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Abstract We consider a system of d non-linear stochastic heat equations in spatial
dimension 1 driven by d-dimensional space-time white noise. The non-linearities
appear both as additive drift terms and as multipliers of the noise. Using techniques
of Malliavin calculus, we establish upper and lower bounds on the one-point density
of the solution u(t, x), and upper bounds of Gaussian-type on the two-point density of
(u(s, y), u(t, x)). In particular, this estimate quantifies how this density degenerates
as (s, y) → (t, x). From these results, we deduce upper and lower bounds on hitting
probabilities of the process {u(t, x)}t∈R+,x∈[0,1], in terms of respectively Hausdorff
measure and Newtonian capacity. These estimates make it possible to show that points
are polar when d ≥ 7 and are not polar when d ≤ 5. We also show that the Hausdorff
dimension of the range of the process is 6 when d > 6, and give analogous results
for the processes t �→ u(t, x) and x �→ u(t, x). Finally, we obtain the values of the
Hausdorff dimensions of the level sets of these processes.
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1 Introduction and main results

Consider the following system of non-linear stochastic partial differential equations
(spde’s)

∂ui

∂t
(t, x) = ∂2ui

∂x2 (t, x)+
d∑

j=1

σi, j (u(t, x))Ẇ j (t, x)+ bi (u(t, x)), (1.1)

for 1 ≤ i ≤ d, t ∈ [0, T ], and x ∈ [0, 1], where u := (u1, . . . , ud), with initial
conditions u(0, x) = 0 for all x ∈ [0, 1], and Neumann boundary conditions

∂ui

∂x
(t, 0) = ∂ui

∂x
(t, 1) = 0, 0 ≤ t ≤ T . (1.2)

Here, Ẇ := (Ẇ 1, . . . , Ẇ d) is a vector of d independent space-time white noises on
[0, T ]×[0, 1]. For all 1 ≤ i, j ≤ d, bi , σi j : R

d → R are globally Lipschitz functions.
We set b = (bi ),σ = (σi j ). Equation (1.1) is formal: the rigorous formulation of Walsh
[14] will be recalled in Sect. 2.

The objective of this paper is to develop a potential theory for the R
d -valued process

u = (u(t, x), t ≥ 0, x ∈ (0, 1)). In particular, given A ⊂ R
d , we want to determine

whether the process u visits (or hits) A with positive probability.
The only potential-theoretic result that we are aware of for systems of non-linear

spde’s with multiplicative noise (σ non-constant) is Dalang and Nualart [3], who
study the case of the reduced hyperbolic spde on R

2+ (essentially equivalent to the
wave equation in spatial dimension 1):

∂2 Xi
t

∂t1∂t2
=

d∑

j=1

σi, j (Xt )
∂2W j

t

∂t1∂t2
+ bi (Xt ),

where t = (t1, t2) ∈ R
2+, and Xi

t = 0 if t1t2 = 0, for all 1 ≤ i ≤ d. There, Dalang and
Nualart used Malliavin calculus to show that the solution (Xt ) of this spde satisfies

K −1Capd−4(A) ≤ P{∃t ∈ [a, b]2 : Xt ∈ A} ≤ K Capd−4(A),

where Capβ denotes the capacity with respect to the Newtonian β-kernel Kβ(·) (see
(1.6)). This result, particularly the upper bound, relies heavily on properties of the
underlying two-parameter filtration and uses Cairoli’s maximal inequality for two-
parameter processes.
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Hitting probabilities for systems 373

Hitting probabilities for systems of linear heat equations have been obtained in
Mueller and Tribe [9]. For systems of non-linear stochastic heat equations with additive
noise, that is, σ in (1.1) is a constant matrix, so (1.1) becomes

∂ui

∂t
(t, x) = ∂2ui

∂x2 (t, x)+
d∑

j=1

σi, j Ẇ j (t, x)+ bi (u(t, x)), (1.3)

estimates on hitting probabilities have been obtained in Dalang et al. [4]. That paper
develops some general results that lead to upper and lower bounds on hitting probabi-
lities for continuous two-parameter random fields, and then uses these, together with
a careful analysis of the linear equation (b ≡ 0, σ ≡ Id , where Id denotes the d × d
identity matrix) and Girsanov’s theorem, to deduce bounds on hitting probabilities for
the solution to (1.3).

In this paper, we make use of the general results of [4], but then, in order to handle the
solution of (1.1), we use a very different approach. Indeed, the results of [4] require
in particular information about the probability density function pt,x of the random
vector u(t, x). In the case of multiplicative noise, estimates on pt,x can be obtained
via Malliavin calculus.

We refer in particular to the results of Bally and Pardoux [2], who used Malliavin
calculus in the case d = 1 to prove that for any t > 0, k ∈ N and 0 ≤ x1 < · · · <
xk ≤ 1, the law of (u(t, x1), . . . , u(t, xk)) is absolutely continuous with respect to
Lebesgue measure, with a smooth and strictly positive density on {σ 	= 0}k , provided
σ and b are infinitely differentiable functions which are bounded together with their
derivatives of all orders. A Gaussian-type lower bound for this density is established
by Kohatsu-Higa [7] under a uniform ellipticity condition. Morien [8] showed that the
density function is also Hölder-continuous as a function of (t, x).

In this paper, we shall use techniques of Malliavin calculus to establish the following
theorem. Let pt,x (z) denote the probability density function of the R

d -valued random
vector u(t, x) = (u1(t, x), . . . , ud(t, x)) and for (s, y) 	= (t, x), let ps,y; t,x (z1, z2)

denote the joint density of the R
2d -valued random vector

(u(s, y), u(t, x)) = (u1(s, y), . . . , ud(s, y), u1(t, x), . . . , ud(t, x)) (1.4)

(the existence of pt,x (·) is essentially a consequence of the result of Bally and
Pardoux [2], see our Corollary 4.3; the existence of ps,y; t,x (·, ·) is a consequence
of our Theorems 3.1 and 6.3).

Consider the following two hypotheses on the coefficients of the system (1.1):

P1 The functions σi j and bi are bounded and infinitely differentiable with bounded
partial derivatives of all orders, for 1 ≤ i, j ≤ d.

P2 The matrix σ is uniformly elliptic, that is, ‖σ(x)ξ‖2 ≥ ρ2 > 0 for some ρ > 0,
for all x ∈ R

d , ξ ∈ R
d , ‖ξ‖ = 1 (‖ · ‖ denotes the Euclidean norm on R

d ).

Theorem 1.1 Assume P1 and P2. Fix T > 0 and let I ⊂ (0, T ] and J ⊂ (0, 1) be
two compact nonrandom intervals.

(a) The density pt,x (z) is uniformly bounded over z ∈ R
d , t ∈ I and x ∈ J .
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374 R. C. Dalang et al.

(b) There exists c > 0 such that for any t ∈ I , x ∈ J and z ∈ R
d ,

pt,x (z) ≥ ct−d/4 exp

(
− ‖z‖2

ct1/2

)
.

(c) For all η > 0, there exists c > 0 such that for any s, t ∈ I , x, y ∈ J , (s, y) 	=
(t, x) and z1, z2 ∈ R

d ,

ps,y; t,x (z1, z2) ≤ c(|t − s|1/2 + |x − y|)−(d+η)/2 exp

(
− ‖z1 − z2‖2

c(|t − s|1/2 + |x − y|)

)
.

(1.5)

(d) There exists c > 0 such that for any t ∈ I , x, y ∈ J , x 	= y and z1, z2 ∈ R
d ,

pt,y; t,x (z1, z2) ≤ c(|x − y|)−d/2 exp

(
−‖z1 − z2‖2

c|x − y|
)
.

The main technical effort in this paper is to obtain the upper bound in (c). Indeed, it
is not difficult to check that for fixed (s, y; t, x), (z1, z2) �→ ps,y; t,x (z1, z2) behaves
like a Gaussian density function. However, for (s, y) = (t, x), the R

2d -valued random
vector (u(s, y), u(t, x)) is concentrated on a d-dimensional subspace in R

2d and the-
refore does not have a density with respect to Lebesgue measure in R

2d . So the main
effort is to estimate how this density blows up as (s, y) → (t, x). This is achieved by
a detailed analysis of the behavior of the Malliavin matrix of (u(s, y), u(t, x)) as a
function of (s, y; t, x), using a perturbation argument. The presence of η in statement
(c) may be due to the method of proof. When t = s, it is possible to set η = 0 as in
Theorem 1.1(d).

This paper is organized as follows. After introducing some notation and stating our
main results on hitting probabilities (Theorems 1.2 and 1.6), we assume Theorem 1.1
and use the theorems of [4] to prove these results in Sect. 2. In Sect. 3, we recall some
basic facts of Malliavin calculus and state and prove two results that are tailored to our
needs (Propositions 3.4 and 3.5). In Sect. 4, we establish the existence, smoothness and
uniform boundedness of the one-point density function pt,x , proving Theorem 1.1(a).
In Sect. 5, we establish a lower bound on pt,x , which proves Theorem 1.1(b). This
upper (respectively lower) bound is a fairly direct extension to d ≥ 1 of a result
of Bally and Pardoux [2] (respectively [7]) when d = 1. In Sect. 6, we establish
Theorem 1.1(c) and (d). The main steps are as follows.

The upper bound on the two-point density function ps,y; t,x involves a bloc-
decomposition of the Malliavin matrix of the R

2d -valued random vector (u(s, y),
u(s, y) − u(t, x)). The entries of this matrix are of different orders of magnitude,
depending on which bloc they are in: see Theorem 6.3. Assuming Theorem 6.3, we
prove Theorem 1.1(c) and (d) in Sect. 6.3. The exponential factor in (1.5) is obtained
from an exponential martingale inequality, while the factor (|t−s|1/2+|x−y|)−(d+η)/2
comes from an estimate of the iterated Skorohod integrals that appear in Corollary 3.3
and from the block structure of the Malliavin matrix.
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Hitting probabilities for systems 375

The proof of Theorem 6.3 is presented in Sect. 6.4: this is the main technical effort
in this paper. We need bounds on the inverse of the Malliavin matrix. Bounds on
its cofactors are given in Proposition 6.5, while bounds on negative moments of its
determinant are given in Proposition 6.6. The determinant is equal to the product of the
2d eigenvalues of the Malliavin matrix. It turns out that at least d of these eigenvalues
are of order 1 (“large eigenvalues”) and do not contribute to the upper bound in (1.5),
and at most d are of the same order as the smallest eigenvalue (“small eigenvalues”),
that is, of order |t − s|1/2 + |x − y|. If we did not distinguish between these two
types of eigenvalues, but estimated all of them by the smallest eigenvalue, we would
obtain a factor of (|t − s|1/2 +|x − y|)−d+η/2 in (1.5), which would not be the correct
order. The estimates on the smallest eigenvalue are obtained by refining a technique
that appears in [2]; indeed, we obtain a precise estimate on the density whereas they
only showed existence. The study of the large eigenvalues does not seem to appear
elsewhere in the literature.

Coming back to potential theory, let us introduce some notation. For all Borel sets
F ⊂ R

d , we define P(F) to be the set of all probability measures with compact
support contained in F . For all integers k ≥ 1 and µ ∈ P(Rk), we let Iβ(µ) denote
the β-dimensional energy of µ, that is,

Iβ(µ) :=
∫∫

Kβ(‖x − y‖) µ(dx) µ(dy),

where ‖x‖ denotes the Euclidian norm of x ∈ R
k ,

Kβ(r) :=

⎧
⎪⎨

⎪⎩

r−β if β > 0,

log(N0/r) if β = 0,

1 if β < 0,

(1.6)

and N0 is a sufficiently large constant [4, (1.5)].
For all β ∈ R, integers k ≥ 1, and Borel sets F ⊂ R

k , Capβ(F) denotes the
β-dimensional capacity of F , that is,

Capβ(F) :=
[

inf
µ∈P(F)

Iβ(µ)

]−1

,

where 1/∞ := 0. Note that if β < 0, then Capβ(·) ≡ 1.
Given β ≥ 0, the β-dimensional Hausdorff measure of F is defined by

Hβ(F) = lim
ε→0+ inf

{ ∞∑

i=1

(2ri )
β : F ⊆

∞⋃

i=1

B(xi , ri ), sup
i≥1

ri ≤ ε

}
, (1.7)

where B(x, r) denotes the open (Euclidean) ball of radius r > 0 centered at x ∈ R
d .

When β < 0, we define Hβ(F) to be infinite.
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Throughout, we consider the following parabolic metric: For all s, t ∈ [0, T ] and
x, y ∈ [0, 1],

�((t, x) ; (s, y)) := |t − s|1/2 + |x − y|. (1.8)

Clearly, this is a metric on R
2 which generates the usual Euclidean topology on R

2.
Then we obtain an energy form

I�β (µ) :=
∫∫

Kβ(�((t, x) ; (s, y))) µ(dt dx) µ(ds dy),

and a corresponding capacity

Cap�β (F) :=
[

inf
µ∈P(F)

I�β (µ)

]−1

.

For the Hausdorff measure, we write

H �
β (F) = lim

ε→0+ inf

{ ∞∑

i=1

(2ri )
β : F ⊆

∞⋃

i=1

B�((ti , xi ), ri ), sup
i≥1

ri ≤ ε

}
,

where B�((t, x), r) denotes the open �-ball of radius r > 0 centered at (t, x) ∈
[0, T ] × [0, 1].

Using Theorem 1.1 together with results from Dalang et al. [4], we shall prove the
following result. Let u(E) denote the (random) range of E under the map (t, x) �→
u(t, x), where E is some Borel-measurable subset of R

2.

Theorem 1.2 Assume P1 and P2. Fix T > 0, M > 0, and η > 0. Let I ⊂ (0, T ] and
J ⊂ (0, 1) be two fixed non-trivial compact intervals.

(a) There exists c > 0 depending on M, I, J and η such that for all compact sets
A ⊆ [−M,M]d ,

c−1 Capd−6+η(A) ≤ P{u(I × J ) ∩ A 	= ∅} ≤ c Hd−6−η(A).

(b) For all t ∈ (0, T ], there exists c1 > 0 depending on T , M and J , and c2 > 0
depending on T , M, J and η > 0 such that for all compact sets A ⊆ [−M,M]d ,

c1 Capd−2(A) ≤ P{u({t} × J ) ∩ A 	= ∅} ≤ c2 Hd−2−η(A).

(c) For all x ∈ (0, 1), there exists c > 0 depending on M, I and η such that for all
compact sets A ⊆ [−M,M]d ,

c−1 Capd−4+η(A) ≤ P{u(I × {x}) ∩ A 	= ∅} ≤ c Hd−4−η(A).

Remark 1.3 (i) Because of the inequalities between capacity and Hausdorff mea-
sure, the right-hand sides of Theorem 1.2 can be replaced by c Capd−6−η(A),
c Capd−2−η(A) and c Capd−4−η(A) in (a), (b) and (c), respectively (cf. [5, p.
133]).
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Hitting probabilities for systems 377

(ii) Theorem 1.2 also holds if we consider Dirichlet boundary conditions (i.e.,
ui (t, 0) = ui (t, 1) = 0, for t ∈ [0, T ]) instead of Neumann boundary condi-
tions.

(iii) In the upper bounds of Theorem 1.2, the condition in P1 that σ and b are
bounded can be removed, but their derivatives of all orders must exist and be
bounded.

As a consequence of Theorem 1.2, we deduce the following result on the polarity
of points. Recall that a Borel set A ⊆ R

d is called polar for u if P{u((0, T ]× (0, 1))∩
A 	= ∅} = 0; otherwise, A is called nonpolar.

Corollary 1.4 Assume P1 and P2.

(a) Singletons are nonpolar for (t, x) �→ u(t, x) when d ≤ 5, and are polar when
d ≥ 7 (the case d = 6 is open).

(b) Fix t ∈ (0, T ]. Singletons are nonpolar for x �→ u(t, x) when d = 1, and are
polar when d ≥ 3 (the case d = 2 is open).

(c) Fix x ∈ (0, 1). Singletons are not polar for t �→ u(t, x) when d ≤ 3 and are
polar when d ≥ 5 (the case d = 4 is open).

