ cp|t − s| γ4 p.

In the same way, using Minkowski’s inequality, (5.5) and Lemma 5.2(c) below, for
any γ ∈ (0, 4α), we have that

A2,2,2 ≤ cp

( t∫

s

dr
∫

Rk

dz ψα(t − r, x − z)

)p

sup
(r,z)∈[0,T ]×Rk

E

[

‖Y i
α(r, z)‖p

H d
T

]

≤ cp|t − s| γ4 p.

Finally, we bound A3,1 and A3,2, which can be written

A3,1 = E

[∥
∥
∥
∥

t∫

0

dθ
∫

Rk

dη (S(t − θ, x − η)− S(t − θ, y − η)) D (bi (u(θ, η)))

∥
∥
∥
∥

p

H d
T

]

,

A3,2 = E

[∥
∥
∥
∥

t∫

0

dθ
∫

Rk

dη S(t − θ, y − η)D (bi (u(θ, η)))

−
s∫

0

dθ
∫

Rk

dη S(s − θ, y − η)D (bi (u(θ, η)))

∥
∥
∥
∥

p

H d
T

]

.

The factorisation method used above is also needed in this case, that is, using the
semigroup property of S, the Beta function and Fubini’s theorem, we see that for any
α ∈ (0, 1),

t∫

0

dθ
∫

Rk

dη S(t − θ, x − η)D(bi (u(θ, η)))

= sin(πα)

π

t∫

0

dr
∫

Rk

dzS(t − r, x − z)(t − r)α−1 Zi
α(r, z),

123



120 Stoch PDE: Anal Comp (2013) 1:94–151

where Z = (Zi
α(r, z), r ∈ [0, T ], z ∈ R

k) is the H d
T -valued process defined as

Zi
α(r, z) =

r∫

0

dθ
∫

Rk

dη S(r − θ, z − η)(r − θ)−αD(bi (u(θ, η))).

Hence, we can write

A3,1 ≤ E

[∥
∥
∥
∥

t∫

0

dr
∫

Rk

dz (ψα(t − r, x − z)− ψα(t − r, y − z))Zi
α(r, z)

∥
∥
∥
∥

p

H d
T

]

,

and A3,2 ≤ cp,α(A3,2,1 + A3,2,2), where

A3,2,1 = E

[∥
∥
∥
∥

s∫

0

dr
∫

Rk

dz (ψα(t − r, y − z)− ψα(s − r, y − z))Zi
α(r, z)

∥
∥
∥
∥

p

H d
T

]

,

A3,2,2 = E

[∥
∥
∥
∥

t∫

s

dr
∫

Rk

dz ψα(t − r, y − z)Zi
α(r, z)

∥
∥
∥
∥

p

H d
T

]

.

We next compute the L p(�;H d
T )-norm for the process Z . Using Minkowski’s

inequality and the boundedness of the derivatives of the coefficients of b, we get that

E[‖Zi
α(r, z)‖p

H d
T

] ≤ cp

d∑

i=1

sup
(t,x)∈[0,T ]×Rk

E

[

‖D(ui (t, x))‖p
H d

T

]

(γr,z)
p/2,

where

γr,z =
r∫

0

dθ
∫

Rk

dη S(r − θ, z − η)(r − θ)−α = r1−α.

Hence, using (3.2), we conclude that

sup
(r,z)∈[0,T ]×Rk

E

[

‖Zi
α(r, z)‖p

H d
T

]

< +∞. (5.6)

Then, proceeding as above, using Minkowski’s inequality, (5.6) and Lemma 5.2,
we conclude that for any γ ∈ (0, 4α),

A3,1 + A3,2 ≤ cp

(
‖x − y‖ γ

2 p + ‖t − s‖ γ
4 p
)
.

This concludes the proof of the proposition for m = 1.
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The case m > 1 follows along the same lines by induction using (3.2) and the
stochastic partial differential equations satisfied by the iterated derivatives (cf. [18,
Proposition 6.1]). ��

The following lemma was used in the proof of Proposition 5.1.

Lemma 5.2 For α > 0, set ψα(t, x) = S(t, x)tα−1, (t, x) ∈ R+ × R
k .

(a) For α ∈ (0, 2−β
4 ), γ ∈ (0, 4α), there is c > 0 such that for all t

∈ [0, T ], x, y ∈ R
k , and ε ∈ [0, t],

t∫

t−ε
dr
∫

Rk

dz |ψα(t − r, x − z)− ψα(t − r, y − z)| ≤ cεα− γ
2 ‖x − y‖γ /2.

(b) For α ∈ (0, 2−β
4 ), γ ∈ (0, 4α), there is c > 0 such that for all s ≤ t

∈ [0, T ], x, y ∈ R
k , and ε ∈ [0, s],

s∫

s−ε
dr
∫

Rk

dz |ψα(t − r, x − z)− ψα(s − r, x − z)| ≤ cεα− γ
4 |t − s|γ /4.

(c) For α ∈ (0, 2−β
4 ), γ ∈ (0, 4α), there is c > 0 such that for all s ≤ t ∈

[0, T ], x, y ∈ R
k ,

t∫

s

dr
∫

Rk

dz ψα(t − r, x − z) ≤ c |t − s|γ /4.

Proof (a) This is similar to the proof of [23, (21)].
(b) This is similar to the proof of [23, (14)].
(c) This is a consequence of [23, (15)]. ��

5.2 Study of the malliavin matrix

Let T > 0 be fixed. For s, t ∈ [0, T ], s ≤ t , and x, y ∈ R
k consider the

2d-dimensional random vector

Z := (u(s, y), u(t, x)− u(s, y)) . (5.7)

LetγZ be the Malliavin matrix of Z . Note thatγZ = ((γZ )m,l)m,l=1,...,2d is a symmetric
2d × 2d random matrix with four d × d blocks of the form

γZ =

⎛

⎜
⎜
⎜
⎝

γ
(1)
Z

... γ
(2)
Z

· · · ... · · ·
γ
(3)
Z

... γ
(4)
Z

⎞

⎟
⎟
⎟
⎠
,
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where

γ
(1)
Z =

(〈
D(ui (s, y)), D(u j (s, y))

〉

H d
T

)

i, j=1,...,d
,

γ
(2)
Z =

(〈
D(ui (s, y)), D(u j (t, x)− u j (s, y))

〉

H d
T

)

i, j=1,...,d
,

γ
(3)
Z =

(〈
D(ui (t, x)− ui (s, y)), D(u j (s, y))

〉

H d
T

)

i, j=1,...,d
,

γ
(4)
Z = (〈D(ui (t, x)− ui (s, y)), D(u j (t, x)− u j (s, y))〉H d

T
)i, j=1,...,d .

We let (1) denote the set of couples {1, . . . , d}×{1, . . . , d}, (2) the set {1, . . . , d}×{d+
1, . . . , 2d}, (3) the set {d + 1, . . . , 2d} × {1, . . . , d} and (4) the set {d + 1, . . . , 2d} ×
{d + 1, . . . , 2d}.

The following two results follow exactly along the same lines as [6, Propositions
6.5 and 6.7] using (3.2) and Proposition 5.1, so their proofs are omitted.

Proposition 5.3 Fix T > 0 and let I × J ⊂ (0, T ] × R
k be a closed non-trivial

rectangle. Let AZ denote the cofactor matrix of γZ . Assuming P1, for any p > 1 and
γ ∈ (0, 2 − β), there is a constant cγ,p,T such that for any (s, y), (t, x) ∈ I × J with
(s, y) = (t, x),

E
[|(AZ )m,l |p]1/p ≤

⎧
⎪⎨

⎪⎩

cγ,p,T
(|t − s|γ /2 + ‖x − y‖γ )d i f (m, l) ∈ (1),

cγ,p,T
(|t − s|γ /2 + ‖x − y‖γ )d− 1

2 i f (m, l) ∈ (2) or (3),

cγ,p,T
(|t − s|γ /2 + ‖x − y‖γ )d−1

i f (m, l) ∈ (4).

Proposition 5.4 Fix T > 0 and let I × J ⊂ (0, T ] × R
k be a closed non-trivial

rectangle. Assuming P1, for any p > 1, k ≥ 1, and γ ∈ (0, 2−β), there is a constant
cγ,k,p,T such that for any (s, y), (t, x) ∈ I × J with (s, y) = (t, x),

E
[‖Dk(γZ )m,l‖p

(H d
T )

⊗k

]1/p

≤
⎧
⎨

⎩

cγ,k,p,T i f (m, l) ∈ (1),
cγ,k,p,T

(|t − s|γ /2 + ‖x − y‖γ )1/2 i f (m, l) ∈ (2) or (3),
cγ,k,p,T

(|t − s|γ /2 + ‖x − y‖γ ) i f (m, l) ∈ (4).

The main technical effort in this section is the proof of the following proposition.