Another consequence of Theorem 1.2 is the Hausdorff dimension of the range of
the process u.

Corollary 1.5 Assume P1 and P2.

(a) If d > 6, then dimH(u((0, T ] × (0, 1))) = 6 a.s.
(b) Fix t ∈ R+. If d > 2, then dimH(u({t} × (0, 1))) = 2 a.s.
(c) Fix x ∈ (0, 1). If d > 4, then dimH(u(R+ × {x})) = 4 a.s.

As in Dalang et al. [4], it is also possible to use Theorem 1.1 to obtain results
concerning level sets of u. Define

L (z ; u) := {(t, x) ∈ I × J : u(t, x) = z} ,
T (z ; u) = {t ∈ I : u(t, x) = z for some x ∈ J } ,
X (z ; u) = {x ∈ J : u(t, x) = z for some t ∈ I } ,
Lx (z ; u) := {t ∈ I : u(t, x) = z} ,
L t (z ; u) := {x ∈ J : u(t, x) = z} .

We note that L (z ; u) is the level set of u at level z, T (z ; u) (resp. X (z ; u)) is the
projection of L (z ; u) onto I (resp. J ), and Lx (z ; u) (resp. L t (z ; u)) is the x-section
(resp. t-section) of L (z ; u).

Theorem 1.6 Assume P1 and P2. Then for all η > 0 and R > 0 there exists a
positive and finite constant c such that the following holds for all compact sets E ⊂
(0, T ] × (0, 1), F ⊂ (0, T ], G ⊂ (0, 1), and for all z ∈ B(0, R):

(a) c−1 Cap�(d+η)/2(E) ≤ P{L (z ; u) ∩ E 	= ∅} ≤ c H �
(d−η)/2(E);

(b) c−1Cap(d−2+η)/4(F) ≤ P{T (z ; u) ∩ F 	= ∅} ≤ c H(d−2−η)/4(F);
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(c) c−1 Cap(d−4+η)/2(G) ≤ P{X (z ; u) ∩ G 	= ∅} ≤ c H(d−4−η)/2(G);
(d) for all x ∈(0, 1), c−1 Cap(d+η)/4(F) ≤ P{Lx (z ; u)∩F 	= ∅} ≤ c H(d−η)/4(F);
(e) for all t ∈ (0, T ], c−1 Capd/2(G) ≤ P{L t (z ; u) ∩ G 	= ∅} ≤ c H(d−η)/2(G).

Corollary 1.7 Assume P1 and P2. Choose and fix z ∈ R
d .

(a) If 2 < d < 6, then dimH T (z ; u) = 1
4 (6 − d) a.s. on {T (z ; u) 	= ∅}.

(b) If 4 < d < 6 (i.e., d = 5), then dimH X (z ; u) = 1
2 (6 − d) a.s. on {X (z ; u) 	=

∅}.
(c) If 1 ≤ d < 4, then dimH Lx (z ; u) = 1

4 (4 − d) a.s. on {Lx (z ; u) 	= ∅}.
(d) If d = 1, then dimH L t (z ; u) = 1

2 (2 − d) = 1
2 a.s. on {L t (z ; u) 	= ∅}.

In addition, all four right-most events have positive probability.

Remark 1.8 The results of the two theorems and corollaries above should be compared
with those of Dalang et al. [4].

2 Proof of Theorems 1.2, 1.6 and their corollaries (assuming Theorem 1.1)

We start this section recalling the hypotheses and consequences of Theorems 3.3 and
2.1 in Dalang et al. [4].

Theorem 2.1 [4, Theorem 3.3] Consider two compact nonrandom intervals I ⊂
[0, T ] and J ⊂ [0, 1], and suppose v = {v(t, x)}(t,x)∈I×J is an R

d-valued random
field. For M > 0 fixed, assume the following two conditions:

(i) For any (t, x) ∈ I × J , the random vector v(t, x) has a density pt,x (z) which
is uniformly bounded over z ∈ [−M,M]d and (t, x) ∈ I × J .

(ii) For all p > 1, there exists a constant C depending on p, I, J such that for any
(t, x), (s, y) ∈ I × J ,

E[|v(t, x)− v(s, y)|p] ≤ C [�((t, x) ; (s, y))]p/2 . (2.1)

Then for any β ∈ ]0, d[, there exists a positive and finite constant a such that for all
Borel sets A ⊂ [−M,M]d :

(1) P{v(I × J ) ∩ A 	= ∅} ≤ aHβ−6(A);
(2) for every t ∈ I , P{v({t} × J ) ∩ A 	= ∅} ≤ aHβ−2(A);
(3) for every x ∈ J , P{v(I × {x}) ∩ A 	= ∅} ≤ aHβ−4(A).

Theorem 2.2 [4, Theorem 2.1] Fix two compact intervals I and J of R. Suppose
that {v(t, x)}(t,x)∈I×J is a two-parameter, continuous random field with values in R

d ,
such that (v(t, x), v(s, y)) has a joint probability density function pt,x;s,y(·, ·), for
all s, t ∈ I and x, y ∈ J such that (t, x) 	= (s, y). We denote by pt,x (·) the density
function of v(t, x). Assume the following hypotheses:

A1. For all M > 0, there exists a positive and finite constant C = C(I, J,M, d)
such that for all (t, x) ∈ I × J and all z ∈ [−M,M]d ,

pt,x (z) ≥ C.
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Hitting probabilities for systems 379

A2. There existsβ > 0 such that for all M > 0, there exists c = c(I, J, β,M, d) > 0
such that for all s, t ∈ I and x, y ∈ J with (t, x) 	= (s, y), and for every
z1, z2 ∈ [−M,M]d ,

pt,x;s,y(z1, z2) ≤ c

[�((t, x) ; (s, y))]β/2
exp

(
− ‖z1 − z2‖2

c�((t, x) ; (s, y))

)
.

Then the following inequalities hold.

(1) There exists a positive and finite constant a = a(I, J, β,M, d) such that for all
compact sets A ⊆ [−M,M]d ,

P {v(I × J ) ∩ A 	= ∅} ≥ aCapβ−6(A).

(2) There exists a positive and finite constant a = a(J,M β, d) such that for all
t ∈ I and for all compact sets A ⊆ [−M,M]d ,

P {v({t} × J ) ∩ A 	= ∅} ≥ aCapβ−2(A).

(3) There exists a positive and finite constant a = a(I,M, β, d) such that for all
x ∈ J and for all compact sets A ⊆ [−M,M]d ,

P {v(I × {x}) ∩ A 	= ∅} ≥ aCapβ−4(A).

We shall apply these two theorems to the solution of Eq. (1.1). We first recall
that Eq. (1.1) is formal: a rigorous formulation, following Walsh [14], is as follows.
Let W i = (W i (s, x))s∈R+, x∈[0,1], i = 1, . . . , d, be independent Brownian sheets
defined on a probability space (	,F ,P), and set W = (W 1, . . . ,W d). For t ≥ 0, let
Ft = σ {W (s, x), s ∈ [0, t], x ∈ [0, 1]}. We say that a process u = {u(t, x), t ∈
[0, T ], x ∈ [0, 1]} is adapted to (Ft ) if u(t, x) is Ft -measurable for each (t, x) ∈
[0, T ] × [0, 1]. We say that u is a solution of (1.1) if u is adapted to (Ft ) and if for
i ∈ {1, . . . , d},

ui (t, x) =
t∫

0

1∫

0

Gt−r (x, v)
d∑

j=1

σi, j (u(r, v))W
j (dr, dv)

+
t∫

0

1∫

0

Gt−r (x, v) bi (u(r, v)) drdv, (2.2)

where Gt (x, y)denotes the Green kernel for the heat equation with Neumann boundary
conditions (see [14, Chap. 3]), and the stochastic integral in (2.2) is interpreted as in
[14].

Adapting the results from [14] to the case d ≥ 1, one can show that there exists a
unique continuous process u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} adapted to (Ft ) that
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is a solution of (1.1). Moreover, it is shown in Bally et al. [1] that for any s, t ∈ [0, T ]
with s ≤ t , x, y ∈ [0, 1], and p > 1,

E[|u(t, x)− u(s, y)|p] ≤ CT,p(�((t, x) ; (s, y)))p/2, (2.3)

where � is the parabolic metric defined in (1.8). In particular, for any 0 < α < 1/2,
u is a.s. α-Hölder continuous in x and α/2-Hölder continuous in t .

Assuming Theorem 1.1, we now prove Theorems 1.2, 1.6 and their corollaries.

Proof of Theorem 1.2 (a) In order to prove the upper bound, we use Theorem 2.1.
Indeed, Theorem 1.1(a) and (2.3) imply that the hypotheses (i) and (ii), respectively,
of this theorem, are satisfied, and so the conclusion (with β = d − η) is too.

In order to prove the lower bound, we shall use Theorem 2.2. Hypothesis A1
is an immediate consequence of Theorem 1.1(b). Hypothesis A2 holds with β =
d +η by Theorem 1.1(c). Therefore, the lower bound in Theorem 1.2(a) follows from
Theorem 2.2(1). This proves (a).

(b) For the upper bound, we again refer to Theorem 2.1. For the lower bound, which
involves Capd−2(A) instead of Capd−2+η(A), we refer to [4, Remark 2.5] and observe
that hypotheses A1t and A2t there are satisfied with β = d (by Theorem 1.1(d)). This
proves (b).

(c) As in (a), the upper bound follows from Theorem 2.1 with β = d − η, and the
lower bound follows from Theorem 2.2(3), with β = d + η. Theorem 1.2 is proved.

��
Proof of Corollary 1.4 We first prove (a). Let z ∈ R

d . If d ≤ 5, then there is η > 0
such that d − 6 + η < 0, and thus Capd−6+η({z}) = 1. Hence, the lower bound of
Theorem 1.2(a) implies that {z} is not polar. On the other hand, if d > 6, then for
small η > 0, d − 6 − η > 0. Therefore, Hd−6−η({z}) = 0 and the upper bound
of Theorem 1.2(a) implies that {z} is polar. This proves (a). One proves (b) and (c)
exactly along the same lines using Theorem 1.2(b) and (c). ��
Proof of Theorem 1.6 For the upper bounds in (a)–(e), we use Dalang et al. [4, Theo-
rems 3.3 and 3.1] whose assumptions we verified above with β = d − η; these upper
bounds then follow immediately from [4, Theorem 3.2].

For the lower bounds in (a)–(d), we use [4, Theorem 2.4] since we have shown above
that the assumptions of this theorem, with β = d +η, are satisfied by Theorem 1.1. For
the lower bound in (e), we refer to [4, Remark 2.5] and note that by Theorem 1.1(d),
Hypothesis A2t there is satisfied with β = d. This proves Theorem 1.6. ��
Proof of Corollaries 1.5 and 1.7 The final positive-probability assertion in Corol-
lary 1.7 is an immediate consequence of Theorem 1.6 and Taylor’s theorem (see
[6, Corollary 2.3.1 p. 523]).

Let E be a random set. When it exists, the codimension of E is the real number
β ∈ [0, d] such that for all compact sets A ⊂ R

d ,

P{E ∩ A 	= ∅}
{
> 0 whenever dimH(A) > β,

= 0 whenever dimH(A) < β.
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See Khoshnevisan [6, Chap.11, Sect. 4]. When it is well defined, we write the said
codimension as codim(E). Theorems 1.2 and 1.6 imply that for d ≥ 1: codim(u(R+×
(0, 1))) = (d − 6)+; codim(u({t} × (0, 1))) = (d − 2)+; codim(u(R+ × {x})) =
(d − 4)+; codim(T (z)) = ( d−2

4 )+; codim(X (z)) = ( d−4
2 )+; codim(Lx (z)) = d

4 ;
and codim(L t (z)) = d

2 . According to Theorem 4.7.1 of Khoshnevisan [6, Chap. 11],
given a random set E in R

n whose codimension is strictly between 0 and n,

dimH E + codim E = n a.s. on {E 	= ∅}. (2.4)

This implies the statements of Corollaries 1.5 and 1.7. ��

3 Elements of Malliavin calculus

In this section, we introduce, following Nualart [11] (see also [13]), some elements of
Malliavin calculus. Let S denote the class of smooth random variables of the form

F = f (W (h1), . . . ,W (hn)),

where n ≥ 1, f ∈ C ∞
P (Rn), the set of real-valued functions f such that f and

all its partial derivatives have at most polynomial growth, hi ∈ H := L2([0, T ] ×
[0, 1],Rd), and W (hi ) denotes the Wiener integral

W (hi ) =
T∫

0

1∫

0

hi (t, x) · W (dx, dt), 1 ≤ i ≤ n.

Given F ∈ S , its derivative is defined to be the R
d -valued stochastic process DF =

(Dt,x F = (D(1)
t,x F, . . . , D(d)

t,x F), (t, x) ∈ [0, T ] × [0, 1]) given by

Dt,x F =
n∑

i=1

∂ f

∂xi
(W (h1), . . . ,W (hn))hi (t, x).

More generally, we can define the derivative Dk F of order k of F by setting

Dk
αF =

n∑

i1,...,ik=1

∂

∂xi1

· · · ∂

∂xik

f (W (h1), . . . ,W (hn))hi1(α1)⊗ · · · ⊗ hik (αk),

where α = (α1, . . . , αk), and αi = (ti , xi ), 1 ≤ i ≤ k.
For p, k ≥ 1, the space D

k,p is the closure of S with respect to the seminorm
‖ · ‖p

k,p defined by

‖F‖p
k,p = E[|F |p] +

k∑

j=1

E[‖D j F‖p
H ⊗ j ],
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where

‖D j F‖2
H ⊗ j =

d∑

i1,...,i j =1

T∫

0

dt1

1∫

0

dx1 · · ·
T∫

0

dt j

1∫

0

dx j

(
D(i1)
(t1,x1)

· · · D
(i j )

(t j ,x j )
F
)2
.

We set (D∞)d = ∩p≥1 ∩k≥1 D
k,p.

The derivative operator D on L2(	) has an adjoint, termed the Skorohod integral
and denoted by δ, which is an unbounded operator on L2(	,H ). Its domain, denoted
by Dom δ, is the set of elements u ∈ L2(	,H ) such that there exists a constant c
such that |E[〈DF, u〉H ]| ≤ c‖F‖0,2, for any F ∈ D

1,2.
If u ∈ Dom δ, then δ(u) is the element of L2(	) characterized by the following

duality relation:

E[Fδ(u)] = E

⎡

⎣
d∑

j=1

T∫

0

1∫

0

D( j)
t,x F u j (t, x) dtdx

⎤

⎦ , for all F ∈ D
1,2.

A first application of Malliavin calculus to the study of probability laws is the
following global criterion for smoothness of densities.

Theorem 3.1 [11, Theorem 2.1.2 and Corollary 2.1.2] or [13, Theorem 5.2] Let
F = (F1, . . . , Fd) be an R

d-valued random vector satisfying the following two
conditions:

(i) F ∈ (D∞)d;
(ii) the Malliavin matrix of F defined by γF = (〈DFi , DF j 〉H )1≤i, j≤d is inver-

tible a.s. and (det γF )
−1 ∈ L p(	) for all p ≥ 1.

Then the probability law of F has an infinitely differentiable density function.

A random vector F that satisfies conditions (i) and (ii) of Theorem 3.1 is said to
be nondegenerate. For a nondegenerate random vector, the following integration by
parts formula plays a key role.

Proposition 3.2 [12, Proposition 3.2.1] or [13, Proposition 5.4] Let F = (F1, . . . ,

Fd) ∈ (D∞)d be a nondegenerate random vector, let G ∈ D
∞ and let g ∈ C ∞

P (Rd).
Fix k ≥ 1. Then for any multi-index α = (α1, . . . , αk) ∈ {1, . . . , d}k , there is an
element Hα(F,G) ∈ D

∞ such that

E[(∂αg)(F)G] = E[g(F)Hα(F,G)].

In fact, the random variables Hα(F,G) are recursively given by

Hα(F,G) = H(αk )(F, H(α1,...,αk−1)(F,G)),

H(i)(F,G) =
d∑

j=1

δ(G (γ−1
F )i, j DF j ).

123



Hitting probabilities for systems 383

Proposition 3.2 with G = 1 and α = (1, . . . , d) implies the following expression
for the density of a nondegenerate random vector.

Corollary 3.3 [12, Corollary 3.2.1] Let F = (F1, . . . , Fd) ∈ (D∞)d be a nondege-
nerate random vector and let pF (z) denote the density of F. Then for every subset σ
of the set of indices {1, . . . , d},

pF (z) = (−1)d−|σ |E[1{Fi>zi ,i∈σ, Fi<zi ,i 	∈σ } H(1,...,d)(F, 1)],

where |σ | is the cardinality of σ , and, in agreement with Proposition 3.2,

H(1,...,d)(F, 1) = δ((γ−1
F DF)dδ((γ−1

F DF)d−1δ(· · · δ((γ−1
F DF)1) · · · ))).

The next result gives a criterion for uniform boundedness of the density of a non-
degenerate random vector.

Proposition 3.4 For all p > 1 and  ≥ 1, let c1 = c1(p) > 0 and c2 = c2(, p) ≥ 0
be fixed. Let F ∈ (D∞)d be a nondegenerate random vector such that

(a) E[(det γF )
−p] ≤ c1;

(b) E[‖Dl(Fi )‖p
H ⊗ ] ≤ c2, i = 1, . . . , d.

Then the density of F is uniformly bounded, and the bound does not depend on F but
only on the constants c1(p) and c2(, p).

Proof The proof of this result uses the same arguments as in the proof of Dalang and
Nualart [3, Lemma 4.11]. Therefore, we will only give the main steps.

Fix z ∈ R
d . Thanks to Corollary 3.3 and the Cauchy–Schwarz inequality we find

that

|pF (z)| ≤ ‖H(1,...,d)(F, 1)‖0,2.

Using the continuity of the Skorohod integral δ (cf. [11, Proposition 3.2.1] and Nualart
[12, (1.11) and p.131]) and Hölder’s inequality for Malliavin norms (cf. [15, Proposi-
tion 1.10, p. 50]), we obtain

‖H(1,...,d)(F, 1)‖0,2 ≤ c‖H(1,...,d−1)(F, 1)‖1,4

d∑

j=1

‖(γ−1
F )d, j‖1,8 ‖D(F j )‖1,8.

(3.1)
In agreement with hypothesis (b), ‖D(F j )‖m,p ≤ c. In order to bound the second
factor in (3.1), note that

‖(γ−1
F )i, j‖m,p =

{
E[|(γ−1

F )i, j |p] +
m∑

k=1

E[‖Dk(γ−1
F )i, j‖p

H ⊗k ]
}1/p

. (3.2)

For the first term in (3.2), we use Cramer’s formula to get that

|(γ−1
F )i, j | = |(det γF )

−1(AF )i, j |,
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where AF denotes the cofactor matrix of γF . By means of Cauchy–Schwarz inequality
and hypotheses (a) and (b) we find that

E[((γ−1
F )i, j )

p] ≤ cd,p{E[(det γF )
−2p]}1/2 × {E[‖D(F)‖4p(d−1)

H ]}1/2

≤ cd,p,

where none of the constants depend on F . For the second term on the right-hand side
of (3.2), we iterate the equality (cf. [11, Lemma 2.1.6])

D(γ−1
F )i, j = −

d∑

k,=1

(γ−1
F )i,k D(γF )k,(γ

−1
F ), j , (3.3)

in the same way as in the proof of Dalang and Nualart [3, Lemma 4.11]. Then, appealing
again to hypotheses (a) and (b) and iterating the inequality (3.1) to bound the first factor
on the right-hand side of (3.2), we obtain the uniform boundedness of pF (z). ��

We finish this section with a result that will be used later on to bound negative
moments of a random variable, as is needed to check hypothesis (a) of Proposition 3.4.

Proposition 3.5 Suppose Z ≥ 0 is a random variable for which we can find ε0 ∈
(0, 1), processes {Yi,ε}ε∈(0,1) (i = 1, 2), and constants c > 0 and 0 ≤ α2 ≤ α1 with
the property that Z ≥ min(cεα1 − Y1,ε, cεα2 − Y2,ε) for all ε ∈ (0, ε0). Also suppose
that we can find βi > αi (i = 1, 2), not depending on ε0, such that

C(q) := sup
0<ε<1

max

(
E[|Y1,ε |q ]
εqβ1

,
E[|Y2,ε |q ]
εqβ2

)
< ∞ for all q ≥ 1.

Then for all p ≥ 1, there exists a constant c′ ∈ (0,∞), not depending on ε0, such that
E[|Z |−p] ≤ c′ε−pα1

0 .

Remark 3.6 This lemma is of interest mainly when β2 ≤ α1.

Proof Define k := (2/c)ε−α1
0 . Suppose that y ≥ k, and let ε := (2/c)1/α1 y−1/α1 .

Then 0 < ε ≤ ε0, y−1 = (c/2)εα1 , and for all q ≥ 1,

P
{

Z−1 > y
}

= P
{

Z < y−1
}

≤ P
{

Y1,ε ≥ c

2
εα1
}

+ P
{

Y2,ε ≥ cεα2 − c

2
εα1
}

≤ C(q)

cq

(
2qεq(β1−α1) + εqβ2

[
εα2 − 1

2
εα1

]−q
)
.

The inequality εα2 − (1/2)εα1 ≥ (1/2)εα2 implies that

P
{

Z−1 > y
}

≤ C(q)

cq

(
2qεq(β1−α1) + 2qεq(β2−α2)

)
≤ ay−qb,
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where a and b are positive and finite constants that do not depend on y, ε0 or q. We
apply this with q := (p/b)+ 1 to find that for all p ≥ 1,

E
[|Z |−p] = p

∞∫

0

y p−1P
{

Z−1 > y
}

dy

≤ k p + ap

∞∫

k

y−b−1 dy = k p +
(ap

b

)
k−b.

Because k ≥ (2/c) and b > 0, it follows that E[|Z |−p] ≤ (1 + c1(ap/b))k p, where
c1 := (c/2)b+p. This is the desired result. ��

4 Existence, smoothness and uniform boundedness of the one-point density

Let u = {u(t, x), t ∈ [0, T ], x ∈ [0, 1]} be the solution of Eq. (2.2). In this section,
we prove the existence, smoothness and uniform boundedness of the density of the
random vector u(t, x). In particular, this will prove Theorem 1.1(a).

The first result concerns the Malliavin differentiability of u and the equations
satisfied by its derivatives. We refer to Bally and Pardoux [2, Proposition 4.3, (4.16),
(4.17)] for its proof in dimension one. As we work coordinate by coordinate, the
following proposition follows in the same way and its proof is therefore omitted.

Proposition 4.1 Assume P1. Then u(t, x) ∈ (D∞)d for any t ∈ [0, T ] and x ∈ [0, 1].
Moreover, its iterated derivative satisfies

D(k1)
r1,v1

· · · D(kn)
rn ,vn

(ui (t, x))

=
d∑

l=1

Gt−rl (x, vl)
(

D(k1)
r1,v1

· · · D(kl−1)
rl−1,vl−1 D(kl+1)

rl+1,vl+1 · · · D(kn)
rn ,vn

(σikl (u(rl , vl)))
)

+
d∑

j=1

t∫

r1∨···∨rn

1∫

0

Gt−θ (x, η)
n∏

l=1

D(kl )
rl ,vl

(σi j (u(θ, η)))W
j (dθ, dη)

+
t∫

r1∨···∨rn

1∫

0

Gt−θ (x, η)
n∏

l=1

D(kl )
rl ,vl

(bi (u(θ, η))) dθdη

if t ≤ r1 ∨ · · · ∨ rn and D(k1)
r1,v1 · · · D(kn)

rn ,vn (ui (t, x)) = 0 otherwise. Finally, for any
p > 1,

sup(t,x)∈[0,T ]×[0,1]E
[∥∥Dn(ui (t, x))

∥∥p
H ⊗n

]
< +∞. (4.1)

Note that, in particular, the first-order Malliavin derivative satisfies, for r < t ,

D(k)
r,v (ui (t, x)) = Gt−r (x, v)σik(u(r, v))+ ai (k, r, v, t, x), (4.2)
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where

ai (k, r, v, t, x) =
d∑

j=1

t∫

r

1∫

0

Gt−θ (x, η)D(k)
r,v (σi j (u(θ, η)))W j (dθ, dη)

+
t∫

r

1∫

0

Gt−θ (x, η)D(k)
r,v (bi (u(θ, η))) dθdη, (4.3)

and D(k)
r,v (ui (t, x)) = 0 when r > t .

The next result proves property (a) in Proposition 3.4 when F is replaced by u(t, x).

Proposition 4.2 Assume P1 and P2. Let I and J be two compact intervals as in
Theorem 1.1. Then, for any p ≥ 1,

E
[
(det γu(t,x))

−p]

is uniformly bounded over (t, x) ∈ I × J .

Proof This proof follows Nualart [12, Proof of (3.22)], where it is shown that for fixed
(t, x), E[(detγu(t,x))

−p] < +∞. Our emphasis here is on the uniform bound over
(t, x) ∈ I × J . Assume that I = [t1, t2] and J = [x1, x2], where 0 < t1 < t2 ≤ T ,
0 < x1 < x2 < 1. Let (t, x) ∈ I × J be fixed. We write

det γu(t,x) ≥
(

infξ∈Rd :‖ξ‖=1 ξ
T γu(t,x)ξ

)d
.

Let ξ = (ξ1, . . . , ξd) ∈ R
d with ‖ξ‖ = 1 and fix ε ∈ (0, 1). Note the inequality

(a + b)2 ≥ 2

3
a2 − 2b2, (4.4)

valid for all a, b ∈ R. Using (4.2) and the fact that γu(t,x) is a matrix whose entries
are inner-products, this implies that

ξ T γu(t,x)ξ =
t∫

0

dr

1∫

0

dv

∥∥∥∥∥

d∑

i=1

Dr,v(ui (t, x))ξi

∥∥∥∥∥

2

≥
t∫

t (1−ε)
dr

1∫

0

dv

∥∥∥∥∥

d∑

i=1

Dr,v(ui (t, x))ξi

∥∥∥∥∥

2

≥ I1 − I2,
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where

I1 =2

3

t∫

t (1−ε)
dr

1∫

0

dv
d∑

k=1

(
d∑

i=1

Gt−r (x, v)σik(u(r, v))ξi

)2

,

I2 =2

t∫

t (1−ε)
dr

1∫

0

dv
d∑

k=1

(
d∑

i=1

ai (k, r, v, t, x)ξi

)2

,

and ai (k, r, v, t, x) is defined in (4.3). In accord with hypothesis P2 and thanks to
Lemma 7.2,

I1 ≥ c(tε)1/2, (4.5)

where c is uniform over (t, x) ∈ I × J .
Next we apply the Cauchy–Schwarz inequality to find that, for any q ≥ 1,

E
[
supξ∈Rd :‖ξ‖=1|I2|q

] ≤ c(E[|A1|q ] + E[|A2|q ]),

where

A1 =
d∑

i, j,k=1

t∫

t (1−ε)
dr

1∫

0

dv

⎛

⎝
t∫

r

1∫

0

Gt−θ (x, η)D(k)
r,v (σi j (u(θ, η)))W j (dθ, dη)

⎞

⎠
2

,

A2 =
d∑

i,k=1

t∫

t (1−ε)
dr

1∫

0

dv

⎛

⎝
t∫

r

1∫

0

Gt−θ (x, η)D(k)
r,v (bi (u(θ, η))) dθdη

⎞

⎠
2

.

We bound the q-th moment of A1 and A2 separately. As regards A1, we use
Burkholder’s inequality for martingales with values in a Hilbert space (Lemma 7.6)
to obtain

E[|A1|q ] ≤ c
d∑

k,i=1

E

⎡

⎢⎣

∣∣∣∣∣∣∣

t∫

t (1−ε)
dθ

1∫

0

dη

t∫

t (1−ε)
dr

1∫

0

dv �2

∣∣∣∣∣∣∣

q⎤

⎥⎦ , (4.6)

where

� := 1{θ>r}Gt−θ (x, η)
∣∣∣D(k)

r,v (σi j (u(θ, η)))
∣∣∣

≤ c1{θ>r}Gt−θ (x, η)
∣∣∣∣∣

d∑

l=1

D(k)
r,v (ul(θ, η))

∣∣∣∣∣ ,

thanks to hypothesis P1. Hence,
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E[|A1|q ] ≤ c
d∑

k=1

E

⎡

⎢⎣

∣∣∣∣∣∣∣

t∫

t (1−ε)
dθ

1∫

0

dηG2
t−θ (x, η)

t∧θ∫

t (1−ε)
dr

1∫

0

dv �2

∣∣∣∣∣∣∣

q⎤

⎥⎦ ,

where � := ∑d
l=1 D(k)

r,v (ul(θ, η)). We now apply Hölder’s inequality with respect to
the measure G2

t−θ (x, η)dθdη to find that

E[|A1|q ] ≤ C

∣∣∣∣∣∣∣

t∫

t (1−ε)
dθ

1∫

0

dηG2
t−θ (x, η)

∣∣∣∣∣∣∣

q−1

×
t∫

t (1−ε)
dθ

1∫

0

dηG2
t−θ (x, η)

d∑

k=1

E

⎡

⎢⎣

∣∣∣∣∣∣∣

t∫

t (1−ε)
dr

1∫

0

dv �2

∣∣∣∣∣∣∣

q⎤

⎥⎦ .

Lemmas 7.3 and 7.5 assure that

E[|A1|q ] ≤ CT (tε)
q−1

2 (tε)q/2
t∫

t (1−ε)

1∫

0

G2
t−θ (x, η) dθdη ≤ CT (tε)

q ,

where CT is uniform over (t, x) ∈ I × J .
We next derive a similar bound for A2. By the Cauchy–Schwarz inequality,

E
[|A2|q

] ≤ c(tε)q
d∑

i,k=1

E

⎡

⎢⎣

∣∣∣∣∣∣∣

t∫

t (1−ε)
dr

1∫

0

dv

t∫

r

dθ

1∫

0

dη�2

∣∣∣∣∣∣∣

q⎤

⎥⎦ ,

where� := Gt−θ (x, η)|D(k)
r,v (bi (u(θ, η))) |. From here on, the q-th moment of A2 is

estimated as that of A1 was; cf. (4.6), and this yields E[|A2|q ] ≤ CT (tε)2q .
Thus, we have proved that

E
[
supξ∈Rd :‖ξ‖=1|I2|q

] ≤ CT (tε)
q , (4.7)

where the constant CT is clearly uniform over (t, x) ∈ I × J .
Finally, we apply Proposition 3.5 with Z := inf‖ξ‖=1(ξ

T γu(t,x)ξ ), Y1,ε = Y2,ε =
sup‖ξ‖=1 I2, ε0 = 1, α1 = α2 = 1/2 and β1 = β2 = 1, to get

E
[
(detγu(t,x))

−p] ≤ CT ,

where all the constants are clearly uniform over (t, x) ∈ I × J . This is the desired
result. ��

The two previous propositions have the following corollary.
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Corollary 4.3 Assume P1 and P2. Fix T > 0 and let I and J be a compact intervals
as in Theorem 1.1. Then, for any (t, x) ∈ (0, T ] × (0, 1), u(t, x) is a nondegene-
rate random vector and its density function is infinitely differentiable and uniformly
bounded over z ∈ R

d and (t, x) ∈ I × J .

Proof The conclusions are a consequence of Propositions 4.1 and 4.2 together with
Theorem 3.1 and Proposition 3.4. ��
Proof of Theorem 1.1(a) This is an immediate consequence of Corollary 4.3. ��

5 The Gaussian-type lower bound on the one-point density

The aim of this section is to prove the lower bound of Gaussian-type for the density
of u stated in Theorem 1.1(b). The proof of this result was given in Kohatsu-Higa [7,
Theorem 10] for dimension 1, therefore we will only sketch the main steps.