Proposition 5.5 Fix η, T > 0. Assume P1 and P2. Let I × J ⊂ (0, T ] × R
k be a

closed non-trivial rectangle. There exists C depending on T and η such that for any
(s, y), (t, x) ∈ I × J, (s, y) = (t, x), and p > 1,

E
[(

det γZ
)−p]1/p ≤ C

(|t − s| 2−β
2 + ‖x − y‖2−β)−d(1+η)

. (5.8)
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Proof The proof has the same general structure as that of [6, Proposition 6.6]. We
write

det γZ =
2d∏

i=1

(
ξ i )TγZ ξ

i , (5.9)

where ξ = {ξ1, . . . , ξ2d} is an orthonormal basis of R
2d consisting of eigenvectors of

γZ .
We now carry out the perturbation argument of [6, Proposition 6.6]. Let 0 ∈ R

d

and consider the spaces E1 = {(λ, 0) : λ ∈ R
d} and E2 = {(0, μ) : μ ∈ R

d}. Each
ξ i can be written

ξ i = (
λi , μi ) = αi

(
λ̃i , 0

)+
√

1 − α2
i

(
0, μ̃i ), (5.10)

where λi , μi ∈ R
d , (λ̃i , 0) ∈ E1, (0, μ̃i ) ∈ E2, with ‖λ̃i‖ = ‖μ̃i‖ = 1 and 0 ≤

αi ≤ 1. In particular, ‖ξ i‖2 = ‖λi‖2 + ‖μi‖2 = 1.
The result of [6, Lemma 6.8] gives us at least d eigenvectors ξ1, . . . , ξd that have a

“large projection on E1”, and we will show that these will contribute a factor of order 1
to the product in (5.9). Recall that for a fixed small α0 > 0, ξ i has a “large projection
on E1” if αi ≥ α0. The at most d other eigenvectors with a “small projection on E1”

will each contribute a factor of order (|t − s| 2−β
2 +‖x − y‖2−β)−1−η, as we will make

precise below.
Hence, by [6, Lemma 6.8] and Cauchy–Schwarz inequality, one can write

E
[(

det γZ
)−p]1/p ≤

∑

K⊂{1,...,2d}, |K |=d

(

E

[

1AK

(∏

i∈K

(ξ i )TγZ ξ
i
)−2p

])1/(2p)

×
(

E

⎡

⎢
⎣

⎛

⎜
⎝ inf
ξ=(λ,μ)∈R

2d :
‖λ‖2+‖μ‖2=1

ξTγZ ξ

⎞

⎟
⎠

−2dp⎤

⎥
⎦

)1/(2p)

, (5.11)

where AK = ∩i∈K {αi ≥ α0}.
With this, Propositions 5.6 and 5.7 below will conclude the proof of Proposition

5.5. ��
Proposition 5.6 Fix η, T > 0. Assume P1 and P2. There exists C depending on η
and T such that for all s, t ∈ I, 0 ≤ t − s < 1, x, y ∈ J, (s, y) = (t, x), and p > 1,

E

⎡

⎢
⎣

⎛

⎜
⎝ inf
ξ=(λ,μ)∈R

2d :
‖λ‖2+‖μ‖2=1

ξTγZ ξ

⎞

⎟
⎠

−2dp⎤

⎥
⎦ ≤ C

(|t − s| 2−β
2 + ‖x − y‖2−β)−2dp(1+η)

.

(5.12)
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Proposition 5.7 Assume P1 and P2. Fix T > 0 and p > 1. Then there exists
C = C(p, T ) such that for all s, t ∈ I with 0 ≤ t − s < 1

2 , x, y ∈ J, (s, y) = (t, x),

E

[

1AK

(
∏

i∈K

(ξ i )TγZ ξ
i

)−p]

≤ C, (5.13)

where AK is defined just below (5.11).

Proof of Proposition 5.6 Fix γ ∈ (0, 2 −β). It suffices to prove this for η sufficiently
small, in particular, we take η < γ/2. The proof of this lemma follows lines similar
to those of [6, Proposition 6.9], with significantly different estimates needed to handle
the spatially homogeneous noise.

For ε ∈ (0, t − s),

ξTγZ ξ ≥ J1 + J2,

where

J1 :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

(λi −μi )
(
S(s−r, y−·)σi,l(u(r, ·))+ ai (l, r, s, y)

)+ W

∥
∥
∥
∥

2

H
,

J2 :=
t∫

t−ε
dr

d∑

l=1

‖W‖2
H , (5.14)

where

W :=
d∑

i=1

μi S(t − r, x − ·)σi,l(u(r, ·))+ μi ai (l, r, t, x), (5.15)

and ai (l, r, t, x) is defined in (4.1).
We now consider two different cases.
Case 1. Assume t − s > 0 and ‖x − y‖2 ≤ t − s. Fix ε ∈ (0, (t − s) ∧ ( 1

4 )
2/η
)
.

We write

inf‖ξ‖=1
ξTγZ ξ ≥ min

(

inf
‖ξ‖=1 ,‖μ‖≥εη/2

J2 , inf
‖ξ‖=1 ,‖μ‖≤εη/2

J1

)

. (5.16)

We will now bound the two terms in the above minimum. We start by bounding the
term containing J2. Using (4.2) and adding and subtracting a “local” term as in (4.3),
we find that J2 ≥ 2

3 J (1)2 − 4(J (2)2 + J (3)2 ), where

J (1)2 =
d∑

l=1

t∫

t−ε
dr
∫

Rk

dv
∫

Rk

dz

×‖v − z‖−β S(t − r, x − v)S(t − r, x − z)(μT · σ(u(r, x)))2l ,
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J (2)2 =
d∑

l=1

t∫

t−ε
dr
∫

Rk

dv
∫

Rk

dz ‖v − z‖−β S(t − r, x − v)S(t − r, x − z)

×
(
μT · [σ(u(r, v))− σ(u(r, x))]

)

l

(
μT · [σ(u(r, z))− ·σ(u(r, x))]

)

l
,

J (3)2 =
t∫

t−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

ai (l, r, t, x) μi

∥
∥
∥
∥

2

H
,

Now, hypothesis P2 (see also Remark 1.1) and Lemma 6.1 together imply that J (1)2 ≥
c ‖μ‖2ε

2−β
2 . Therefore,

inf
‖ξ‖=1,‖μ‖≥εη/2

J2 ≥ cε
2−β

2 +η − sup
‖ξ‖=1,‖μ‖≥εη/2

2
(|J (2)2 | + J (3)2

)
. (5.17)

Moreover, (4.4) and Lemma 6.2 imply that for any q ≥ 1,

E

[

sup
‖ξ‖=1,‖μ‖≥εη/2

(|J (2)2 | + J (3)2 )q
]

≤ cε
2−β

2 q+ γ
2 q . (5.18)

This bounds the first term in (5.16) and gives an analogue of the first inequality in [6,
(6.12)].

In order to bound the second infimum in (5.16), we use again (4.2) and we add and
subtract a “local” term as in (4.3) to see that

J1 ≥ 2

3
J (1)1 − 8

(
J (2)1 + J (3)1 + J (4)1 + J (5)1

)
,

where

J (1)1 =
d∑

l=1

s∫

s−ε
dr ((λ− μ)T · σ(u(r, y)))2l

∫

Rk

dξ ‖ξ‖β−k |F S(s − r, y − ·)(ξ)|2,

J (2)1 =
d∑

l=1

s∫

s−ε
dr
∫

Rk

dv
∫

Rk

dz ‖v − z‖−β S(s − r, y − v)S(s − r, y − z)

×
(
(λ− μ)T · [σ(u(r, v))− σ(u(r, y))

])

l

×
(
(λ− μ)T · [σ(u(r, z))− σ(u(r, y))]

)

l
,

J (3)1 :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

μi S(t − r, x − ·)σi,l(u(r, ·))
∥
∥
∥
∥

2

H
,
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J (4)1 :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

(λi − μi )ai (l, r, s, y)

∥
∥
∥
∥

2

H
,

J (5)1 :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

μi ai (l, r, t, x)

∥
∥
∥
∥

2

H
.

Hypothesis P2 (see also Remark 1.1) and Lemma 6.1 together imply that J (1)1 ≥
c ‖λ− μ‖2ε

2−β
2 . Therefore,

inf
‖ξ‖=1,‖μ‖≤εη/2

J1 ≥ c̃ε
2−β

2 − sup
‖ξ‖=1,‖μ‖≤εη/2

8
(
|J (2)1 | + J (3)1 + J (4)1 + J (5)1

)
. (5.19)

Now, (4.4) implies that for any q ≥ 1,

E

[

sup
‖ξ‖=1,‖μ‖≤εη/2

|J (2)1 |q
]

≤ cε
2−β

2 q+ γ
2 q .

Moreover, hypothesis P1 (in particular, the fact that σ is bounded), the Cauchy-
Schwarz inequality and Lemma 6.1 imply that for any q ≥ 1,

E

[

sup
‖ξ‖=1,‖μ‖≤εη/2

|J (3)1 |q
]

≤ cε
2−β

2 q+ηq .

Applying Lemma 6.2 with t = s, we get that for any q ≥ 1,

E

[

sup
‖ξ‖=1,‖μ‖≤εη/2

|J (4)1 |q
]

≤ cε
2−β

2 q+ 2−β
2 q .

Again Lemma 6.2 gives, for any q ≥ 1,

E

[

sup
‖ξ‖=1,‖μ‖≤εη/2

|J (5)1 |q
]

≤ cε
2−β

2 q+ηq .