Proof of Theorem 1.1(b) We follow [7] and we show that for each (t, x), F = u(t, x)
is a d-dimensional uniformly elliptic random vector and then we apply [7, Theorem 5].
Let

Fi
n =

tn∫

0

1∫

0

Gt−r (x, v)
d∑

j=1

σi j (u(r, v))W
j (dr, dv)

+
tn∫

0

1∫

0

Gt−r (x, v) bi (u(r, v)) drdv,

1 ≤ i ≤ d, where 0 = t0 < t1 < · · · < tN = t is a sufficiently fine partition of
[0, t]. Note that Fn ∈ Ftn . Set g(s, y) = Gt−s(x, y). We shall need the following two
lemmas.

Lemma 5.1 [7, Lemma 7] Assume P1 and P2. Then:

(i) ‖Fi
n‖k,p ≤ ck,p, 1 ≤ i ≤ d;

(ii) ‖((γFn (tn−1))i j )
−1‖p,tn−1 ≤ cp(�n−1(g))−1 = cp(‖g‖2

L2([tn−1,tn ]×[0,1]))
−1,

where γFn (tn−1) denotes the conditional Malliavin matrix of Fn given Ftn−1 and
‖ · ‖p,tn−1 denotes the conditional L p-norm.

We define

un−1
i (s1, y1) =

tn−1∫

0

1∫

0

Gs1−s2(y1, y2)

d∑

j=1

σi j (u(s2, y2))W
j (ds2, dy2)

+
tn−1∫

0

1∫

0

Gs1−s2(y1, y2) bi (u(s2, y2)) ds2dy2, 1 ≤ i ≤ d.

Note that un−1 ∈ Ftn−1 . As in [7], the following holds.
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Lemma 5.2 [7, Lemma 8] Under hypothesis P1, for s ∈ [tn−1, tn],

‖ui (s, y)− un−1
i (s, y)‖n,p,tn−1 ≤ (s − tn−1)

1/8, 1 ≤ i ≤ d,

where ‖ · ‖n,p,tn−1 denotes the conditional Malliavin norm given Ftn−1 .

The rest of the proof of Theorem 1.1(b) follows along the same lines as in [7]
for d = 1. We only sketch the remaining main points where the fact that d > 1 is
important. In order to obtain the expansion of Fi

n − Fi
n−1 as in [7, Lemma 9], we

proceed as follows. By the mean value theorem,

Fi
n − Fi

n−1 =
tn∫

tn−1

1∫

0

Gt−r (x, v)
d∑

j=1

σi j (u
n−1(r, v))W j (dr, dv)

+
tn∫

tn−1

1∫

0

Gt−r (x, v) bi (u(r, v)) drdv

+
tn∫

tn−1

1∫

0

Gt−r (x, v)
d∑

j,l=1

⎛

⎝
1∫

0

∂lσi j (u(r, v, λ))dλ

⎞

⎠

× (ul(r, v)− un−1
l (r, v))W j (dr, dv),

where u(r, v, λ) = (1 − λ)u(r, v) + λun−1(r, v). Using the terminology of [7], the
first term is a process of order 1 and the next two terms are residues of order 1 (as
in [7]). In the next step, we write the residues of order 1 as the sum of processes of
order 2 and residues of order 2 and 3 as follows:

tn∫

tn−1

1∫

0

Gt−r (x, v) bi (u(r, v)) drdv

=
tn∫

tn−1

1∫

0

Gt−r (x, v) bi (u
n−1(r, v)) drdv

+
tn∫

tn−1

1∫

0

Gt−r (x, v)
d∑

l=1

⎛

⎝
1∫

0

∂lbi (u(r, v, λ))dλ

⎞

⎠ (ul(r, v)− un−1
l (r, v)) drdv
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and

tn∫

tn−1

1∫

0

Gt−r (x, v)
d∑

j,l=1

⎛

⎝
1∫

0

∂lσi j (u(r, v, λ))dλ

⎞

⎠ (ul(r, v)− un−1
l (r, v))W j (dr, dv)

=
tn∫

tn−1

1∫

0

Gt−r (x, v)
d∑

j,l=1

∂lσi j (u
n−1(r, v))(ul(r, v)− un−1

l (r, v))W j (dr, dv)

+
tn∫

tn−1

1∫

0

Gt−r (x, v)
d∑

j,l,l ′=1

⎛

⎝
1∫

0

∂l∂l ′σi j (u(r, v, λ))dλ

⎞

⎠

× (ul(r, v)− un−1
l (r, v))(ul ′(r, v)− un−1

l ′ (r, v))W j (dr, dv).

It is then clear that the remainder of the proof of [7, Lemma 9] follows for d > 1 along
the same lines as in [7], working coordinate by coordinate.

Finally, in order to complete the proof of the proposition, it suffices to verify the
hypotheses of [7, Theorem 5]. Again the proof follows as in the proof of [7, Theorem
10], working coordinate by coordinate. We will only sketch the proof of his (H2c),
where hypothesis P2 is used:

(�n−1(g))
−1

tn∫

tn−1

1∫

0

(Gt−r (x, v))
2‖σ(un−1(r, v))ξ‖2 drdv

≥ ρ2(�n−1(g))
−1

tn∫

tn−1

1∫

0

(Gt−r (x, v))
2 drdv = ρ2 > 0,

by the definition of g. This concludes the proof of Theorem 1.1 (b). ��

6 The Gaussian-type upper bound on the two-point density

Let ps,y; t,x (z1, z2) denote the joint density of the 2d-dimensional random vector

(u1(s, y), . . . , ud(s, y), u1(t, x), . . . , ud(t, x)),

for s, t ∈ (0, T ], x, y ∈ (0, 1), (s, y) 	= (t, x) and z1, z2 ∈ R
d (the existence of this

joint density will be a consequence of Theorem 3.1, Proposition 4.1 and Theorem 6.3).
The next subsections lead to the proofs of Theorem 1.1(c) and (d).
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6.1 Bounds on the increments of the Malliavin derivatives

In this subsection, we prove an upper bound for the Sobolev norm of the derivative
of the increments of our process u. For this, we will need the following preliminary
estimate.

Lemma 6.1 For any s, t ∈ [0, T ], s ≤ t , and x, y ∈ [0, 1],

T∫

0

1∫

0

(g(r, v))2 drdv ≤ CT (|t − s|1/2 + |x − y|),

where

g(r, v) := gt,x,s,y(r, v) = 1{r≤t}Gt−r (x, v)− 1{r≤s}Gs−r (y, v).

Proof Using Bally et al. [1, Lemma B.1] with α = 2, we see that

T∫

0

1∫

0

(g(r, v))2 drdv

≤
t∫

s

1∫

0

(Gt−r (x, v))
2 drdv + 2

s∫

0

1∫

0

(Gt−r (x, v)− Gs−r (x, v))
2 drdv

+ 2

s∫

0

1∫

0

(Gs−r (x, v)− Gs−r (y, v))
2 drdv

≤ CT (|t − s|1/2 + |x − y|). ��

Proposition 6.2 Assuming P1, for any s, t ∈ [0, T ], s ≤ t , x, y ∈ [0, 1], p > 1,
m ≥ 1,

E
[∥∥Dm(ui (t, x)− ui (s, y))

∥∥p
H ⊗m

] ≤ CT

(
|t − s|1/2 + |x − y|

)p/2
, i = 1, . . . , d.

Proof Let m = 1. Consider the function g(r, v) defined in Lemma 6.1. Using the
integral Eq. (4.2) satisfied by the first-order Malliavin derivative, we find that

E
[‖D(ui (t, x)− ui (s, y))‖p

H

] ≤ C
(

E[|I1|p/2] + E[|I2|p/2] + E[|I3|p/2]
)
,
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where

I1 =
d∑

k=1

T∫

0

dr

1∫

0

dv (g(r, v)σik(u(r, v)))
2,

I2 =
d∑

j,k=1

T∫

0

dr

1∫

0

dv

⎛

⎝
T∫

0

1∫

0

g(θ, η)D(k)
r,v (σi j (u(θ, η)))W

j (dθ, dη)

⎞

⎠
2

,

I3 =
d∑

k=1

T∫

0

dr

1∫

0

dv

⎛

⎝
T∫

0

1∫

0

g(θ, η)D(k)
r,v (bi (u(θ, η)))dθdη

⎞

⎠
2

.

We bound the p/2-moments of I1, I2 and I3 separately.
By hypothesis P1 and Lemma 6.1, E[|I1|p/2] ≤ CT (|t − s|1/2 + |x − y|)p/2.

Using Burkholder’s inequality for Hilbert-space-valued martingales (Lemma 7.6) and
hypothesis P1, we obtain

E[|I2|p/2] ≤ C
d∑

k=1

E

⎡

⎢⎣

∣∣∣∣∣∣

T∫

0

dθ

1∫

0

dη (g(θ, η))2
T∫

0

dr

1∫

0

dv �2

∣∣∣∣∣∣

p/2⎤

⎥⎦ ,

where � := ∑d
l=1 D(k)

r,v (ul(θ, η)). From Hölder’s inequality with respect to the mea-
sure (g(θ, η))2dθdη, we see that this is bounded above by

C

⎛

⎝
T∫

0

1∫

0

(g(θ, η))2dθdη

⎞

⎠

p
2 −1

× sup(θ,η)∈[0,T ]×[0,1]
d∑

k=1

E

⎡

⎢⎣

∣∣∣∣∣∣

T∫

0

dθ

1∫

0

dη(g(θ, η))2
T∫

0

dr

1∫

0

dv �2

∣∣∣∣∣∣

p/2⎤

⎥⎦

≤ CT (|t − s|1/2 + |x − y|)p/2,

thanks to (4.1) and Lemma 6.1.
We next derive a similar bound for I3. By the Cauchy–Schwarz inequality,

E[|I3|p/2] ≤ CT

d∑

k=1

E

⎡

⎢⎣

∣∣∣∣∣∣

T∫

0

dθ

1∫

0

dη (g(θ, η))2
T∫

0

dr

1∫

0

dv �2

∣∣∣∣∣∣

p/2⎤

⎥⎦ .

From here on, the p/2-moment of I3 is estimated as was that of I2, and this yields
E[|I3|p/2] ≤ CT (|t − s|1/2 + |x − y|)p/2. This proves the desired result for m = 1.
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The case m > 1 follows using the stochastic differential equation satisfied by the ite-
rated Malliavin derivatives (Proposition 4.1), Hölder’s and Burkholder’s inequalities,
hypothesis P1, (4.1) and Lemma 6.1 in the same way as we did for m = 1, to obtain
the desired bound. ��

6.2 Study of the Malliavin matrix

For s, t ∈ [0, T ], s ≤ t , and x, y ∈ [0, 1] consider the 2d-dimensional random vector

Z := (u1(s, y), . . . , ud(s, y), u1(t, x)− u1(s, y), . . . , ud(t, x)− ud(s, y)). (6.1)

Let γZ the Malliavin matrix of Z . Note that γZ = ((γZ )m,l)m,l=1,...,2d is a symmetric
2d × 2d random matrix with four d × d blocs, of the form

γZ =

⎛

⎜⎜⎜⎝

γ
(1)
Z

... γ
(2)
Z

· · · ... · · ·
γ
(3)
Z

... γ
(4)
Z

⎞

⎟⎟⎟⎠ ,

where

γ
(1)
Z = (〈D(ui (s, y)), D(u j (s, y))〉H )i, j=1,...,d ,

γ
(2)
Z = (〈D(ui (s, y)), D(u j (t, x)− u j (s, y))〉H )i, j=1,...,d ,

γ
(3)
Z = (〈D(ui (t, x)− ui (s, y)), D(u j (s, y))〉H )i, j=1,...,d ,

γ
(4)
Z = (〈D(ui (t, x)− ui (s, y)), D(u j (t, x)− u j (s, y))〉H )i, j=1,...,d .

We let (1) denote the set of indices {1, . . . , d}×{1, . . . , d}, (2) the set {1, . . . , d}×{d+
1, . . . , 2d}, (3) the set {d + 1, . . . , 2d} × {1, . . . , d} and (4) the set {d + 1, . . . , 2d} ×
{d + 1, . . . , 2d}.

The following theorem gives an estimate on the Sobolev norm of the entries of the
inverse of the matrix γZ , which depends on the position of the entry in the matrix.

Theorem 6.3 Fix η, T > 0. Assume P1 and P2. Let I and J be two compact intervals
as in Theorem 1.1.

(a) For any (s, y) ∈ I × J , (t, x) ∈ I × J , s ≤ t , (s, y) 	= (t, x), k ≥ 0, p > 1,

‖(γ−1
Z )m,l‖k,p

≤

⎧
⎪⎨

⎪⎩

ck,p,η,T (|t − s|1/2 + |x − y|)−dη if (m, l) ∈ (1),
ck,p,η,T (|t − s|1/2 + |x − y|)−1/2−dη if (m, l) ∈ (2) or (3),
ck,p,η,T (|t − s|1/2 + |x − y|)−1−dη if (m, l) ∈ (4).
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(b) For any s = t ∈ (0, T ], (t, y) ∈ I × J , (t, x) ∈ I × J , x 	= y, k ≥ 0, p > 1,

‖(γ−1
Z )m,l‖k,p ≤

⎧
⎪⎨

⎪⎩

ck,p,T if (m, l) ∈ (1) ,
ck,p,T |x − y|−1/2 if (m, l) ∈ (2) or (3),
ck,p,T |x − y|−1 if (m, l) ∈ (4).

(Note the slight improvements in the exponents in case (b) where s = t .)

The proof of this theorem is deferred to Sect. 6.4. We assume it for the moment and
complete the proof of Theorem 1.1(c) and (d).

6.3 Proof of Theorem 1.1(c) and (d)

Fix two compact intervals I and J as in Theorem 1.1. Let (s, y), (t, x) ∈ I × J , s ≤ t ,
(s, y) 	= (t, x), and z1, z2 ∈ R

d . Let Z be as in (6.1) and let pZ be the density of Z .
Then

ps,y; t,x (z1, z2) = pZ (z1, z1 − z2).

Apply Corollary 3.3 with σ = {i ∈ {1, . . . , d} : zi
1 − zi

2 ≥ 0} and Hölder’s inequality
to see that

pZ (z1, z1 − z2) ≤
d∏

i=1

(
P
{
|ui (t, x)− ui (s, y)| > |zi

1 − zi
2|
}) 1

2d

×‖H(1,...,2d)(Z , 1)‖0,2.

Therefore, in order to prove the desired results (c) and (d) of Theorem 1.1, it suffices
to prove that:

d∏

i=1

(
P
{
|ui (t, x)− ui (s, y)| > |zi

1 − zi
2|
}) 1

2d

≤ c exp

(
− ‖z1 − z2‖2

cT (|t − s|1/2 + |x − y|)
)
, (6.2)

‖H(1,...,2d)(Z , 1)‖0,2 ≤ cT (|t − s|1/2 + |x − y|)−(d+η)/2, (6.3)

and if s = t , then
‖H(1,...,2d)(Z , 1)‖0,2 ≤ cT |x − y|−d/2. (6.4)
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Proof of (6.2) Let ũ denote the solution of (2.2) for b ≡ 0. Consider the continuous
one-parameter martingale (Mu = (M1

u , . . . ,Md
u ), 0 ≤ u ≤ t) defined by

Mi
u =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∫ u
0

∫ 1
0 (Gt−r (x, v)−Gs−r (y, v))

∑d
j=1 σi j (ũ(r, v))W j (dr, dv) if 0≤u≤s,

∫ s
0

∫ 1
0 (Gt−r (x, v)−Gs−r (y, v))

∑d
j=1 σi j (ũ(r, v))W j (dr, dv)

+∫ u
s

∫ 1
0 Gt−r (x, v)

∑d
j=1 σi j (ũ(r, v))W j (dr, dv) if s≤u≤t,

for all i = 1, . . . , d, with respect to the filtration (Fu , 0 ≤ u ≤ t). Notice that

M0 = 0, Mt = ũ(t, x)− ũ(s, y).

Moreover, by hypothesis P1 and Lemma 6.1,

〈Mi 〉t =
s∫

0

1∫

0

(Gt−r (x, v)− Gs−r (y, v))
2

d∑

j=1

(σi j (ũ(r, v)))
2 drdv

+
t∫

s

1∫

0

(Gt−r (x, v))
2

d∑

j=1

(σi j (ũ(r, v)))
2 drdv

≤ C

T∫

0

1∫

0

(g(r, v))2 drdv

≤ CT (|t − s|1/2 + |x − y|).

By the exponential martingale inequality Nualart [11, A.5],

P
{
|ũi (t, x)− ũi (s, y)| > |zi

1 − zi
2|
}

≤ 2 exp

(
− |zi

1 − zi
2|2

CT (|t − s|1/2 + |x − y|)

)
.

(6.5)
We will now treat the case b 	≡ 0 using Girsanov’s theorem. Consider the random

variable

Lt = exp

⎛

⎝−
t∫

0

1∫

0

σ−1(u(r, v)) b(u(r, v)) · W (dr, dv)

−1

2

t∫

0

1∫

0

‖σ−1(u(r, v)) b(u(r, v))‖2 drdv

⎞

⎠ .

The following Girsanov’s theorem holds.
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Theorem 6.4 [10, Prop.1.6] E[Lt ] = 1, and if P̃ denotes the probability measure on
(	,F ) defined by

dP̃

dP
(ω) = Lt (ω),

then W̃ (t, x) = W (t, x)+∫ t
0

∫ x
0 σ

−1(u(r, v)) b(u(r, v)) drdv is a standard Brownian
sheet under P̃.

Consequently, the law of u under P̃ coincides with the law of ũ under P. Consider
now the random variable

Jt = exp

⎛

⎝−
t∫

0

1∫

0

σ−1(ũ(r, v)) b(ũ(r, v)) · W (dr, dv)

+1

2

t∫

0

1∫

0

‖σ−1(ũ(r, v)) b(ũ(r, v))‖2 drdv

⎞

⎠ .

Then, by Theorem 6.4, the Cauchy–Schwarz inequality and (6.5),

P
{
|ui (t, x)− ui (s, y)| > |zi

1 − zi
2|
}

= EP̃

[
1{|ui (t,x)−ui (s,y)|>|zi

1−zi
2|}L−1

t

]

= EP

[
1{|ũi (t,x)−ũi (s,y)|>|zi

1−zi
2|} J−1

t

]

≤
(

P
{
|ũi (t, x)− ũi (s, y)| > |zi

1 − zi
2|
})1/2 (

EP[J−2
t ]

)1/2

≤ 2 exp

(
− |zi

1 − zi
2|2

CT (|t − s|1/2 + |x − y|)

)(
EP[J−2

t ]
)1/2

.

Now, hypothesis P1 and P2 give

EP[J−2
t ] ≤ EP

⎡

⎣exp

⎛

⎝
t∫

0

1∫

0

2 σ−1(ũ(r, v)) b(ũ(r, v)) · W (dr, dv)

−1

2

t∫

0

1∫

0

4 ‖σ−1(ũ(r, v)) b(ũ(r, v))‖2 drdv

⎞

⎠

×exp

⎛

⎝
t∫

0

1∫

0

‖σ−1(ũ(r, v)) b(ũ(r, v))‖2 drdv

⎞

⎠

⎤

⎦

≤ C,

since the second exponential is bounded and the first is an exponential martingale.
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Therefore, we have proved that

P
{
|ui (t, x)− ui (s, y)| > |zi

1 − zi
2|
}

≤ C exp

(
− |zi

1 − zi
2|2

CT (|t − s|1/2 + |x − y|)

)
,

from which we conclude that

d∏

i=1

(
P
{
|ui (t, x)−ui (s, y)| > |zi

1−zi
2|
}) 1

2d ≤C exp

(
− ‖z1 − z2‖2

CT (|t − s|1/2 + |x − y|)
)
.

This proves (6.2). ��
Proof of (6.3) As in (3.1), using the continuity of the Skorohod integral δ and Hölder’s
inequality for Malliavin norms, we obtain

‖H(1,...,2d)(Z , 1)‖0,2 ≤ C‖H(1,...,2d−1)(Z , 1)‖1,4

⎛

⎝
d∑

j=1

‖(γ−1
Z )2d, j‖1,8 ‖D(Z j )‖1,8

+
2d∑

j=d+1

‖(γ−1
Z )2d, j‖1,8 ‖D(Z j )‖1,8

⎞

⎠ .

Notice that the entries of γ−1
Z that appear in this expression belong to sets (3) and (4)

of indices, as defined before Theorem 6.3. From Theorem 6.3(a) and Propositions 4.1
and 6.2, we find that this is bounded above by

CT ‖H(1,...,2d−1)(Z , 1)‖1,4

⎛

⎝
d∑

j=1

(|t − s|1/2 + |x − y|)− 1
2 −dη

+
2d∑

j=d+1

(|t − s|1/2 + |x − y|)−1−dη+ 1
2

⎞

⎠ ,

that is, by

CT ‖H(1,...,2d−1)(Z , 1)‖1,4(|t − s|1/2 + |x − y|)−1/2−dη.

Iterating this procedure d times (during which we only encounter coefficients (γ−1
Z )m,l

for (m, l) in blocs (3) and (4), cf. Theorem 6.3(a)), we get, for some integers m0,

k0 > 0,

‖H(1,...,2d)(Z , 1)‖0,2 ≤ CT ‖H(1,...,d)(Z , 1)‖m0,k0(|t − s|1/2 + |x − y|)−d/2−d2η.

Again, using the continuity of δ and Hölder’s inequality for the Malliavin norms, we
obtain
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‖H(1,...,d)(Z , 1)‖m,k ≤ C‖H(1,...,d−1)(Z , 1)‖m1,k1

×
⎛

⎝
d∑

j=1

‖(γ−1
Z )d, j‖m2,k2 ‖D(Z j )‖m3,k3

+
2d∑

j=d+1

‖(γ−1
Z )d, j‖m4,k4 ‖D(Z j )‖m5,k5

⎞

⎠ ,

for some integers mi , ki > 0, i = 1, . . . , 5. This time, the entries of γ−1
Z that appear

in this expression come from the sets (1) and (2) of indices. We appeal again to
Theorem 6.3(a) and Propositions 4.1 and 6.2 to get

‖H(1,...,d)(Z , 1)‖m,k ≤ CT ‖H(1,...,d−1)(Z , 1)‖m1,k1(|t − s|1/2 + |x − y|)−dη.

Finally, iterating this procedure d times (during which we encounter coefficients
(γ−1

Z )m,l for (m, l) in blocs (1) and (2) only, cf. Theorem 6.3(a)), and choosing
η′ = 4d2η, we conclude that

‖H(1,...,2d)(Z , 1)‖0,2 ≤ CT (|t − s|1/2 + |x − y|)−(d+η′)/2,

which proves (6.3) and concludes the proof of Theorem 1.1(c). ��

Proof of (6.4) In order to prove (6.4), we proceed exactly along the same lines as in the
proof of (6.3) but we appeal to Theorem 6.3(b). This concludes the proof of Theorem
1.1(d). ��

6.4 Proof of Theorem 6.3

Let Z be as in (6.1). Since the inverse of the matrix γZ is the inverse of its determinant
multiplied by its cofactor matrix, we examine these two factors separately.

Proposition 6.5 Fix T > 0 and let I and J be compact intervals as in Theorem 1.1.
Assuming P1, for any (s, y), (t, x) ∈ I × J , (s, y) 	= (t, x), p > 1,

E[|(AZ )m,l |p]1/p ≤

⎧
⎪⎨

⎪⎩

cp,T (|t − s|1/2 + |x − y|)d if (m, l) ∈ (1),
cp,T (|t − s|1/2 + |x − y|)d− 1

2 if (m, l) ∈ (2) or (3),
cp,T (|t − s|1/2 + |x − y|)d−1 if (m, l) ∈ (4),

where AZ denotes the cofactor matrix of γZ .

Proof We consider the four different cases.
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• If (m, l) ∈ (1), we claim that

|(AZ )m,l | ≤ C
d−1∑

k=0

{
‖D(u(s, y))‖2k

H × ‖D(u(t, x)− u(s, y))‖2(d−1−k)
H

×‖D(u(s, y))‖2(d−1−k)
H × ‖D(u(t, x)− u(s, y))‖2(k+1)

H

}
. (6.6)

Indeed, let Am,l
Z = (am,l

m̄,l̄
)m̄,l̄=1,...,2d−1 be the (2d − 1)× (2d − 1)-matrix obtained by

removing from γZ its row m and column l. Then

(AZ )m,l = det (Am,l
Z ) =

∑

π permutation of (1,...,2d−1)

sign(π) am,l
1,π(1) · · · am,l

2d−1,π(2d−1),

where sign(π) ∈ {−1, 1} denotes the signature of the permutation π . Each term of this
sum contains one entry from each row and column of Am,l

Z . If there are k entries taken

from bloc (1) of γZ , these occupy k rows and columns of Am,l
Z . Therefore, d − 1 − k

entries must come from the d − 1 remaining rows of bloc (2), and the same number
from the columns of bloc (3). Finally, there remain k +1 entries to be taken from bloc
(4). Therefore,

|(AZ )m,l | ≤ C
d−1∑

k=0

∑
{(product of k entries from (1))

×(product of d − 1 − k entries from (2))

×(product of d − 1 − k entries from (3))× (product of k + 1 entries from (4))} .

Adding all the terms and using the particular form of these terms establishes (6.6).
Regrouping the various factors in (6.6), applying the Cauchy–Schwarz inequality

and using (4.1) and Proposition 6.2, we obtain

E
[|(AZ )m,l |p] ≤ C

d∑

k=0

E
[
‖D(u(s, y))‖2(d−1)p

H × ‖D(u(t, x)− u(s, y))‖2dp
H

]

≤ CT (|t − s|1/2 + |x − y|)dp.
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• If (m, l) ∈ (2) or (m, l) ∈ (3), then using the same arguments as above, we obtain

|(AZ )m,l |

≤ C
d−1∑

k=0

∑{
‖D(u(s, y))‖2(d−1−k)

H ×‖D(u(s, y))‖k
H ×‖D(u(t, x)− u(s, y))‖k

H

×‖D(u(s, y))‖k+1
H × ‖D(u(t, x)− u(s, y))‖k+1

H

×‖D(u(t, x)− u(s, y))‖2(d−1−k)
H

}

≤ C
d−1∑

k=0

{
‖D(u(s, y))‖2d−1

H × ‖D(u(t, x)− u(s, y))‖2d−1
H

}
,

from which we conclude, using (4.1) and Proposition 6.2, that

E
[|(AZ )m,l |p] ≤ CT (|t − s|1/2 + |x − y|)(d− 1

2 )p.

• If (i, j) ∈ (4), we obtain

|(AZ )m,l | ≤ C
d−1∑

k=0

∑{
‖D(u(s, y))‖2(k+1)

H × ‖D(u(s, y))‖2(d−1−k)
H

×‖D(u(t, x)− D(u(s, y)))‖2(d−1−k)
H × ‖D(u(t, x)− D(u(s, y)))‖2k

H

}

≤ C
d−1∑

k=0

{
‖D(u(s, y))‖2d

H × ‖D(u(t, x)− u(s, y))‖2d−2
H

}
,

from which we conclude that

E
[|(AZ )m,l |p] ≤ CT (|t − s|1/2 + |x − y|)(d−1)p.

This concludes the proof of the proposition. ��
Proposition 6.6 Fix η, T > 0. Assume P1 and P2. Let I and J be compact intervals
as in Theorem 1.1.

(a) There exists C depending on T and η such that for any (s, y), (t, x) ∈ I × J ,
(s, y) 	= (t, x), p > 1,

E
[
(det γZ )

−p]1/p ≤ C(|t − s|1/2 + |x − y|)−d(1+η). (6.7)

(b) There exists C only depending on T such that for any s = t ∈ I , x, y ∈ J ,
x 	= y, p > 1,

E
[
(det γZ )

−p]1/p ≤ C(|x − y|)−d .
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Assuming this proposition, we will be able to conclude the proof of Theorem 6.3,
after establishing the following estimate on the derivative of the Malliavin matrix.

Proposition 6.7 Fix T > 0. Let I and J be compact intervals as in Theorem 1.1.
Assuming P1, for any (s, y), (t, x) ∈ I × J , (s, y) 	= (t, x), p > 1 and k ≥ 1,

E
[
‖Dk(γZ )m,l‖p

H ⊗k

]1/p

≤

⎧
⎪⎨

⎪⎩

ck,p,T if (m, l) ∈ (1),
ck,p,T (|t − s|1/2 + |x − y|)1/2 if (m, l) ∈ (2) or (3),
ck,p,T (|t − s|1/2 + |x − y|) if (m, l) ∈ (4).

Proof We consider the four different blocs.

• If (m, l) ∈ (4), proceeding as in Dalang and Nualart [3, p.2131] and appealing to
Proposition 6.2 twice, we obtain

E
[∥∥∥Dk(γZ )m,l

∥∥∥
p

H ⊗k

]

= E

⎡

⎣

∥∥∥∥∥∥
Dk

⎛

⎝
T∫

0

dr

1∫

0

dv Dr,v(um(t, x)− um(s, y)) · Dr,v(ul(t, x)

− ul(s, y))

⎞

⎠

∥∥∥∥∥∥

p

H ⊗k

⎤

⎦

≤ (k + 1)p−1
k∑

j=0

(
k
j

)p

E

⎡

⎣

∥∥∥∥∥∥

T∫

0

dr

1∫

0

dv D j Dr,v(um(t, x)− um(s, y))

· Dk− j Dr,v(ul(t, x)− ul(s, y))

∥∥∥∥∥∥

p

H ⊗k

⎤

⎦

≤ C̃T (k+1)p−1
k∑

j=0

(
k
j

)p
{(

E

[∥∥∥D j D(um(t, x)−um(s, y))
∥∥∥

2p

H ⊗( j+1)

])1/2

×
(

E

[∥∥∥Dk− j D(ul(t, x)− ul(s, y))
∥∥∥

2p

H ⊗(k− j+1)

])1/2
}

≤ CT (|t − s|1/2 + |x − y|)p.

• If (m, l) ∈ (2) or (m, l) ∈ (3), proceeding as above and appealing to (4.1) and
Proposition 6.2, we get
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E
[∥∥∥Dk(γZ )m,l

∥∥∥
p

H ⊗k

]

≤ C̃T (k + 1)p−1
k∑

j=0

(
k
j

)p
{(

E

[∥∥∥D j D(um(t, x)− um(s, y))
∥∥∥

2p

H ⊗( j+1)

])1/2

×
(

E

[∥∥∥Dk− j D(ul(s, y))
∥∥∥

2p

H ⊗(k− j+1)

])1/2
}

≤ CT (|t − s|1/2 + |x − y|)p/2.

• If (m, l) ∈ (1), using (4.1), we obtain

E
[∥∥∥Dk(γZ )m,l

∥∥∥
p

H ⊗k

]

≤ C̃T (k + 1)p−1
k∑

j=0

(
k
j

)p
{(

E

[∥∥∥D j D(um(s, y))
∥∥∥

2p

H ⊗( j+1)

])1/2

×
(

E

[∥∥∥Dk− j D(ul(s, y))
∥∥∥

2p

H ⊗(k− j+1)

])1/2
}

≤ CT . ��
Proof of Theorem 6.3 When k = 0, the result follows directly using the fact that the
inverse of a matrix is the inverse of its determinant multiplied by its cofactor matrix
and the estimates of Propositions 6.5 and 6.6.

For k ≥ 1, we shall establish the following two properties.

(a) For any (s, y), (t, x) ∈ I × J , (s, y) 	= (t, x), s ≤ t , k ≥ 1 and p > 1,

E[‖Dk(γ−1
Z )m,l‖p

H ⊗k ]1/p

≤

⎧
⎪⎨

⎪⎩

ck,p,η,T (|t − s|1/2 + |x − y|)−dη if (m, l) ∈ (1) ,
ck,p,η,T (|t − s|1/2 + |x − y|)−1/2−dη if (m, l) ∈ (2), (3),
ck,p,η,T (|t − s|1/2 + |x − y|)−1−dη if (m, l) ∈ (4).