Since we have assumed that η < γ
4 , the above bounds in conjunction prove that for

any q ≥ 1,

E

[

sup
‖ξ‖=1,‖μ‖≤εη/2

(
|J (2)1 | + J (3)1 + J (4)1 + J (5)1

)q
]

≤ cε
2−β

2 q+ηq . (5.20)
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We finally use (5.16)–(5.20) together with [6, Proposition 3.5] with α1 = 2−β
2 +η,

β1 = 2−β
2 + γ

4 , α2 = 2−β
2 and β2 = 2−β

2 + η to conclude that

E

[(

inf‖ξ‖=1
ξTγZ ξ

)−2pd
]

≤ c

[

(t − s) ∧
(

1

4

)2/η
]−2pd( 2−β

2 +η)

≤ c′(t − s)−2pd
(

2−β
2 +η

)

≤ c̃
[
(t − s)

2−β
2 + ‖x − y‖2−β]−2pd(1+η′)

,

(for the second inequality, we have used the fact that t − s < 1, and for the third, that
‖x − y‖2 ≤ t − s), whence follows the proposition in the case that ‖x − y‖2 ≤ t − s.

Case 2. Assume that ‖x − y‖ > 0 and ‖x − y‖2 ≥ t − s ≥ 0. Then

ξTγZ ξ ≥ J1 + J̃2,

where J1 is defined in (5.14),

J̃2 :=
t∫

(t−ε)∨s

dr
d∑

l=1

‖W‖2
H ,

and W is defined in (5.15). Let ε > 0 be such that (1 + α)ε1/2 < 1
2‖x − y‖, where

α > 0 is large but fixed; its specific value will be decided on later. From here on, Case
2 is divided into two further sub-cases.

Sub-Case A. Suppose that ε ≥ t − s. Apply inequality (4.2) and add and subtract
a “local” term as in (4.3), to find that

J1 ≥ 2

3
A1 − 8(A2 + A3 + A4 + A5),

J̃2 ≥ 2

3
B1 − 4(B2 + B3),

where

A1 :=
d∑

l=1

s∫

s−ε
dr
∥
∥
∥S(s − r, y − ·)

(
(λ− μ)T · σ(u(r, y))

)

l

+ S(t − r, x − ·)
(
μT · σ(u(r, x))

)

l

∥
∥
∥

2

H
,

A2 :=
d∑

l=1

s∫

s−ε
dr
∥
∥
∥S(s − r, y − ·)

(
(λ− μ)T · [σ(u(r, ·))− σ(u(r, y))

])

l

∥
∥
∥

2

H

A3 :=
d∑

l=1

s∫

s−ε
dr
∥
∥
∥S(t − r, x − ·)

(
μT · [σ(u(r, ·))− σ(u(r, x))

])

l

∥
∥
∥

2

H
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A4 :=
d∑

l=1

s∫

s−ε
dr

∥
∥
∥
∥

d∑

i=1

(λi − μi )ai (l, r, s, y)

∥
∥
∥
∥

2

H
,

A5 :=
d∑

l=1

s∫

s−ε
dr

∥
∥
∥
∥

d∑

i=1

μi ai (l, r, t, x)

∥
∥
∥
∥

2

H
,

B1 :=
d∑

l=1

t∫

s

dr

∥
∥
∥
∥S(t − r, x − ·)(μT · σ(u(r, x)))l

∥
∥
∥
∥

2

H
,

B2 :=
d∑

l=1

t∫

s

dr
∥
∥
∥S(t − r, x − ·)

(
μT · [σ(u(r, ·))− σ(u(r, x))

])

l

∥
∥
∥

2

H
,

B3 :=
d∑

l=1

t∫

s

dr

∥
∥
∥
∥

d∑

i=1

μi ai (l, r, t, x)

∥
∥
∥
∥

2

H
.

Using the inequality (a +b)2 ≥ a2 +b2 −2|ab|, we see that A1 ≥ Ã1 + Ã2 −2B̃4,
where

Ã1 =
d∑

l=1

s∫

s−ε
dr

∥
∥
∥
∥S(s − r, y − ·)((λ− μ)T · σ(u(r, y)))l

∥
∥
∥
∥

2

H
,

Ã2 =
d∑

l=1

s∫

s−ε
dr

∥
∥
∥
∥S(t − r, x − ·)(μT · σ(u(r, x)))l

∥
∥
∥
∥

2

H
,

B̃4 =
d∑

l=1

s∫

s−ε
dr
〈
S(s − r, y − ·)((λ− μ)T · σ(u(r, y)))l ,

S(t − r, x − ·)(μT · σ(u(r, x)))l
〉

H .

By hypothesis P2 (see also Remark 1.1) and Lemma 6.1, we see that

Ã2 + B1 =
d∑

l=1

t∫

s−ε
dr

∥
∥
∥
∥S(t − r, x − ·)(μT · σ(u(r, x)))l

∥
∥
∥
∥

2

H

≥
d∑

l=1

t∫

t−ε
dr

∥
∥
∥
∥S(t − r, x − ·)(μT · σ(u(r, x)))l

∥
∥
∥
∥

2

H

≥ ‖μ‖2ε
2−β

2 .
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Similarly, Ã1 ≥ ‖λ− μ‖2ε
2−β

2 , and so

Ã1 + Ã2 + B1 ≥ (‖λ− μ‖2 + ‖μ‖2)ε
2−β

2 ≥ cε
2−β

2 . (5.21)

Turning to the terms that are to be bounded above, we see as in (4.4) that

E
[|A2|q

] ≤ cε
2−β

2 q+ γ
2 q , and E

[|B2|q
] ≤ cε

2−β
2 q+ γ

2 q .

Using Lemma 6.2 and the fact that t − s ≤ ε, we see that

E
[|B3|q

] ≤ cε(2−β)q , E
[|A4|q

] ≤ cε(2−β)q , and E
[|A5|q

] ≤ cε(2−β)q .

In order to bound the q-th moment of A3, we proceed as we did for the random
variable A2 in (4.3). It suffices to bound the q-th moment of

d∑

l=1

s∫

s−ε
dr
∫

Rk

dv
∫

Rk

dz‖v − z‖−β S(t − r, x − v)S(t − r, x − z)

×
(
μT · [σ(u(r, v))− σ(u(r, x))

])

l

(
μT · [σ(u(r, z))− σ(u(r, x))

])

l
.

Using Hölder’s inequality, the Lipschitz property of σ and (2.6), this q-th moment is
bounded by

( s∫

s−ε
dr
∫

Rk

dv
∫

Rk

dz‖v − z‖−β S(t − r, x − v)S(t − r, x − z)

)q−1

×
s∫

s−ε
dr
∫

Rk

dv
∫

Rk

dz‖v−z‖−β S(t−r, x− v)S(t−r, x−z)‖v−x‖ γ q
2 ‖z−x‖ γ q

2

=: a1 × a2.

By Lemma 6.1, a1 ≤ ε
2−β

2 (q−1). For a2, we use the change of variables ṽ = x−v√
t−r
,

z̃ = x−z√
t−r

, to see that

a2 =
s∫

s−ε
dr
∫

Rk

d ṽ
∫

Rk

d z̃ ‖ṽ − z̃‖−β(t − r)−β/2S(1, ṽ)S(1, z̃) ‖ṽ‖ γ q
2 ‖z̃‖ γ q

2 (t − r)
γ q
2

=
s∫

s−ε
dr (t − r)

γ q
2 − β

2

∫

Rk

d ṽ
∫

Rk

d z̃ S(1, ṽ)S(1, z̃)‖ṽ − z̃‖−β‖ṽ‖ γ q
2 ‖z̃‖ γ q

2
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= c

(

(t − s + ε)
2−β

2 + γ q
2 − (t − s)

2−β
2 + γ q

2

)

≤ c ε
2−β

2 + γ q
2 ,

since t − s < ε. Putting together these bounds for a1 and a2 yields E[|A3|q ] ≤
cε

2−β
2 + γ q

2 .
We now study the term B̃4, with the objective of showing that B̃4 ≤ �(α)ε

2−β
2 ,

with limα→+∞�(α) = 0. We note that by hypothesis P1,

B̃4 ≤ c

s∫

s−ε
dr
∫

Rk

dv
∫

Rk

dz ‖v − z‖−β S(s − r, y − v)S(t − r, x − z)

= c

s∫

s−ε
dr
∫

Rk

dv ‖v‖−β(S(s − r, y − ·) ∗ S(t − r, · − x))(v)

= c

s∫

s−ε
dr
∫

Rk

dv ‖v‖−β S(t + s − 2r, y − x + v),

where we have used the semigroup property of S(t, v). Using the change of variables
r̄ = s − r , it follows that

B̃4 ≤ c

ε∫

0

dr̄
∫

Rk

dv ‖v‖−β(t − s + 2r̄)−k/2 exp

(

−‖y − x + v‖2

2(t − s + 2r̄)

)

= : c(I1 + I2),

where

I1 =
ε∫

0

dr
∫

‖v‖<√
r(1+α)

dv ‖v‖−β(t − s + 2r)−k/2 exp

(

−‖y − x + v‖2

2(t − s + 2r)

)

,

I2 =
ε∫

0

dr
∫

‖v‖≥√
r(1+α)

dv ‖v‖−β(t − s + 2r)−k/2 exp

(

−‖y − x + v‖2

2(t − s + 2r)

)

.

Concerning I1, observe that when ‖v‖ < √
r(1 + α), then

‖y − x + v‖ ≥ ‖y − x‖ − ‖v‖ ≥ ‖y − x‖ − √
ε(1 + α) ≥ 1

2
‖y − x‖ ≥ α

√
ε,
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since we have assumed that (1 + α)
√
ε < 1

2‖y − x‖. Therefore,

I1 ≤
ε∫

0

dr (t − s + 2r)−k/2 exp

(

− α2ε

2(t − s + 2r)

) ∫

‖v‖<√
r(1+α)

dv ‖v‖−β,

and the dv-integral is equal to (1 + α)k−βr
k−β

2 , so

I1 ≤ (1 + α)k−β
ε∫

0

dr (t − s + 2r)−k/2r
k−β

2 exp

(

− α2ε

2(t − s + 2r)

)

≤ (1 + α)k−β
ε∫

0

dr (t − s + 2r)−β/2 exp

(

− α2ε

2(t − s + 2r)

)

,

where the second inequality uses the fact that k − β > 0. Use the change of variables
ρ = t−s+2r

α2ε
and the inequality t − s ≤ ε to see that

I1 ≤ (1 + α)k−β

t−s+2ε
α2ε∫

t−s
α2ε

dρ α2ε (α2ερ)−β/2 exp

(

− 1

2ρ

)

≤ ε
2−β

2 (1 + α)k−βα2−β
3/α2
∫

0

dρ ρ−β/2 exp

(

− 1

2ρ

)

=: ε 2−β
2 �1(α).

We note that limα→+∞�1(α) = 0.
Concerning I2, note that

I2 ≤
ε∫

0

dr
∫

‖v‖>√
r(1+α)

dv r−β/2(1 + α)−β(t − s + 2r)−k/2 exp

(

−‖y − x + v‖2

2(t − s + 2r)

)

≤ (1 + α)−β
ε∫

0

dr r−β/2
∫

Rk

dv (t − s + 2r)−k/2 exp

(

−‖y − x + v‖2

2(t − s + 2r)

)

= c(1 + α)−βε
2−β

2 .

We note that limα→+∞(1 + α)−β = 0, and so we have shown that B̃4 ≤ �(α)ε
2−β

2 ,
with limα→+∞�(α) = 0.

123



132 Stoch PDE: Anal Comp (2013) 1:94–151

Using (5.21), we have shown that

inf‖ξ‖=1
ξTγZ ξ ≥ 2

3
A1 − 8

(
A2 + A3 + A4 + A5

)+ 2

3
B1 − 4(B2 + B3)

≥ 2

3

(
Ã1 + Ã2 + B1

)− 4

3
B̃4 − 8(A2 + A3 + A4 + A5)− 4(B2 + B3)

≥ 2

3
c ε

2−β
2 − 4�(α)ε

2−β
2 − Z1,ε,

where E[|Z1,ε |q ] ≤ ε
2−β

2 q+ γ
2 q . We choose α large enough so that�(α) < 1

12 c, to get

inf‖ξ‖=1
ξTγZ ξ ≥ 1

3
cε

2−β
2 − Z1,ε .

Sub-Case B. Suppose that ε ≤ t − s ≤ |x − y|2. As in (5.16), we have

inf‖ξ‖=1
ξTγZ ξ ≥ min

(
cε

2−β
2 +η − Y1,ε, cε

2−β
2 − Y2,ε

)
,

where E[|Y1,ε |q ] ≤ c ε
2−β

2 q+ γ
2 q and E[|Y2,ε |q ] ≤ c ε

2−β
2 q+ηq . This suffices for

Sub-Case B.
Now, we combine Sub-Cases A and B to see that for 0 < ε < 1

4 (1+α)−2‖x − y‖2,

inf‖ξ‖=1
ξTγZ ξ ≥ min

(
cε

2−β
2 +η − Y1,ε, cε

2−β
2 − Y2,ε1{ε≤t−s} − Z1,ε1{t−s<ε}

)
.

By [6, Proposition 3.5], we see that

E

[(

inf‖ξ‖=1
ξTγZ ξ

)−2dp]

≤ c‖x − y‖2(−2dp)
(

2−β
2 +η

)

≤ c
(|t − s| + ‖x − y‖2)−2dp

(
2−β

2 +η
)

≤ c
(|t − s| 2−β

2 + ‖x − y‖2−β)−2dp(1+η̃)

(in the second inequality, we have used the fact that ‖x − y‖2 ≥ t − s). This concludes
the proof of Proposition 5.6. ��
Proof of Proposition 5.7 Let 0 < ε < s ≤ t . Fix i0 ∈ {1, . . . , 2d} and write λ̃i0 =
(λ̃

i0
1 , . . . , λ̃

i0
d ) and μ̃i0 = (μ̃

i0
1 , . . . , μ̃

i0
d ). We look at (ξ i0)TγZ ξ

i0 on the event {αi0 ≥
α0}. As in the proof of Proposition 5.6 and using the notation from (5.10), this is
bounded below by
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s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

[(

αi0 λ̃
i0
i S(s − r, y − ·)

+μ̃i0
i

√

1 − α2
i0
(S(t − r, x − ·)− S(s − r, y − ·))

)

σi,l(u(r, ·))

+αi0 λ̃
i0
i ai (l, r, s, y)

+μ̃i0
i

√

1 − α2
i0
(ai (l, r, t, x)− ai (l, r, s, y))

]∥
∥
∥
∥

2

H

+
t∫

s∨(t−ε)
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

[

μ̃
i0
i

√

1 − α2
i0

S(t − r, x − ·)σi,l(u(r, ·))

+μ̃i0
i

√

1 − α2
i0

ai (l, r, t, x)

]∥
∥
∥
∥

2

H
. (5.22)

We seek lower bounds for this expression for 0 < ε < ε0, where ε0 ∈ (0, 1
2 ). In the

remainder of this proof, we will use the generic notation α, λ̃ and μ̃ for the realizations
αi0(ω), λ̃

i0(ω), and μ̃i0(ω). Our proof follows the structure of [10, Theorem 3.4],
rather than [6, Proposition 6.13].

Case 1. t − s > ε. Fix γ ∈ (0, 2 − β) and let η be such that η < γ/2. We note
that

inf
1≥α≥α0

(
ξ i0
)T
γZ ξ

i0 := min(E1,ε, E2,ε),

where

E1,ε := inf
α0≤α≤√

1−εη
(
ξ i0
)T
γZ ξ

i0 , E2,ε := inf√
1−εη≤α≤1

(
ξ i0
)T
γZ ξ

i0 .

Using (4.2) and (5.22), we see that

E1,ε ≥ inf
α0≤α≤√

1−εη

(
2

3
G1,ε − 2Ḡ1,ε

)

,

where

G1,ε := (1 − α2)

t∫

s∨(t−ε)
dr

d∑

l=1

‖(μ̃T · σ(u(r, ·)))l S(t − r, x − ·)‖2
H ,

Ḡ1,ε :=
t∫

t−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

μ̃i

√
1 − α2 ai (l, r, t, x)

∥
∥
∥
∥

2

H
.
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Using the same “localisation argument” as in the proof of Proposition 4.1 (see
(4.4)), we have that there exists a random variable Wε such that

G1,ε ≥ ρ2c(1 − α2)((t − s) ∧ ε) 2−β
2 − 2Wε, (5.23)

where, for any q ≥ 1,

E
[|Wε |q

] ≤ cqε
2−β

2 q+ γ
2 q .

Hence, using the fact that 1 − α2 ≥ εη and t − s > ε, we deduce that

E1,ε ≥ cε
2−β

2 +η − 2Wε − 2Ḡ1,ε,

where, from Lemma 6.2, E [|Ḡ1,ε |q ] ≤ cqε
(2−β)q , for any q ≥ 1,

We now estimate E2,ε . Using (4.2) and (5.22), we see that

E2,ε ≥ 2

3
G2,ε − 8

(
Ḡ2,1,ε + Ḡ2,2,ε + Ḡ2,3,ε + Ḡ2,4,ε

)
,

where

G2,ε := α2

s∫

s−ε
dr

d∑

l=1

‖(λ̃T · σ(u(r, ·)))l S(s − r, y − ·)‖2
H ,

Ḡ2,1,ε := (1 − α2)

s∫

s−ε
dr

d∑

l=1

‖(μ̃T · σ(u(r, ·)))l S(t − r, x − ·)‖2
H ,

Ḡ2,2,ε := (1 − α2)

s∫

s−ε
dr

d∑

l=1

‖(μ̃T · σ(u(r, ·)))l S(s − r, y − ·)‖2
H ,

Ḡ2,3,ε :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

(
αλ̃i − μ̃i

√
1 − α2

)
ai (l, r, s, y)

∥
∥
∥
∥

2

H
,

Ḡ2,4,ε := (1 − α2)

s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

μ̃i ai (l, r, t, x)

∥
∥
∥
∥

2

H
.

As for the term G1,ε in (5.23) and using the fact that α2 ≥ 1 − εη, we get that

G2,ε ≥ cε
2−β

2 − 2Wε,
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where, for any q ≥ 1, E[|Wε |q ] ≤ cqε
2−β

2 q+ γ
2 q .On the other hand, since 1−α2 ≤ εη,

we can use hypothesis P1 and Lemma 6.1 to see that

E
[|Ḡ2,1,ε |q

] ≤ cqε

(
2−β

2 +η
)

q
,

and similarly, using Lemma 6.1,

E
[|Ḡ2,2,ε |q

] ≤ cqε

(
2−β

2 +η
)

q
.