(b) For any s = t ∈ I , x, y ∈ J , x 	= y, k ≥ 1 and p > 1,

E[‖Dk(γ−1
Z )m,l‖p

H ⊗k ]1/p ≤

⎧
⎪⎨

⎪⎩

ck,p,T if (m, l) ∈ (1) ,
ck,p,T |x − y|−1/2 if (m, l) ∈ (2) or (3),
ck,p,T |x − y|−1 if (m, l) ∈ (4).

Since

‖(γ−1
Z )m,l‖k,p =

⎧
⎨

⎩E[|(γ−1
Z )m,l |p] +

k∑

j=1

E[‖D j (γ−1
Z )m,l‖p

H ⊗ j ]
⎫
⎬

⎭

1/p

,

(a) and (b) prove the theorem.
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We now prove (a) and (b). When k = 1, we will use (3.3) written as a matrix
product:

D(γ−1
Z ) = γ−1

Z D(γZ )γ
−1
Z . (6.8)

Writing (6.8) in bloc product matrix notation with blocs (1), (2), (3) and (4), we get
that

D((γ−1
Z )(1)) = (γ−1

Z )(1)D(γ (1)Z )(γ−1
Z )(1) + (γ−1

Z )(1)D(γ (2)Z )(γ−1
Z )(3)

+ (γ−1
Z )(2)D(γ (3)Z )(γ−1

Z )(1) + (γ−1
Z )(2)D(γ (4)Z )(γ−1

Z )(3),

D((γ−1
Z )(2)) = (γ−1

Z )(1)D(γ (1)Z )(γ−1
Z )(2) + (γ−1

Z )(1)D(γ (2)Z )(γ−1
Z )(4)

+ (γ−1
Z )(2)D(γ (3)Z )(γ−1

Z )(2) + (γ−1
Z )(2)D(γ (4)Z )(γ−1

Z )(4),

D((γ−1
Z )(3)) = (γ−1

Z )(3)D(γ (1)Z )(γ−1
Z )(1) + (γ−1

Z )(3)D(γ (2)Z )(γ−1
Z )(3)

+ (γ−1
Z )(4)D(γ (3)Z )(γ−1

Z )(1) + (γ−1
Z )(4)D(γ (4)Z )(γ−1

Z )(3),

D((γ−1
Z )(4)) = (γ−1

Z )(3)D(γ (1)Z )(γ−1
Z )(2) + (γ−1

Z )(3)D(γ (2)Z )(γ−1
Z )(4)

+ (γ−1
Z )(4)D(γ (3)Z )(γ−1

Z )(2) + (γ−1
Z )(4)D(γ (4)Z )(γ−1

Z )(4).

It now suffices to apply Hölder’s inequality to each block and use the estimates of the
case k = 0 and Proposition 6.7 to obtain the desired result for k = 1. For instance, for
(m, l) ∈ (1),

E

[∥∥∥∥
(
(γ−1

Z )(2)D(γ (4)Z )(γ−1
Z )(3)

)

m,l

∥∥∥∥
p

H

]1/p

≤ sup
m1,l1

E

[∣∣∣∣
(
(γ−1

Z )(2)
)

m1,l1

∣∣∣∣
2p
]1/(2p)

sup
m2,l2

E

[∥∥∥∥
(

D(γ (4)Z )
)

m2,l2

∥∥∥∥
4p

H

]1/(4p)

× sup
m3,l3

E

[∣∣∣∣
(
(γ−1

Z )(3)
)

m3,l3

∣∣∣∣
4p
]1/(4p)

≤ c (|t − s|1/2 + |x − y|)− 1
2 −dη+1− 1

2 −dη = c (|t − s|1/2 + |x − y|)−2dη.

For k ≥ 1, in order to calculate Dk+1(γ
(·)
Z ), we will need to compute Dk(γ−1

Z D(γZ )

γ−1
Z ). For bloc numbers i1, i2, i3 ∈ {1, 2, 3, 4} and k ≥ 1, we have
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Dk
(
(γ−1

Z )(i1)D(γ (i2)
Z )(γ−1

Z )(i3)
)

=
∑

j1+ j2+ j3=k

ji ∈{0,...,k}

(
k

j1 j2 j3

)
D j1

(
(γ−1

Z )(i1)
)

D j2
(

D(γ (i2)
Z )

)
D j3

(
(γ−1

Z )(i3)
)
.

Note that by Proposition 6.7, the norms of the derivatives D j2
(
D(γ (i2)

Z ) of γ (i2)
Z are of

the same order for all j2. Hence, we appeal again to Hölder’s inequality and Proposi-
tion 6.7, and use a recursive argument in order to obtain the desired bounds. ��

Proof of Proposition 6.6 The main idea for the proof of Proposition 6.6 is to use a
perturbation argument. Indeed, for (t, x) close to (s, y), the matrix γZ is close to

γ̂ =

⎛

⎜⎜⎜⎝

γ
(1)
Z

... 0

· · · ... · · ·
0
... 0

⎞

⎟⎟⎟⎠ .

The matrix γ̂ has d eigenvectors of the form (λ̂1, 0), . . . , (λ̂d , 0), where λ̂1, . . . , λ̂d ∈
R

d are eigenvectors of γ (1)Z = γu(s,y), and 0 = (0, . . . , 0) ∈ R
d , and d other eigenvec-

tors of the form (0, ei ) where e1, . . . , ed is a basis of R
d . These last eigenvectors of γ̂

are associated with the eigenvalue 0, while the former are associated with eigenvalues
of order 1, as can be seen in the proof of Proposition 4.2.

We now write

det γZ =
2d∏

i=1

(ξ i )T γZ ξ
i , (6.9)

where ξ = {ξ1, . . . , ξ2d} is an orthonormal basis of R
2d consisting of eigenvectors

of γZ . We then expect that for (t, x) close to (s, y), there will be d eigenvectors close
to the subspace generated by the (λ̂i , 0), which will contribute a factor of order 1 to
the product in (6.9), and d other eigenvectors, close to the subspace generated by the
(0, ei ), that will each contribute a factor of order (|t − s|1/2 + |x − y|)−1−η to the
product. Note that if we do not distinguish between these two types of eigenvectors,
but simply bound below the product by the smallest eigenvalue to the power 2d,
following the approach used in the proof of Proposition 4.2, then we would obtain
C(|t − s|1/2 + |x − y|)−2dp in the right-hand side of (6.7), which would not be the
correct order.

We now carry out this somewhat involved perturbation argument. Consider the
spaces E1 = {(λ, 0) : λ ∈ R

d , 0 ∈ R
d} and E2 = {(0, µ) : µ ∈ R

d , 0 ∈ R
d}. Note

that every ξ i can be written as

ξ i = (λi , µi ) = αi (λ̃
i , 0)+

√
1 − α2

i (0, µ̃
i ), (6.10)
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where λi , µi ∈ R
d , (λ̃i , 0)∈ E1, (0, µ̃i ) ∈ E2, with ‖λ̃i‖ = ‖µ̃i‖ = 1 and 0 ≤ αi ≤ 1.

Note in particular that ‖ξ i‖2 = ‖λi‖2 + ‖µi‖2 = 1 (norms of elements of R
d or R

2d

are Euclidean norms).

Lemma 6.8 Given a sufficiently small α0 > 0, with probability one, there exist at
least d of these vectors, say ξ i1, . . . , ξ id , such that αi1 ≥ α0, . . . , αid ≥ α0.

Proof Observe that as ξ is an orthogonal family and for i 	= j , the Euclidean inner
product of ξ i and ξ j is

ξ i · ξ j = αiα j (λ̃
i · λ̃ j )+

√
1 − α2

i

√
1 − α2

j (µ̃
i · µ̃ j ) = 0.

For α0 > 0, let D = {i ∈ {1, . . . , 2d} : αi < α0}. Then, for i, j ∈ D, i 	= j , if
α0 <

1
2 , then

|µ̃i · µ̃ j | = αiα j√
1 − α2

i

√
1 − α2

j

|λ̃i · λ̃ j | ≤ α2
0

1 − α2
0

‖λ̃i‖‖λ̃ j‖ ≤ 1

3
α2

0 .

Since the diagonal terms of the matrix (µ̃i ·µ̃ j )i, j∈D are all equal to 1, forα0 sufficiently
small, it follows that det((µ̃i · µ̃ j )i, j∈D) 	= 0. Therefore, {µ̃i , i ∈ D} is a linearly
independent family, and, as (0, µ̃i ) ∈ E2, for i = 1, . . . , 2d, we conclude that a.s.,
card(D) ≤ dim(E2) = d. Therefore, there exists a set of indexes {i1, . . . , id} ⊂ Dc

and so αi1 ≥ α0,…,αid ≥ α0. ��
By Lemma 6.8 and the Cauchy–Schwarz inequality, one can write

E
[
(det γZ )

−p]1/p ≤
∑

K⊂{1,...,2d}, |K |=d

⎛

⎝E

⎡

⎣1AK

(
∏

i∈K

(ξ i )T γZ ξ
i

)−2p
⎤

⎦

⎞

⎠
1/(2p)

×
⎛

⎜⎝E

⎡

⎢⎣

⎛

⎜⎝ inf
ξ=(λ,µ)∈R

2d :
‖λ‖2+‖µ‖2=1

ξTγZ ξ

⎞

⎟⎠

−2dp⎤

⎥⎦

⎞

⎟⎠

1/(2p)

,

(6.11)

where AK = ∩i∈K {αi ≥ α0}.
With this, Propositions 6.9 and 6.13 below conclude the proof of Proposition 6.6.

��

6.4.1 Small eigenvalues

Let I and J two compact intervals as in Theorem 1.1.

Proposition 6.9 Fix η, T > 0. Assume P1 and P2.
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(a) There exists C depending on η and T such that for all s, t ∈ I , 0 ≤ t − s < 1,
x, y ∈ J , (s, y) 	= (t, x), and p > 1,

E

⎡

⎢⎣

⎛

⎜⎝ inf
ξ=(λ,µ)∈R

2d :
‖λ‖2+‖µ‖2=1

ξTγZ ξ

⎞

⎟⎠

−2dp⎤

⎥⎦ ≤ C(|t − s|1/2 + |x − y|)−2dp(1+η).

(b) There exists C depending only on T such that for all s = t ∈ I , x, y ∈ J , x 	= y,
and p > 1,

E

⎡

⎢⎣

⎛

⎜⎝ inf
ξ=(λ,µ)∈R

2d :
‖λ‖2+‖µ‖2=1

ξTγZ ξ

⎞

⎟⎠

−2dp⎤

⎥⎦ ≤ C(|x − y|)−2dp.

Proof We begin by proving (a). Since γZ is a matrix of inner products, we can write

ξTγZ ξ =
d∑

k=1

T∫

0

dr

1∫

0

dv

(
d∑

i=1

(
λi D(k)

r,v (ui (s, y))

+µi (D
(k)
r,v (ui (t, x))− D(k)

r,v (ui (s, y)))
))2

.

From here on, the proof is divided into two cases.

Case 1 In the first case, we assume that t − s > 0 and |x − y|2 ≤ t − s. Choose and
fix an ε ∈ (0, (t − s) ∧ ( 1

4 )
2/η). Then we may write

ξTγZ ξ ≥ J1 + J2,

where

J1:=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

(λi−µi )
[
Gs−r (y, v)σik(u(r, v))+ai (k, r, v, s, y)

]+W

)2

,

J2 :=
d∑

k=1

t∫

t−ε
dr

1∫

0

dvW 2,

ai (k, r, v, s, y) is defined in (4.3) and

W :=
d∑

i=1

[
µi Gt−r (x, v)σik(u(r, v))+ µi ai (k, r, v, t, x)

]
.
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Therefore,

inf‖ξ‖=1
ξTγZ ξ ≥ min

(
inf

‖ξ‖=1,‖µ‖≥εη/2
J2, inf

‖ξ‖=1,‖µ‖≤εη/2
J1

)
.

We are going to prove that

inf
‖ξ‖=1,‖µ‖≥εη/2

J2 ≥ ε
1
2 +η − Y1,ε,

inf
‖ξ‖=1,‖µ‖≤εη/2

J1 ≥ ε1/2 − Y2,ε,
(6.12)

where, for all q ≥ 1,

E
[∣∣Y1,ε

∣∣q] ≤ c1(q)ε
q and E

[∣∣Y2,ε
∣∣q] ≤ c2(q)ε

q( 1
2 +η). (6.13)

We assume these, for the time being, and finish the proof of the proposition in Case 1.
Then we will return to proving (6.12) and (6.13).

We can combine (6.12) and (6.13) with Proposition 3.5 to find that

E

[(
inf‖ξ‖=1

ξTγZ ξ

)−2pd
]

≤ c

(
(t − s) ∧

(
1

4

)2/η
)−2pd( 1

2 +η)
≤ c′(t − s)−2pd( 1

2 +η)

≤ c̃
[
(t − s)1/2 + |x − y|

]−2pd(1+2η)
,

whence follows the proposition in the case that |x −y|2 ≤ t −s < 1. Now we complete
our proof of Case 1 by deriving (6.12) and (6.13).

Let us begin with the term that involves J2. Inequality (4.4) implies that

inf
‖ξ‖=1,‖µ‖≥εη/2

J2 ≥ Ŷ1,ε − Y1,ε,

where

Ŷ1,ε := 2

3
inf

‖µ‖≥εη/2

d∑

k=1

t∫

t−ε
dr

1∫

0

dv

(
d∑

i=1

µiσik(u(r, v))

)2

G2
t−r (x, v),

Y1,ε := 2 sup
‖µ‖≥εη/2

d∑

k=1

t∫

t−ε
dr

1∫

0

dv

(
d∑

i=1

µi ai (k, r, v, t, x)

)2

.

In agreement with hypothesis P2, and thanks to Lemma 7.2,

Ŷ1,ε ≥ c inf
‖µ‖≥εη/2

‖µ‖2ε1/2 ≥ cε
1
2 +η.
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Next we apply Lemma 6.11 below [with s := t] to find that E[|Y1,ε |q ] ≤ cεq . This
proves the bounds in (6.12) and (6.13) that concern J2 and Y1,ε .

In order to derive the second bound in (6.12), we appeal to (4.4) once more to find
that

inf
‖ξ‖=1,‖µ‖≤εη/2

J1 ≥ Ŷ2,ε − Y2,ε,

where

Ŷ2,ε := 2

3
inf

‖µ‖≤εη/2

d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

(λi − µi )σik(u(r, v))

)2

G2
s−r (y, v),

and

Y2,ε := 6 (W1 + W2 + W3) ,

where

W1 := sup
‖µ‖≤εη/2

d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µi Gt−r (x, v)σik(u(r, v))

)2

,

W2 := sup
‖ξ‖=1

d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

(λi − µi )ai (k, r, v, s, y)

)2

,

W3 := sup
‖µ‖≤εη/2

d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µi ai (k, r, v, t, x)

)2

.

Hypothesis P2 and Lemma 7.2 together imply that Ŷ2,ε ≥ c‖λ− µ‖ε1/2. Therefore,
because ‖λ‖2 + ‖µ‖2 = 1 and ‖µ‖ ≤ εη/2 ≤ 1

4 ,

inf
‖ξ‖=1,‖µ‖≤εη/2

J1 ≥ c̃ ε1/2 − 6 (W1 + W2 + W3) . (6.14)

Next, we apply the Cauchy–Schwarz inequality to find that

E
[|W1|q

]≤ sup
‖µ‖≤εη/2

‖µ‖2q ×E

⎡

⎣

∣∣∣∣∣∣

d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

(σik(u(r, v)))
2 G2

t−r (x, v)

∣∣∣∣∣∣

q⎤

⎦

≤ cεqη

∣∣∣∣∣∣

d∑

k=1

s∫

s−ε
dr

1∫

0

dv G2
t−r (x, v)

∣∣∣∣∣∣

q

,
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thanks to hypothesis P1. In light of this and using the change of variables r ′ = t − r ,

Lemma 7.4 implies that E
[|W1|q

] ≤ cεq( 1
2 +η).