Finally, using Lemma 6.2, we have that

E
[|Ḡ2,3,ε |q

] ≤ cqε
(2−β)q , and

E
[|Ḡ2,4,ε |q

] ≤ cqε
ηq(t − s + ε)

2−β
2 qε

2−β
2 q ≤ cqε

(
2−β

2 +η
)

q
.

We conclude that E2,ε ≥ cε
2−β

2 − Jε , where E[|Jε |q ] ≤ cqε
(

2−β
2 +η)q . Therefore, when

t − s > ε,

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 1{αi0 ≥α0} min
(

cε
2−β

2 +η − Vε , cε
2−β

2 − Jε
)
,

where E[|Vε |q ] ≤ cqε
2−β

2 q+ γ
2 q .

Case 2. t − s ≤ ε,
|x−y|2
δ0

≤ ε. The constant δ0 will be chosen sufficiently large

(see (5.29)). Fix θ ∈ (0, 1
2 ) and γ ∈ (0, 2 − β). From (4.2) and (5.22), we have that

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 2

3
G3,εθ − 8

(
Ḡ3,1,εθ − Ḡ3,2,εθ − Ḡ3,3,εθ − Ḡ3,4,εθ

)
,

where

G3,εθ := α2

s∫

s−εθ
dr

d∑

l=1

‖(λ̃T · σ(u(r, y)))l S(s − r, y − ·)‖2
H ,

Ḡ3,1,εθ := α2

s∫

s−εθ
dr

d∑

l=1

‖(λ̃T · (σ (u(r, ·))− σ(u(r, y))))l S(s − r, y − ·)‖2
H ,

Ḡ3,2,εθ :=
s∫

s−εθ
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

(
αλ̃i − μ̃i

√
1 − α2

)
ai (l, r, s, y)

∥
∥
∥
∥

2

H
,
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Ḡ3,3,εθ := (1 − α2)

s∫

s−εθ
dr

×
d∑

l=1

∥
∥
∥
∥(μ̃

T · σ(u(r, ·)))l (S(t − r, x − ·)− S(s − r, y − ·))
∥
∥
∥
∥

2

H
,

Ḡ3,4,εθ := (1 − α2)

s∫

s−εθ
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

μ̃i ai (l, r, t, x)

∥
∥
∥
∥

2

H
.

By hypothesis P2 (see also Remark 1.1) and Lemma 6.1, since t − s ≤ ε and α ≥ α0,
we have that

G3,εθ ≥ α2
0cεθ

2−β
2 .

As in the proof of Proposition 4.1 (see in particular (4.3) to (4.4)), we get that for
any q ≥ 1,

E
[|Ḡ3,1,εθ |q

] ≤ Cεθ
(

2−β
2 + γ

2

)
q
.

Appealing to Lemma 6.2 and using the fact that t − s ≤ ε, we see that

E
[|Ḡ3,2,εθ |q

] ≤ cqε
θ(2−β)q

and

E
[|Ḡ3,4,εθ |q

] ≤ cq(t − s + εθ )
2−β

2 qεθ
2−β

2 q ≤ cqε
θ(2−β)q .

It remains to find an upper bound for Ḡ3,3,εθ . From Burkholder’s inequality,
for any q ≥ 1,

E
[|Ḡ3,3,εθ |q

] ≤ cq
(
W1,εθ + W2,εθ

)
, (5.24)

where

W1,εθ = E

⎡

⎢
⎣

∣
∣
∣
∣

s∫

s−εθ

∫

Rk

(
S(t − r, x − z)− S(s − r, x − z)

)
d∑

l=1

(
μ̃T · σ(u(r, z))

)

l Ml (dr, dz)

∣
∣
∣
∣

2q

⎤

⎥
⎦ ,

W2,εθ = E

⎡

⎢
⎣

∣
∣
∣
∣

s∫

s−εθ

∫

Rk

(
S(s − r, x − z)− S(s − r, y − z)

)
d∑

l=1

(
μ̃T · σ(u(r, z))

)

l Ml (dr, dz)

∣
∣
∣
∣

2q

⎤

⎥
⎦ .

As in the proof of Proposition 5.1, using the semigroup property of S, the Beta
function and a stochastic Fubini’s theorem (whose assumptions can be seen to be
satisfied, see e.g. [25, Theorem 2.6]), we see that for any α ∈ (0, 2−β

4 ),

123



Stoch PDE: Anal Comp (2013) 1:94–151 137

s∫

s−εθ

∫

Rk

S(s − v, y − η)

d∑

l=1

(
μ̃T · σ(u(v, η)))l Ml(dv, dη)

= sin(πα)

π

s∫

s−εθ
dr
∫

Rk

dz S(s − r, y − z)(s − r)α−1Yα(r, z) (5.25)

where Y = (Yα(r, z), r ∈ [0, T ], z ∈ R
k) is the real valued process defined as

Yα(r, z) =
r∫

s−εθ

∫

Rk

S(r − v, z − η)(r − v)−α
d∑

l=1

(
μ̃T · σ(u(v, η)))l Ml(dv, dη).

We next estimate the L p(�)-norm of the process Y . Using Burkholder’s inequality,
the boundedness of the coefficients of σ , and the change variables ξ̃ = √

r − v ξ ,
we see that

E
[|Yα(r, z)|p] ≤ cp

⎛

⎜
⎝

r∫

s−εθ
dv
∫

Rk

dξ ‖ξ‖β−k |F S(r − v, z − ·)(r − v)−α(ξ)|2
⎞

⎟
⎠

p
2

= cp

⎛

⎜
⎝

r∫

s−εθ
dv
∫

Rk

dξ ‖ξ‖β−k(r − v)−2αe−4π2(r−v)‖ξ‖2

⎞

⎟
⎠

p
2

= cp

⎛

⎜
⎝

r∫

s−εθ
dv (r − v)−2α− β

2

∫

Rk

d ξ̃ ‖ξ̃‖β−ke−4π2‖ξ̃‖2

⎞

⎟
⎠

p
2

≤ cp
(
r − s + εθ

)
(

2−β
4 −α

)
p
.

Hence, we conclude that

sup
(r,z)∈[s−εθ ,s]×Rk

E
[|Yα(r, z)|p] ≤ cpε

θ
(

2−β
4 −α

)
p
. (5.26)

Let us now bound W1,εθ . Using (5.25) and Minskowski’s inequality, we have that

W1,εθ ≤
⎛

⎜
⎝

s∫

s−εθ
dr
∫

Rk

dz
(
ψα(t − r, x − z)− ψα(s − r, x − z)

)

⎞

⎟
⎠

2q

× sup
(r,z)∈[s−εθ ,s]×Rk

E
[|Yα(r, z)|2q],
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where ψα(t, x) = S(t, x)t−α . Then by (5.26) and Lemma 5.2(b), we obtain that for
any γ < 4α,

W1,εθ ≤ cqε
θq
(

2α− γ
2

)

|t − s| γ2 q ε
θ
(

2−β
2 −2α

)
q = cqε

θ
(

2−β
2 − γ

2

)
q |t − s| γ2 q .

Thus, using the fact that t − s ≤ ε, we conclude that

W1,εθ ≤ cqε
θ
(

2−β
2 − γ

2

)
q
ε
γ
2 q = cqε

θ
2−β

2 qε
γ
2 (1−θ)q . (5.27)

We finally treat W2,εθ . Using (5.25) and Minskowski’s inequality, we have that

W2,εθ ≤
⎛

⎜
⎝

s∫

s−εθ
dr
∫

Rk

dz
(
ψα(s − r, x − z)− ψα(s − r, y − z)

)

⎞

⎟
⎠

2q

× sup
(r,z)∈

[
s−εθ ,s

]
×Rk

E
[|Yα(r, z)|2q].

Then by (5.26) and Lemma 5.2(a), we obtain that for any γ < 4α,

W2,εθ ≤ cq ε
θq(2α−γ ) |x − y|γ q ε

θ
(

2−β
2 −2α

)
q = cqε

θ
(

2−β
2 −γ

)
q |x − y|γ q .

Thus, using the fact that |x − y| ≤ √
δ0ε, we conclude that

W2,εθ ≤ cqε
θ
(

2−β
2 −γ

)
q
δ
γ
2 q

0 ε
γ
2 q = cqδ

γ
2 q

0 εθ
2−β

2 qε
γ
2 (1−2θ)q . (5.28)

Finally, substituting (5.27) and (5.28) into (5.24) we conclude that for any q ≥ 1,

E
[|Ḡ3,3,εθ |q

] ≤ cqε
θ

2−β
2 qε

γ
2 (1−2θ)q .

Therefore, we have proved that in the Case 2,

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 1{αi0 ≥α0}
(
cεθ

2−β
2 − Wε

)
,

where E[|Wε |q ] ≤ cqε
θ

2−β
2 q+ γ

2 q min(θ,1−2θ).

Case 3. t − s ≤ ε, 0 < ε <
|x−y|2
δ0

. From (4.2) and (5.22), we have that

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 2

3
G4,ε − 8(Ḡ4,1,ε − Ḡ4,2,ε − Ḡ4,3,ε − Ḡ4,4,ε),
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where

G4,ε :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

{(
αλ̃i − μ̃i

√
1 − α2

)
σi,l(u(r, y)) S(s − r, y − ·)

+
√

1 − α2μ̃iσi,l(u(r, x))S(t − r, x − ·)
}∥
∥
∥
∥

2

H
,

Ḡ4,1,ε :=
s∫

s−ε
dr

d∑

l=1

×
∥
∥
∥
∥
∥

d∑

i=1

(
αλ̃i −μ̃i

√
1−α2

) [
σi,l(u(r, ·))−σi,l(u(r, y))

]
S(s−r, y−·)

∥
∥
∥
∥
∥

2

H

,

Ḡ4,2,ε := (1−α2)

s∫

s−ε
dr

d∑

l=1

∥
∥
∥

(
μ̃T · [σ(u(r, ·))−σ(u(r, x))

])

l
S(t−r, x−·)

∥
∥
∥

2

H
,

Ḡ4,3,ε :=
s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

(αλ̃i − μ̃i

√
1 − α2) ai (l, r, s, y)

∥
∥
∥
∥

2

H
,

Ḡ4,4,ε := (1 − α2)

s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

μ̃i ai (l, r, t, x)

∥
∥
∥
∥

2

H
.

We start with a lower bound for G4,ε . Observe that this term is similiar to the term A1
in the Sub-Case A of the proof of Proposition 5.6. Using the inequality (a + b)2 ≥
a2 + b2 − 2|ab|, we see that G4,ε ≥ G4,1,ε + G4,2,ε − 2G4,3,ε , where

G4,1,ε =
d∑

l=1

s∫

s−ε
dr

∥
∥
∥
∥S(s − r, y − ·)((αλ−

√
1 − α2μ)T · σ(u(r, y))

)

l

∥
∥
∥
∥

2

H
,

G4,2,ε =
d∑

l=1

s∫

s−ε
dr

∥
∥
∥
∥S(t − r, x − ·)(

√
1 − α2μT · σ(u(r, x)))l

∥
∥
∥
∥

2

H
,

G4,3,ε =
d∑

l=1

s∫

s−ε
dr
〈
S(s − r, y − ·)((αλ−

√
1 − α2μ)T · σ(u(r, y)))l ,

S(t − r, x − ·)(αμT · σ(u(r, x)))l
〉

H .

Hypothesis P2 (see also Remark 1.1), Lemma 6.1, and the fact that t − s ≤ ε

imply that

G4,1,ε + G4,2,ε ≥ c
(‖αλ−

√
1 − α2μ‖2 + ‖

√
1 − α2 μ‖2)ε

2−β
2 ≥ c0ε

2−β
2 .

123



140 Stoch PDE: Anal Comp (2013) 1:94–151

On the other hand, using the same computation as the one done for the term B̃4 in the
Sub-Case A of the proof of Proposition 5.6, we conclude that G4,3,ε ≤ �( 1

2

√
δ0 −

1)ε
2−β

2 , with limα→+∞�(α) = 0. Choose δ0 sufficiently large so that

�
(1

2

√
δ0 − 1

) ≤ c0

2
, (5.29)

so that G4,ε ≥ c0
2 ε

2−β
2 .

We next treat the terms Ḡ4,i,ε, i = 1, . . . , 4. Using the same argument as for the
term Ḡ3,1,εθ , we see that for any q ≥ 1,

E
[|Ḡ4,1,ε |q

] ≤ Cε
(

2−β
2 + γ

2

)
q
.

Appealing to Lemma 6.2 and using the fact that t − s ≤ ε, we find that

E
[|Ḡ4,3,ε |q

] ≤ cqε
(2−β)q , and E

[|Ḡ4,4,ε |q
] ≤ cqε

θ(2−β)q .

Finally, we treat Ḡ4,2,ε . As in the proof of Proposition 4.1, using Hölder’s inequality,
the Lipschitz property of σ , Lemma 6.1 and (2.6), we get that for any q ≥ 1,

E
[|Ḡ4,2,ε |q

] ≤ Cε(
2−β

2 )(q−1) ×�,

where

� =
s∫

s−ε
dr
∫

Rk

dv
∫

Rk

dz ‖z − v‖−β S(t − r, x − v)S(t − r, x − z)‖x − v‖ γ
2 q

×‖x − z‖ γ
2 q .

Changing variables [ṽ = x−v√
t−r
, z̃ = x−z√

t−r
], this becomes

� =
s∫

s−ε
dr (t − r)−

β
2 + γ q

2

∫

Rk

d ṽ
∫

Rk

d z̃ S(1, ṽ)S(1, z̃)‖ṽ − z̃‖−β‖z̃‖γ q/2‖ṽ‖γ q/2

= C
(
(t − s + ε)

2−β
2 + γ q

2 − (t − s)
2−β

2 + γ q
2
)

≤ Cε
2−β

2 + γ q
2 .

Hence, we obtain that for any q ≥ 1,

E
[|Ḡ4,2,ε |q

] ≤ Cε
(

2−β
2 + γ

2

)
q
.
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Therefore, we have proved that in the Case 3,

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 1{αi0 ≥α0}
(
cε

2−β
2 − Gε

)
,

where E[|Gε |q ] ≤ cqε
(

2−β
2 + γ

2 )q . This completes Case 3.
Putting together the results of the Cases 1, 2 and 3, we see that for 0 < ε ≤ ε0,

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 1{αi0 ≥α0} Z ,

where

Z = min
(

cε
2−β

2 +η − Vε, cε
2−β

2 − Jε
)

1{t−s>ε} + (
cεθ

2−β
2 − Wε

)
1{

t−s≤ε, ε≥ |x−y|2
δ0

}

+
(

cε
2−β

2 − Gε

)
1{

t−s≤ε< |x−y|2
δ0

},

where for any q ≥ 1,

E
[|Vε |q

] ≤ Cε
(

2−β
2 + γ

2

)
q
, E

[|Jε |q
] ≤ Cε

(
2−β

2 +η
)

q
,

E
[|Wε |q

] ≤ Cεθ
2−β

2 q+ γ
2 q min(θ,1−2θ), E

[|Gε |q
] ≤ Cε

(
2−β

2 + γ
2

)
q
.

Therefore,

Z ≥ min
(

cε
2−β

2 +η − Vε, cε
2−β

2 − Jε1{t−s>ε} − Gε1{t−s≤ε< |x−y|2
δ0

},

cεθ
2−β

2 − Wε1{t−s≤ε, ε≥ |x−y|2
δ0

}
)
.

Note that all the constants are independent of i0. Then using [6, Proposition 3.5]
(extended to the minimum of three terms instead of two), we deduce that for all
p ≥ 1, there is C > 0 such that

E

[(

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0

)−p
]

≤ E
[
1{αi0 ≥α0} Z−p

]
≤ E

[
Z−p] ≤ C.

Since this applies to any p ≥ 1, we can use Hölder’s inequality to deduce (5.13). This
proves Proposition 5.7. ��

The following result is analogous to [6, Theorem 6.3].

Theorem 5.8 Fix η, T > 0. Assume P1 and P2. Let I × J ⊂ (0, T ]× R
k be a closed

non-trivial rectangle. For any (s, y), (t, x) ∈ I × J, s ≤ t, (s, y) = (t, x), k ≥ 0,
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and p > 1,

‖(γ−1
Z )m,l‖k,p ≤

⎧
⎪⎨

⎪⎩

ck,p,η,T
(|t − s| 2−β

2 + ‖x − y‖2−β)−η i f (m, l) ∈ (1),
ck,p,η,T

(|t − s| 2−β
2 + ‖x − y‖2−β)−1/2−η

i f (m, l) ∈ (2) or (3),

ck,p,η,T
(|t − s| 2−β

2 + ‖x − y‖2−β)−1−η
i f (m, l) ∈ (4).

Proof As in the proof of [6, Theorem 6.3], we shall use Propositions 5.3–5.5.
Set � = |t − s|1/2 + ‖x − y‖.

Suppose first that k = 0. Since the inverse of a matrix is the inverse of its deter-
minant multiplied by its cofactor matrix, we use Proposition 5.5 with η replaced by
η̃ = η

2d(2−β) and Proposition 5.3 with γ ∈ (0, 2 − β) such that 2 − β − γ = η

2(d− 1
2 )

to see that for (m, l) ∈ (2) or (3),

‖(γ−1
Z

)

m,l‖0,p ≤ cp,η,T �
−d(2−β)(1+η̃) �γ

(
d− 1

2

)

= cp,η,T �
− 2−β

2 �(2−β−γ ) 1
2 �

−d
(

2−β−γ
)
−η̃d(2−β)

= cp,η,T �
− 2−β

2 �
−
(

d− 1
2

)
(2−β−γ )−η̃d(2−β)

= cp,η,T �
− 2−β

2 �−η.

This proves the statement for (m, l) ∈ (2) or (3). The other two cases are handled in
a similar way.