In order to bound the q-th moment of |W2|, we use the Cauchy–Schwarz inequality
together with hypothesis P1, and write

E
[|W2|q

] ≤ sup
‖µ‖≤εη/2

‖λ− µ‖2q × E

⎡

⎣

∣∣∣∣∣∣

d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, s, y)

∣∣∣∣∣∣

q⎤

⎦

≤ CE

⎡

⎣

∣∣∣∣∣∣

d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, s, y)

∣∣∣∣∣∣

q⎤

⎦ .

We apply Lemma 6.11 below [with s := t] to find that E
[|W2|q

] ≤ cεq .

Similarly, we find using Lemma 6.11 that

E
[|W3|q

] ≤ sup
‖µ‖≤εη/2

‖µ‖2q × E

⎡

⎣

∣∣∣∣∣∣

d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, t, x)

∣∣∣∣∣∣

q⎤

⎦

≤ cεqη (t − s + ε)q/2εq/2

≤ cεq( 1
2 +η).

The preceding bounds for W1, W2, and W3 prove, in conjunction, that E[|Y2,ε |q ] ≤
c2(q)εq( 1

2 +η). This and (6.14) together prove the bounds in (6.12) and (6.13) that
concern J1 and Y2,ε , whence follows the result in Case 1.

Case 2 Now we work on the second case where |x − y| > 0 and |x − y|2 ≥ t −s ≥ 0.
Let ε > 0 be such that (1 + α)ε1/2 < 1

2 |x − y|, where α > 0 is large but fixed; its
specific value will be decided on later (just before (6.27)). Then

ξTγZ ξ ≥ I1 + I2,

where

I1 :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv (S1 + S2)
2 ,

I2 :=
d∑

k=1

t∫

(t−ε)∨s

dr

1∫

0

dvS 2
2 ,
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and

S1 :=
d∑

i=1

(λi − µi )
[
Gs−r (y, v)σi,k(u(r, v))+ ai (k, r, v, s, y)

]
,

S2 :=
d∑

i=1

µi
[
Gt−r (x, v)σik(u(r, v))+ ai (k, r, v, t, x)

]
.

From here on, Case 2 is divided into two further sub-cases.

Sub-Case A. Suppose, in addition, that ε ≥ t − s. In this case, we are going to prove
that

inf‖ξ‖=1
ξTγZ ξ ≥ cε1/2 − Z1,ε, (6.15)

where for all q ≥ 1,
E
[∣∣Z1,ε

∣∣q] ≤ c(q)εq . (6.16)

Indeed, we apply (4.4) to find that

I1 ≥ 2

3
Ã1 − B(1)1 − B(2)1 ,

where

Ã1 :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

[
(λi−µi )Gs−r (y, v)+µi Gt−r (x, v)

]
σik(u(r, v))

)2

,

B(1)1 := 4‖λ− µ‖2
d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, s, y), (6.17)

B(2)1 := 4‖µ‖2
d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, t, x). (6.18)

Using the inequality

(a + b)2 ≥ a2 + b2 − 2|ab|,

we see that

Ã1 ≥ A1 + A2 − |B(3)1 |,
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where

A1 :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

(λi − µi )Gs−r (y, v)σik(u(r, v))

)2

,

A2 :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µi Gt−r (x, v)σik(u(r, v))

)2

,

B(3)1 := 2
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

(λi − µi )Gs−r (y, v)σik(u(r, v))

)

×
(

d∑

i=1

µi Gt−r (x, v)σik(u(r, v))

)
.

We can combine terms to find that

I1 ≥ 2

3
(A1 + A2)− (B(1)1 + B(2)1 + |B(3)1 |).

Finally, we appeal to (4.4) to find that

I2 ≥ 2

3
A3 − B2,

where

A3 :=
d∑

k=1

t∫

(t−ε)∨s

dr

1∫

0

dv

(
d∑

i=1

µi Gt−r (x, v)σik(u(r, v))

)2

,

B2 := 2
d∑

k=1

t∫

(t−ε)∨s

dr

1∫

0

dv

(
d∑

i=1

µi ai (k, r, v, t, x)

)2

. (6.19)

By hypothesis P2,

A1 + A2 + A3 ≥ ρ2

⎛

⎝‖λ− µ‖2

s∫

s−ε
dr

1∫

0

dv G2
s−r (y, v)

+‖µ‖2

s∫

s−ε
dr

1∫

0

dv G2
t−r (x, v)+ ‖µ‖2

t∫

s

dr

1∫

0

dv G2
t−r (x, v)

⎞

⎠ .
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Note that we have used the defining assumption of Sub-Case A, namely, that ε ≥ t −s.
Next, we group the last two integrals and apply Lemma 7.2 to find that

A1 + A2 + A3 ≥ c

⎛

⎝‖λ− µ‖2ε1/2 + ‖µ‖2

t∫

t−ε
dr

1∫

0

dv G2
t−r (x, v)

⎞

⎠

≥ c
(
‖λ− µ‖2 + ‖µ‖2

)
ε1/2

≥ cε1/2. (6.20)

We are aiming for (6.15), and propose to bound the absolute moments of B(i)1 ,
i = 1, 2, 3 and B2, separately. According to Lemma 6.11 below with s = t ,

E

[
sup

‖ξ‖=1
|B2|q

]
≤ c(q)εq . (6.21)

Next we bound the absolute moments of B(i)1 , i = 1, 2, 3. Using hypothesis P1 and
Lemma 6.11, with t = s, we find that for all q ≥ 1,

E

[
sup

‖ξ‖=1

∣∣∣B(1)1

∣∣∣
q
]

≤ cεq . (6.22)

In the same way, we see that

E

[
sup

‖ξ‖=1

∣∣∣B(2)1

∣∣∣
q
]

≤ c(t − s + ε)q/2εq/2. (6.23)

We are in the sub-case A where t − s ≤ ε. Therefrom, we obtain the following:

E

[
sup

‖ξ‖=1

∣∣∣B(2)1

∣∣∣
q
]

≤ cεq . (6.24)

We can combine (6.22) and (6.24) as follows:

E

[
sup

‖ξ‖=1

(
B(1)1 + B(2)1

)q
]

≤ c(q)εq . (6.25)
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Finally, we turn to bounding the absolute moments of B(3)1 . Hypothesis P1 assures
us that

∣∣∣B(3)1

∣∣∣ ≤ c

s∫

s−ε
dr

1∫

0

dv Gs−r (y, v)Gt−r (x, v)

= c

s∫

s−ε
dr Gt+s−2r (x, y),

thanks to the semi-group property [14, (3.6)] (see (6.40) below). This and Lemma 7.1
together prove that

∣∣∣B(3)1

∣∣∣ ≤ c

ε∫

0

du√
t − s + 2u

exp

(
− |x − y|2

2(t − s + 2u)

)

≤ c

ε∫

0

du√
t − s + 2u

exp

(
− α2ε

2(t − s + 2u)

)
,

since |x − y| ≥ 2(1 + α)ε1/2 ≥ αε1/2. Now we can change variables [z := 2(t − s +
2u)/(α2ε)], and use the bounds 0 ≤ t − s ≤ ε to find that

∣∣∣B(3)1

∣∣∣ ≤ cε1/2�(α), where �(α) := α

6/α2∫

0

z−1/2e−1/z dz. (6.26)

Now, by (6.20), (6.21), (6.26) and (6.25),

inf‖ξ‖=1
ξTγZ ξ ≥ 2

3
(A1 + A2 + A3)−

(
B(1)1 + B(2)1 + |B(3)1 | + B2

)

≥ c1ε
1/2 − c2�(α)ε

1/2 − Z1,ε,

where Z1,ε := B(1)1 + B(2)1 + B2 satisfies E[|Z1,ε |q ] ≤ c1(q)εq . Because
limν→∞�(ν) = 0, we can choose and fix α so large that c2�(α) ≤ c1/4 for the
c1 and c2 of the preceding displayed equation. This yields,

inf‖ξ‖=1
ξTγZ ξ ≥ cε1/2 − Z1,ε, (6.27)

as in (6.15) and (6.16).
Sub-case B. In this final (sub-) case we suppose that ε ≤ t − s ≤ |x − y|2. Choose
and fix 0 < ε < t − s. During the course of our proof of Case 1, we established the
following:

inf‖ξ‖=1
ξTγZ ξ ≥ min

(
cε

1
2 +η − Y1,ε, cε1/2 − Y2,ε

)
, (6.28)
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where

E
[∣∣Y1,ε

∣∣q] ≤ c(q)εq and E
[∣∣Y2,ε

∣∣q] ≤ c(q)εq( 1
2 +η).

See (6.12) and (6.13).
Combine Sub-Cases A and B, and, in particular, (6.15) and (6.28), to find that for

all 0 < ε < 1
4 (1 + α)−2|x − y|2,

inf‖ξ‖=1
ξTγZ ξ ≥ min

(
cε

1
2 +η − Y1,ε , cε1/2 − Y2,ε − Z1,ε1{t−s<ε}

)
.

Because of this and (6.16), Proposition 3.5 implies that

E

[(
inf‖ξ‖=1

ξTγZ ξ

)−2pd
]

≤ c|x − y|2(−2dp)( 1
2 +η)

≤ c(|t − s|1/2 + |x − y|)−2dp(1+2η).

This concludes the proof of Proposition 6.9(a).
If t = s, then sub-case B does not arise, and so we get directly from (6.27) and

Proposition 3.5 that

E

[(
inf‖ξ‖=1

ξTγZ ξ

)−2pd
]

≤ c|x − y|−2dp.

This proves (b) and concludes the proof of Proposition 6.9. ��
Remark 6.10 If σ and b are constant, then ai = 0, so η can be taken to be 0. This
gives the correct upper bound in the Gaussian case, which shows that the method of
proof of Proposition 6.9 is rather tight.

We finally prove a result that we have used in the proof of Proposition 6.9.

Lemma 6.11 Assume P1. For all T > 0 and q ≥ 1, there exists a constant c =
c(q, T ) ∈ (0,∞) such that for every 0 < ε ≤ s ≤ t ≤ T and x ∈ [0, 1],

E

⎡

⎣

⎛

⎝
d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, t, x)

⎞

⎠
q⎤

⎦ ≤ c(t − s + ε)q/2εq/2.

Proof Define

A :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, t, x).
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Use (4.3) to write

E
[|A|q] ≤ c

(
E
[|A1|q

]+ E
[|A2|q

])
,

where

A1 :=
d∑

i, j,k=1

s∫

s−ε
dr

1∫

0

dv

∣∣∣∣∣∣

t∫

r

1∫

0

Gt−θ (x, η)D(k)
r,v

(
σi j (u(θ, η))

)
W j (dθ, dη)

∣∣∣∣∣∣

2

,

and

A2 :=
d∑

i,k=1

s∫

s−ε
dr

1∫

0

dv

∣∣∣∣∣∣

t∫

r

dθ

1∫

0

dηGt−θ (x, η)D(k)
r,v (bi (u(θ, η)))

∣∣∣∣∣∣

2

.

We bound the q-th moment of A1 and A2 separately.
As regards A1, we apply the Burkholder inequality for Hilbert-space-valued mar-

tingales (Lemma 7.6) to find that

E
[|A1|q

] ≤ c
d∑

i, j,k=1

E

⎡

⎣

∣∣∣∣∣∣

t∫

s−ε
dθ

1∫

0

dη

s∫

s−ε
dr

1∫

0

dv �2

∣∣∣∣∣∣

q⎤

⎦ , (6.29)

where

� := 1{θ>r}Gt−θ (x, η)
∣∣∣D(k)

r,v

(
σi j (u(θ, η))

)∣∣∣

≤ c1{θ>r}Gt−θ (x, η)
∣∣∣∣∣

d∑

l=1

D(k)
r,v (ul(θ, η))

∣∣∣∣∣ ,

thanks to hypothesis P1. Thus,

E
[|A1|q

] ≤ c
d∑

k=1

× E

⎡

⎣

∣∣∣∣∣∣

t∫

s−ε
dθ

1∫

0

dηG2
t−θ (x, η)

s∧θ∫

s−ε
dr

1∫

0

dv

(
d∑

l=1

D(k)
r,v (ul(θ, η))

)2
∣∣∣∣∣∣

q⎤

⎦ .
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We apply Hölder’s inequality with respect to the measure G2
t−θ (x, η) dθ dη to find

that

E
[|A1|q

] ≤ c

⎛

⎝
t∫

s−ε
dθ

1∫

0

dηG2
t−θ (x, η)

⎞

⎠
q−1

×
t∫

s−ε
dθ

1∫

0

dηG2
t−θ (x, η)

d∑

k=1

E

⎡

⎣

∣∣∣∣∣∣

s∧θ∫

s−ε
dr

1∫

0

dv ϒ2

∣∣∣∣∣∣

q⎤

⎦ , (6.30)

where ϒ := ∑d
l=1 D(k)

r,v (ul(θ, η)). Lemma 7.3 assures us that

⎛

⎝
t∫

s−ε
dθ

1∫

0

dηG2
t−θ (x, η)

⎞

⎠
q−1

≤ c(t − s + ε)(q−1)/2. (6.31)

On the other hand, Lemma 7.5 implies that

d∑

k=1

E

⎡

⎣

∣∣∣∣∣∣

s∧θ∫

s−ε
dr

1∫

0

dv ϒ2

∣∣∣∣∣∣

q⎤

⎦ ≤ cεq/2,

where c ∈ (0,∞) does not depend on (θ, η, s, t, ε, x). Consequently,

t∫

s−ε
dθ

1∫

0

dηG2
t−θ (x, η)

d∑

k=1

E

⎡

⎣

∣∣∣∣∣∣

s∧θ∫

s−ε
dr

1∫

0

dv ϒ2

∣∣∣∣∣∣

q⎤

⎦

≤ cεq/2

t∫

s−ε
dθ

1∫

0

dηG2
t−θ (x, η)

≤ cεq/2(t − s + ε)1/2. (6.32)

Equations (6.30), (6.31), and (6.32) together imply that

E
[|A1|q

] ≤ c(t − s + ε)q/2εq/2. (6.33)

This is the desired bound for the q-th moment of A1. Next we derive a similar bound
for A2. This will finish the proof. By the Cauchy–Schwarz inequality

E
[|A2|q

] ≤ c(t − s + ε)q
d∑

i,k=1

E

⎡

⎣

∣∣∣∣∣∣

s∫

s−ε
dr

1∫

0

dv

t∫

r

dθ

1∫

0

dη�2

∣∣∣∣∣∣

q⎤

⎦ ,
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where� := Gt−θ (x, η)|D(k)
r,v (bi (u(θ, η))) |. From here on, the q-th moment of A2 is

estimated as that of A1 was; cf. (6.29), and this yields E[|A2|q ] ≤ c(t −s +ε)3q/2εq/2.
This completes the proof. ��

Remark 6.12 It is possible to prove that E[|A1|] is at least a constant times (t − s +
ε)1/2ε1/2. In this sense, the preceding result is not improvable.

6.4.2 Large eigenvalues

Let I and J be two compact intervals as in Theorem 1.1.

Proposition 6.13 Assume P1 and P2. Fix T > 0 and p > 1. Then there exists
C = C(p, T ) such that for all s, t ∈ I with 0 ≤ t − s < 1

2 , x, y ∈ J , (s, y) 	= (t, x),

E

[
1AK

(
∏

i∈K

(ξ i )T γZ ξ
i

)−p]
≤ C, (6.34)

where AK is defined as in (6.11).