For k ≥ 1, we proceed recursively as in the proof of [6, Theorem 6.3], using
Proposition 5.4 instead of 5.3. ��
Remark 5.9 In [6, Theorem 6.3], in the case where d = 1 and s = t , a slightly
stronger result, without the exponent η, is obtained. Here, when s = t , the right-
hand sides of (5.8) and (5.12) can be improved respectively to C‖x − y‖−(2−β)d and
C‖x − y‖−(2−β)2dp. Indeed, when s = t , Case 1 in the proof of Proposition 5.6 does
not arise, and this yields the improvement of (5.12), and, in turn, the improvement
of (5.8). However, this does not lead to an improvement of the result of Theorem 5.8
when s = t , because the exponent η there is also due to the fact that γ < 2 − β in
Proposition 5.3.

In the next subsection, we will establish the estimate of Theorem 1.6(b). For this,
we will use the following expression for the density of a nondegenerate random vector
that is a consequence of the integration by parts formula of Malliavin calculus.

Corollary 5.10 [17, Corollary 3.2.1] Let F = (F1, . . . , Fd) ∈ (D∞)d be a nonde-
generate random vector and let pF (z) denote the density of F (see Theorem 3.1). Then
for every subset σ of the set of indices {1, . . . , d},

pF (z) = (−1)d−|σ |E
[
1{

Fi>zi ,i∈σ, Fi<zi ,i ∈σ
}H(1,...,d)(F, 1)

]
,

where |σ | is the cardinality of σ , and

H(1,...,d)(F, 1) = δ
(
(γ−1

F DF)dδ
(
(γ−1

F DF)d−1δ(· · · δ((γ−1
F DF)1) · · · ))).
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The following result is similar to [6, (6.3)].

Proposition 5.11 Fix η, T > 0. Assume P1 and P2. Let I × J ⊂ (0, T ] × R
k be a

closed non-trivial rectangle. For any (s, y), (t, x) ∈ I × J, s ≤ t, (s, y) = (t, x),
and k ≥ 0,

‖H(1,...,2d)(Z , 1)‖0,2 ≤ CT
(|t − s| 2−β

2 + ‖x − y‖2−β)−(d+η)/2
,

where Z is the random vector defined in (5.7).

Proof The proof is similar to that of [6, (6.3)] using the continuity of the Skorohod
integral δ (see [16, Proposition 3.2.1] and [17, (1.11) and p.131]) and Hölder’s inequal-
ity for Malliavin norms (see [26, Proposition 1.10, p.50]); the only change is that γ in
Proposition 5.1 must be chosen sufficiently close to 2 − β. ��

5.3 Proof of Theorem 1.6(b)

Fix T > 0 and let I × J ⊂ (0, T ] × R
k be a closed non-trivial rectangle. Let

(s, y), (t, x) ∈ I × J, s ≤ t, (s, y) = (t, x), and z1, z2 ∈ R
d . Let pZ be the density

of the random vector Z defined in (5.7). Then

ps,y; t,x
(
z1, z2

) = pZ
(
z1, z2 − z1

)
.

Apply Corollary 5.10 with σ = {i ∈ {1, . . . , d} : zi
2 −zi

1 ≥ 0} and Hölder’s inequality
to see that

pZ
(
z1, z1 − z2

) ≤
d∏

i=1

(

P

{

|ui (t, x)− ui (s, y)| > |zi
1 − zi

2|
}) 1

2d

×‖H(
1,...,2d

)(Z , 1)‖0,2. (5.30)

When ‖z1 − z2‖ = 0,

|t − s|γ /2 + ‖x − y‖γ
‖z1 − z2‖ ∧ 1 = 1,

since the numerator is positive because (s, y) = (t, x). Therefore, (1.5) follows from
Proposition 5.11 in this case.

Assume now that ‖z1 − z2‖ = 0. Then there is i ∈ {1, . . . , d}, and we may as well
assume that i = 1, such that 0 < |z1

1 − z1
2| = maxi=1,...,d |zi

1 − zi
2|. Then

d∏

i=1

(
P
{
|ui (t, x)− ui (s, y)| > |zi

1 − zi
2|
}) 1

2d

≤
(

P
{
|u1(t, x)− u1(s, y)| > |z1

1 − z1
2|
}) 1

2d
.
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Using Chebyshev’s inequality and (2.6), we see that this is bounded above by

c

[
|t − s|γ /2 + ‖x − y‖γ

|z1
1 − z1

2|2
∧ 1

] p
2d

≤ c̃

[ |t − s|γ /2 + ‖x − y‖γ
‖z1 − z2‖2 ∧ 1

] p
2d

. (5.31)

The two inequalities (5.30) and (5.31), together with Proposition 5.11, prove Theo-
rem 1.6(b). ��

As mentioned in Remark 1.7, in the case where b ≡ 0, one can establish the
following exponential upper bound.

Lemma 5.12 Let ũ be the solution of (1.1) with b ≡ 0. Fix T > 0 and γ ∈ (0, 2−β).
Assume P1. Let I × J ⊂ (0, T ] × R

k be a closed non-trivial rectangle. Then there
exist constants c, cT > 0 such that for any (s, y), (t, x) ∈ I × J, s ≤ t, (s, y) =
(t, x), z1, z2 ∈ R

d ,

d∏

i=1

(

P

{

|ũi (t, x)−ũi (s, y)| > |zi
1 − zi

2|
}) 1

2d ≤c exp

(

− ‖z1−z2‖2

cT
(|t−s|γ /2+‖x−y‖γ )

)

.

Proof Consider the continuous one-parameter martingale (Ma = (M1
a , . . . ,Md

a ), 0
≤ a ≤ t) defined by

Mi
a =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a∫

0

∫

Rk

(
S(t − r, x − v)− S(s − r, y − v)

)∑d
j=1 σi j

(
ũ(r, v)

)
M j (dr, dv)

if 0 ≤ a ≤ s,
s∫

0

∫

Rk

(S(t − r, x − v)− S(s − r, y − v))
∑d

j=1 σi j (ũ(r, v))M j (dr, dv)

+
a∫

s

∫

Rk

S(t − r, x − v)
∑d

j=1 σi j (ũ(r, v))M j (dr, dv)

if s ≤ a ≤ t,

for all i = 1, . . . , d, with respect to the filtration (Fa, 0 ≤ a ≤ t). Notice that

Mi
0 = 0, Mi

t = ũi (t, x)− ũi (s, y).

Moreover, because the Mi are independent and white in time, 〈Mi 〉t = M i
1 + M i

2 ,
where

M i
1 =

d∑

j=1

s∫

0

dr

∥
∥
∥
∥(S(t − r, x − ·)− S(s − r, y − ·))σi j (ũ(r, ·))

∥
∥
∥
∥

2

H
,

M i
2 =

d∑

j=1

t∫

s

dr

∥
∥
∥
∥S(t − r, x − ·)σi j (ũ(r, ·))

∥
∥
∥
∥

2

H
.
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Using the fact that the coefficients of σ are bounded and Lemma 6.1, we get that

M i
2 ≤ c|t − s| 2−β

2 .

On the other hand, we write M i
1 ≤ 2(M i

1,1 + M i
1,2), where

M i
1,1 =

d∑

j=1

s∫

0

dr

∥
∥
∥
∥(S(t − r, x − ·)− S(t − r, y − ·))σi j (ũ(r, ·))

∥
∥
∥
∥

2

H
,

M i
1,2 =

d∑

j=1

s∫

0

dr

∥
∥
∥
∥(S(t − r, y − ·)− S(s − r, y − ·))σi j (ũ(r, ·))

∥
∥
∥
∥

2

H
.

In order to bound these two terms, we will use the factorisation method. Using the
semigroup property of S and the Beta function, it yields that, for any α ∈ (0, 1),

S(t − r, x − z) = sin(πα)

π

t∫

r

dθ
∫

Rk

dη ψα(t − θ, x − η)S(θ − r, η − z)(θ − r)−α,

whereψα(t, x) = S(t, x)tα−1. Hence, using the boundedness of the coefficients of σ ,
we can write

M i
1,1 ≤ c

d∑

j=1

s∫

0

dr

∥
∥
∥
∥

t∫

r

dθ
∫

Rk

dη |ψα(t − θ, x − η)− ψα(t − θ, y − η)|

×S(θ − r, η − ·)(θ − r)−α
∥
∥
∥
∥

2

H
,

and Mi
1,2 ≤ c(Mi

1,2,1 + Mi
1,2,2), where

M i
1,2,1 =

d∑

j=1

s∫

0

dr

∥
∥
∥
∥

s∫

r

dθ
∫

Rk

dη |ψα(t − θ, y − η)− ψα(s − θ, y − η)|

×S(θ − r, η − ·)(θ − r)−α
∥
∥
∥
∥

2

H
,

M i
1,2,2 =

d∑

j=1

s∫

0

dr

∥
∥
∥
∥

t∫

s

dθ
∫

Rk

dη ψα(t − θ, y − η)S(θ − r, η − ·)(θ − r)−α
∥
∥
∥
∥

2

H
.
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Using Hölder’s inequality, (5.3), (5.4) and Lemma 5.2, we get that for anyα ∈ (0, 2−β
4 )

and γ ∈ (0, 4α),

M i
1,1 ≤ c sup

(r,z)∈[0,T ]×Rk
‖S(r − ∗, z − ·)(r − ∗)−α‖2

H d
r

×
( t∫

0

dr
∫

Rk

dz |ψα(t − r, x − z)− ψα(t − r, y − z)|
)2

≤ cT (α)‖x − y‖γ ,
M i

1,2,1 ≤ c sup
(r,z)∈[0,T ]×Rk

‖S(r − ∗, z − ·)(r − ∗)−α‖2
H d

r

×
( t∫

0

dr
∫

Rk

dz |ψα(t − r, y − z)− ψα(s − r, y − z)|
)2

≤ cT (α)‖t − s‖γ /2,

M i
1,2,2 ≤ c sup

(r,z)∈[0,T ]×Rk
‖S(r −∗, z−·)(r −∗)−α‖2

H d
r

( t∫

s

dr
∫

Rk

dz ψα(t−r, y−z)

)2

≤ cT (α)‖t − s‖γ /2.

Thus, we have proved that for any γ ∈ (0, 2 − β),

〈
Mi 〉

t ≤ cT
(|t − s|γ /2 + ‖x − y‖γ ).

By the exponential martingale inequality [16, A.5],

P

{

|ũi (t, x)− ũi (s, y)| > |zi
1 − zi

2|
}

≤ 2 exp

(

− |zi
1 − zi

2|2
cT
(|t − s|γ /2 + ‖x − y‖γ )

)

,

which implies the desired result. ��
Acknowledgements The authors would like to thank Marta Sanz-Solé for several useful discussions. The
first author also thanks the Isaac Newton Institute for Mathematical Sciences in Cambridge, England, for
hospitality during the Spring 2010 program Stochastic Partial Differential Equations, where some of the
research reported here was carried out.

6 Appendix

Lemma 6.1 There is C > 0 such that for any 0 < ε ≤ s ≤ t and x ∈ R
k ,

s∫

s−ε
dr
∫

Rk

dξ ‖ξ‖β−k |F S(t − r, x − ·)(ξ)|2 = C((t − s + ε)
2−β

2 − (t − s)
2−β

2 ).
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Moreover, there exists C̃ > 0 such that the above integral is bounded above by C̃ε
2−β

2 ,
and if t − s ≤ ε, then there exists C̄ > 0 such that the above integral is bounded below

by C̄ε
2−β

2 .

Proof Using (2.3) and changing variables [r̃ = t − r, ξ̃ = ξ
√

r ] yields

s∫

s−ε
dr
∫

Rk

dξ ‖ξ‖β−k |F S(t − r, x − ·)(ξ)|2

=
t−s+ε∫

t−s

dr r−β/2
∫

Rk

dξ ‖ξ‖β−k e−‖ξ‖2

= C

t−s+ε∫

t−s

dr r−β/2

= C((t − s + ε)
2−β

2 − (t − s)
2−β

2 ).

If ε < t − s, then the last integral is bounded above by C(t − s)−β/2 ε ≤ Cε
2−β

2 .
On the other hand, if t − s ≤ ε, then the last integral is bounded above by

2ε∫

0

dr r−β/2 ≤ Cε
2−β

2 .

Finally, if t − s ≤ ε, then

t−s+ε∫

t−s

dr r−β/2 ≥ ε(t − s + ε)−β/2 ≥ ε(2ε)−β/2 = cε
2−β

2 .

��
Lemma 6.2 Assume P1. For all T > 0 and q ≥ 1, there exists a constant
c = c(q, T ) ∈ (0,∞) such that for every 0 < ε ≤ s ≤ t ≤ T, x ∈ R

k , and
a > 0,

W := E

⎡

⎣ sup
ξ∈Rd :‖ξ‖≤a

( s∫

s−ε
dr

d∑

l=1

∥
∥
∥
∥

d∑

i=1

ai (l, r, t, x)ξi

∥
∥
∥
∥

2

H

)q
⎤

⎦

≤ c a2q (t − s + ε)
2−β

2 qε
2−β

2 q ,

where ai (l, r, t, x) is defined in (4.1).
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Proof Use (4.1) and the Cauchy-Schwarz inequality to get

W ≤ c a2q
(

E

[( s∫

s−ε
dr ‖W1‖2

H d

)q]

+ E

[( s∫

s−ε
dr ‖W2‖2

H d

)q])

, (6.1)

where

W1 =
d∑

i, j=1

t∫

r

∫

Rk

S(t − θ, x − η)Dr (σi, j (u(θ, η)))M j (dθ, dη),

W2 =
d∑

i=1

t∫

r

dθ
∫

Rk

dη S(t − θ, x − η)Dr (bi (u(θ, η))).

Then

E

[( s∫

s−ε
dr ‖W1‖2

H d

)q]

= E
[
‖W1‖2q

L2([s−ε,s],H d )

]
.

We then apply [21, (6.8) in Theorem 6.1] (see also [18, (3.13)]) to see that this is

≤
⎛

⎜
⎝

t∫

s−ε
dr
∫

Rk

μ(dξ) |F S(r)(ξ)|2
⎞

⎟
⎠

q−1

×
t∫

s−ε
dρ
∫

Rk

μ(dξ) |F S(t − ρ)(ξ)|2 sup
η∈Rk

E
[
‖D·,∗u(ρ, η)‖2q

L2([s−ε,s],H d )

]
.

(6.2)

According to [21, Lemma 8.2],

sup
η∈Rk

E
[
‖D·,∗u(ρ, η)‖2q

L2([s−ε,s],H d )

]
≤ C

⎛

⎜
⎝

s∧ρ∫

s−ε
dr
∫

Rk

μ(dξ)|F S(ρ − r)(ξ)|2
⎞

⎟
⎠

q

,

and we have

∫

Rk

μ(dξ) |F S(r)(ξ)|2 =
∫

Rk

dξ

‖ξ‖k−β e−r‖ξ‖2 = r− β
2

∫

Rk

dv

‖v‖k−β e−‖v‖2 = c0r− β
2 .

(6.3)
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For ρ ≤ s,

s∧ρ∫

s−ε
dr
∫

Rk

μ(dξ) |F S(ρ−r)(ξ)|2 =c0

ρ−s+ε∫

0

dr r− β
2 =c(ρ−s+ε) 2−β

2 ≤ cε
2−β

2 ,

and for s ≤ ρ,

s∧ρ∫

s−ε
dr
∫

Rk

μ(dξ) |F S(ρ − r)(ξ)|2 = c0

ρ−s+ε∫

ρ−s

dr r− β
2

= c
(
(ρ − s + ε)

2−β
2 − (ρ − s)

2−β
2

)

= cε

1∫

0

(ρ − s + εν)−
β
2 dν ≤ cε

1∫

0

(εν)−
β
2 dν

= cε
2−β

2 .

Therefore, from (6.2) and (6.3) above,

E
[
‖W1‖2q

L2([s−ε,s],H d )

]
≤ c(t − s + ε)

2−β
2 qε

2−β
2 q . (6.4)

We now examine the second term in (6.1). Notice that

s∫

s−ε
dr ‖W2‖2

H d ≤ C
d∑

i=1

s∫

s−ε
dr
〈

t∫

s−ε
dθ
∫

Rk

dη 1{θ>r}S(t−θ, x−η)Dr (bi (u(θ, η))),

t∫

s−ε
d θ̃
∫

Rk

dη̃ 1{θ̃>r}S(t − θ̃ , x − η̃)Dr (bi (u(θ̃ , η̃)))
〉

H d

= C
d∑

i=1

t∫

s−ε
dθ
∫

Rk

dη

t∫

s−ε
d θ̃
∫

Rk

dη̃ S(t − θ, x − η)S(t − θ̃ , x − η̃)

×
s∫

s−ε
dr 〈Dr (bi (u(θ, η))), Dr (bi (u(θ̃ , η̃)))〉H d .

The dr -integral is equal to

〈D(bi (u(θ, η))), D(bi (u(θ̃ , η̃)))〉H d
s−ε,s .
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Therefore, we can apply Hölder’s inequality to see that

E

[( s∫

s−ε
dr ‖W2‖2

H d

)q]

≤ C
d∑

i=1

⎛

⎜
⎝

t∫

s−ε
dθ
∫

Rk

dη

t∫

s−ε
d θ̃
∫

Rk

dη̃ S(t − θ, x − η)S(t − θ̃ , x − η̃)

⎞

⎟
⎠

q−1

×
t∫

s−ε
dθ
∫

Rk

dη

t∫

s−ε
d θ̃
∫

Rk

dη̃ S(t − θ, x − η)S(t − θ̃ , x − η̃)

× E

[

〈D(bi (u(θ, η))), D(bi (u(θ̃ , η̃)))〉q
H d

s−ε,s

]

.

Using the Cauchy-Schwarz inequality, we see that the expectation above is bounded
by

E

[∥
∥
∥D(bi (u(θ, η)))

∥
∥
∥

q

H d
s−ε,s

∥
∥
∥D(bi (u(θ, η̃)))

∥
∥
∥

q

H d
s−ε,s

]

≤ sup
θ, η

E

[∥
∥
∥D(bi (u(θ, η)))

∥
∥
∥

2q

H d
s−ε,s

]

. (6.5)

Arguing as for the term W1 and using P1, we bound the expectation by cε
2−β

2 q , and
the remaining integrals are bounded by (t − s + ε)q , so that

E

[( s∫

s−ε
dr ‖W2‖2

H d

)q]

≤ C(t − s + ε)qε
2−β

2 q .

Together with (6.1) and (6.4), this completes the proof. ��
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