Proof Let 0 < ε < s ≤ t . We fix i0 ∈ {1, . . . , 2d} and write λ̃i0 = (λ̃
i0
1 , . . . , λ̃

i0
d ) and

µ̃i0 = (µ̃
i0
1 , . . . , µ̃

i0
d ). We look at (ξ i0)TγZ ξ

i0 on the event {αi0 ≥ α0}. As in the proof
of Proposition 6.9 and using the notation from (6.10), this is bounded below by

d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

[(
αi0 λ̃

i0
i Gs−r (y, v)

+µ̃i0
i

√
1 − α2

i0
(Gt−r (x, v)− Gs−r (y, v))

)
σik(u(r, v))

+αi0 λ̃
i0
i ai (k, r, v, s, y)

+ µ̃
i0
i

√
1 − α2

i0
(ai (k, r, v, t, x)− ai (k, r, v, s, y))

])2

+
d∑

k=1

t∫

s∨(t−ε)
dr

1∫

0

dv

(
d∑

i=1

[
µ̃

i0
i

√
1 − α2

i0
Gt−r (x, v)σik(u(r, v))

+µ̃i0
i

√
1 − α2

i0
ai (k, r, v, t, x)

])2

. (6.35)

We intend to use Proposition 3.5 with ε0 > 0 fixed, so we seek lower bounds for this
expression for 0 < ε < ε0. In the remainder of this proof, we will use the generic
notation α, λ̃ and µ̃ for the realisations αi0(ω), λ̃

i0(ω), and µ̃i0(ω).
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Case 1 t − s ≤ ε. Then, by (4.4), the expression in (6.35) is bounded below by

2

3
( f1(s, t, ε, α, λ̃, µ̃, x, y)+ f2(s, t, ε, α, λ̃, µ̃, x, y))− 2Iε,

where, from hypothesis P2,

f1 ≥ cρ2

s∫

s−ε
dr

1∫

0

dv
∥∥∥αλ̃Gs−r (y, v)+

√
1 − α2 µ̃(Gt−r (x, v)− Gs−r (y, v))

∥∥∥
2
,

(6.36)

f2 ≥ cρ2

t∫

s∨(t−ε)
dr

1∫

0

dv
∥∥∥µ̃
√

1 − α2 Gt−r (x, v)
∥∥∥

2
, (6.37)

and Iε = 3(I1,ε + I2,ε + I3,ε), where

I1,ε :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

[
αλ̃i − µ̃i

√
1 − α2

]
ai (k, r, v, s, y)

)2

,

I2,ε :=
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µ̃i

√
1 − α2 ai (k, r, v, t, x)

)2

,

I3,ε :=
d∑

k=1

t∫

t−ε
dr

1∫

0

dv

(
d∑

i=1

µ̃i

√
1 − α2 ai (k, r, v, t, x)

)2

.

There are obvious similarities between the terms I1,ε and B(1)1 in (6.17). However, we
must keep in mind that α, λ̃ and µ̃ are realisations of αi0 , λ̃i0 and µ̃i0 . Therefore,

I1,ε =
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

[
αi0 λ̃

i0
i − µ̃

i0
i

√
1 − α2

]
ai (k, r, v, s, y)

)2

,

≤ C
d∑

k=1

s∫

s−ε
dr

1∫

0

dv
d∑

i=1

a2
i (k, r, v, s, y).

Thus, we apply the same method that was used to bound E[|B(1)1 |q ] to deduce that

E[|I1,ε |q ] ≤ c(q)εq . Similarly, since I2,ε is similar to B(2)1 from (6.18) and t − s ≤ ε,
we see using (6.24) that E[|I2,ε |q ] ≤ c(q)εq . Finally, using the similarity between I3,ε
and B2 in (6.19), we see that E[|I3,ε |q ] ≤ c(q)εq .

We claim that for every α0 > 0, there exists ε0 > 0 and c0 > 0 such that
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420 R. C. Dalang et al.

f1 + f2 ≥ c0
√
ε for all α ∈ [α0, 1], ε ∈ (0, ε0], s, t ∈ [1, 2], x, y ∈ [0, 1].

(6.38)

Using this for the α0 from Lemma 6.8, this will imply in particular that for ε ≥ t − s,

(
ξ i0
)T
γZ ξ

i0 ≥ c0ε
1/2 − 2Iε,

where E[|Iε |q ] ≤ c(q)εq .
In order to prove (6.38), first define

pt (x, y) := (4π t)−1/2e−(x−y)2/(4t).

In addition, let g1(s, t, ε, α, λ̃, µ̃, x, y) and g2(s, t, ε, α, λ̃, µ̃, x, y) be defined by the
same expressions as the right-hand sides of (6.36) and (6.37), but with Gs−r (x, v)
replaced by ps−r (x − v), and

∫ 1
0 replaced by

∫ +∞
−∞ .

Observe that g1 ≥ 0, g2 ≥ 0, and if g1 = 0, then for all v ∈ R,

∥∥∥α ps−r (y − v)λ̃+
√

1 − α2 (pt−r (x − v)− ps−r (y − v))µ̃

∥∥∥ = 0. (6.39)

If, in addition, λ̃ = µ̃, then we get that for all v ∈ R,

(
α −

√
1 − α2

)
ps−r (y − v)+

√
1 − α2 pt−r (x − v) = 0.

We take Fourier transforms to deduce from this that for all ξ ∈ R,

(
α −

√
1 − α2

)
eiξ y = −

√
1 − α2eiξ x e(s−t)ξ2

.

If x = y, then it follows that s = t and α − √
1 − α2 = −√

1 − α2. Hence, if α 	= 0,
x = y and λ̃ = µ̃, then g1 > 0. We shall make use of this observation shortly.

Because ‖λ̃‖ = ‖µ̃‖ = 1, f1 is bounded below by

cρ2

s∫

s−ε
dr

1∫

0

dv
(
α2G2

s−r (y, v)+
(

1 − α2
)
(Gt−r (x, v)− Gs−r (y, v))

2

+2α
√

1 − α2Gs−r (y, v)(Gt−r (x, v)− Gs−r (y, v))(λ̃ · µ̃)
)

= cρ2

s∫

s−ε
dr

1∫

0

dv

((
α −

√
1 − α2

)2
G2

s−r (y, v)

)
+
(

1 − α2
)

G2
t−r (x, v)

+2
(
α −

√
1 − α2

)√
1 − α2Gs−r (y, v)Gt−r (x, v)

+2α
√

1 − α2Gs−r (y, v)(Gt−r (x, v)− Gs−r (y, v))(λ̃ · µ̃− 1)
)
.
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Recall the semigroup property

1∫

0

dv Gs−r (y, v)Gt−r (x, v) = Gs+t−2r (x, y) (6.40)

(see [14, (3.6)]). We set h := t − s and change variables [r̄ := s − r ] to obtain the
following bound:

f1 ≥ cρ2

ε∫

0

dr

((
α −

√
1 − α2

)2
G2r (y, y)+

(
1 − α2

)
G2h+2r (x, x)

+2
(
α −

√
1 − α2

)√
1 − α2Gh+2r (x, y)

+2α
√

1 − α2(Gh+2r (x, y)− G2r (y, y))
(
λ̃ · µ̃− 1

))
.

Recall ([14, p.318]), that

Gt (x, y) = pt (x, y)+ Ht (x, y),

where Ht (x, y) is a continuous function that is uniformly bounded over (t, x, y) ∈
(0,∞)× (0, 1)× (0, 1). Therefore, f1 ≥ cρ2 g̃1 − cε, where

g̃1 := g̃1(h, ε, α, λ̃, µ̃, x, y)

=
ε∫

0

dr

((
α −

√
1 − α2

)2
p2r (y, y)+

(
1 − α2

)
p2h+2r (x, x)

+ 2
(
α −

√
1 − α2

)√
1 − α2 ph+2r (x, y)

+ 2α
√

1 − α2 (ph+2r (x, y)− p2r (y, y))
(
λ̃ · µ̃− 1

))
.

We can recognize that

ph+2r (x, y)− p2r (y, y) = exp(−(x − y)2/(4(h + 2r)))√
4π(h + 2r)

− 1√
4π(2r)

≤ 0.

Also, λ̃ · µ̃− 1 ≤ 0. Thus,

g̃1 ≥ ĝ1,

where

ĝ1 := ĝ1(h, ε, α, x, y)

=
ε∫

0

dr

((
α −

√
1 − α2

)2
p2r (y, y)+

(
1 − α2

)
p2h+2r (x, x)

+2
(
α −

√
1 − α2

)√
1 − α2 ph+2r (x, y)

)
.
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Therefore,

ĝ1 =
ε∫

0

dr

(
(α −

√
1 − α2)2

1√
8πr

+
(

1 − α2
) 1√

8π(h + r)

+2(α −
√

1 − α2)
√

1 − α2 ph+2r (x, y)
)
.

On the other hand, by (6.40) above,

f2 ≥
ε∧(t−s)∫

0

dr
(

1 − α2
)

G2r (y, y)

≥ g̃2 :=
ε∧h∫

0

dr
(

1 − α2
)

p2r (y, y)− Cε

=
(

1 − α2
)√

ε ∧ h − Cε.

Finally, we conclude that

f1 + f2 ≥ ĝ1 + g̃2 − 2Cε

=
(
α −

√
1 − α2

)2
√
ε√

2π
+ 1 − α2

√
2π

(√
h + ε − √

h
)

+ 2
(
α −

√
1 − α2

)√
1 − α2

ε∫

0

dr ph+2r (x, y)

+ 1 − α2

√
2π

√
ε ∧ h − 2Cε.

Now we consider two different sub-cases.
Sub-case (i). Suppose α − √

1 − α2 ≥ 0, that is, α ≥ 2−1/2. Then

ε−1/2 (ĝ1 + g̃2
) ≥ φ1

(
α,

h

ε

)
− 2Cε1/2,

where

φ1(α, z) := 1√
2π

((
α −

√
1 − α2

)2

+
(

1 − α2
) 1√

1 + z + √
z

+
(

1 − α2
)√

1 ∧ z

)
.
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Clearly,

inf
α≥2−1/2

inf
z>0

φ1(α, z) ≥ inf
α>2−1/2

(
α − √

1 − α2
)2 + c0

(
1 − α2

)

√
2π

> φ0 > 0.

Thus,

inf
α≥2−1/2, h≥0, 0<ε≤ε0

ε−1/2 (ĝ1 + g̃2
)
> 0.

Sub-case (ii). Now we consider the case where α−√
1 − α2 < 0, that is, α < 2−1/2.

In this case,

ε−1/2 (ĝ1 + g̃2
) ≥ ψ1

(
α,

h

ε

)
− 2Cε1/2,

where

ψ1(α, z) := 1√
2π

((
α −

√
1 − α2

)2 +
(

1 − α2
) 1√

1 + z + √
z

−2
(√

1 − α2 − α
)√

1 − α2

√
2√

2 + z + √
z

+
(

1 − α2
)√

1 ∧ z

)
.

Note that ψ1(α, z) > 0 if α 	= 0. This corresponds to the observation made in the
lines following (6.39). Moreover, for z ≥ 1, we have ψ1(α, z) ≥ (2π)−1/2α2 so that

inf
α∈[α0, 2−1/2]

inf
z≥0

ψ1(α, z) ≥ min

{
(2π)−1/2α2

0, inf
α∈[α0, 2−1/2]

inf
z∈[0,1]ψ1(α, z)

}
.

Since limz↓0 ψ1(α, z) ≥ (2π)−1/2α2 ≥ (2π)−1/2α2
0 and ψ1(α, z) > 0, there exists

cα0 > 0 such that

inf
α∈[α0, 2−1/2]

inf
z∈[0,1]ψ1(α, z) ≥ cα0 ,

and hence

inf
α∈[α0, 2−1/2], z≥0

ψ1(α, z) > 0.

This concludes the proof of the claim (6.38).
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Case 2 t − s > ε. In accord with (6.35), we are interested in

inf
1≥α≥α0

(
ξ i0
)T
γZ ξ

i0 := min(E1,ε, E2,ε),

where

E1,ε := inf
α0≤α≤√

1−εη
(
ξ i0
)T
γZ ξ

i0 ,

E2,ε := inf√
1−εη≤α≤1

(
ξ i0
)T
γZ ξ

i0 .

Clearly,

E1,ε ≥ 2

3
f2 − 2I3,ε .

Since α ≤ √
1 − εη is equivalent to

√
1 − α2 ≥ εη/2, we use hypothesis P2 to deduce

that

f2 ≥ cρ2εη

t∫

t−ε
dr

1∫

0

dv G2
t−r (x, v) ≥ cρ2ε

1
2 +η.

Therefore,

E1,ε ≥ cρ2ε
1
2 +η − I3,ε,

and we have seen that I3,ε has the desirable property E
[∣∣I3,ε

∣∣q] ≤ c(q)εq .

In order to estimate E2,ε , we observe using (6.35) that

E2,ε ≥ 2

3
f̃1 − J̃1,ε − J̃2,ε − J̃3,ε − J̃4,ε,

where

f̃1 ≥ α2
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

λ̃iσik(u(r, v))

)2

G2
s−r (y, v),

J̃1,ε = 2
(

1 − α2
) d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µ̃iσik(u(r, v))

)2

G2
t−r (x, v),

J̃2,ε = 2
(

1 − α2
) d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µ̃iσik(u(r, v))

)2

G2
s−r (y, v),
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J̃3,ε = 2
d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

(
αλ̃i − µ̃i

√
1 − α2

)
ai (k, r, v, s, y)

)2

,

J̃4,ε = 2
(

1 − α2
) d∑

k=1

s∫

s−ε
dr

1∫

0

dv

(
d∑

i=1

µ̃i ai (k, r, v, t, x)

)2

.

Because α2 ≥ 1 − εη and ε ≤ t − s ≤ 1
2 , hypothesis P2 and Lemma 7.2 imply that

f̃1 ≥ cε1/2. On the other hand, since 1 − α2 ≤ εη, we can use hypothesis P1 and
Lemma 7.4 to see that

E
[∣∣∣ J̃1,ε

∣∣∣
q] ≤ c(q)εqηεq/2 = c(q)ε(

1
2 +η)q ,

and similarly, using Lemma 7.3, E[| J̃2,ε |q ] ≤ c(q)ε(
1
2 +η)q . The term J̃3,ε is equal to

2I1,ε, so E[| J̃3,ε |q ] ≤ cεq , and J̃4,ε is similar to B(2)1 from (6.18), so we find using
(6.23) that

E
[∣∣∣ J̃4,ε

∣∣∣
q] ≤ cεqη(t − s + ε)q/2εq/2 ≤ cε(

1
2 +η)q .

We conclude that when t − s > ε, then E2,ε ≥ cε1/2 − J̃ε , where E[| J̃ε |q ] ≤
c(q)ε(

1
2 +η)q . Therefore, when t − s > ε,

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 1{αi0 ≥α0} min
(

cρ2ε
1
2 +η − I3,ε , cε

1
2 − J̃ε

)
.

Putting together the results of Case 1 and Case 2, we see that for 0 < ε ≤ ε0,

1{αi0 ≥α0}
(
ξ i0
)T
γZ ξ

i0 ≥ 1{αi0 ≥α0} Z ,

where

Z = min
(

cρ2ε
1
2 +η − I3,ε, cε

1
2 − 2Iε1{ε≥t−s} − J̃ε1{ε<t−s}

)
.

Note that all the constants are independent of i0. Taking into account the bounds on
moments of I3,ε , Iε and J̃ε , and then using Proposition 3.5, we deduce that for all
p ≥ 1, there is C > 0 such that

E

[(
1{αi0 ≥α0}

(
ξ i0
)T
γZ ξ

i0

)−p
]

≤ E
[
1{αi0 ≥α0} Z−p

]
≤ E

[
Z−p] ≤ C.

Since this applies to any p ≥ 1, we can use Hölder’s inequality to deduce (6.34). This
proves Proposition 6.13. ��
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7 Appendix

On several occasions, we have appealed to the following technical estimates on the
Green kernel of the heat equation.

Lemma 7.1 [2, (A.1)] There exists C > 0 such that for any 0 < s < t and x, y ∈
[0, 1], x 	= y,

Gt−s(x, y) ≤ C
1√

2π(t − s)
exp

(
−|x − y|2

2(t − s)

)
.

Lemma 7.2 [2, (A.3)] There exists C > 0 such that for any t ≥ ε > 0 and x ∈ [0, 1],
t∫

t−ε

x+√
ε∫

x−√
ε

G2
t−s(x, y)dyds ≥ C

√
ε.

Lemma 7.3 [2, (A.5)] There exists C > 0 such that for any ε > 0, q < 3
2 , t ≥ ε and

x ∈ [0, 1],
t∫

t−ε

1∫

0

G2q
t−s(x, y)dyds ≤ Cε3/2−q .

Lemma 7.4 There exists C > 0 such that for all 0 < a < b and x ∈ [0, 1],
b∫

a

1∫

0

G2
s (x, y) dyds ≤ C

b − a√
b + √

a
.

Proof Using Lemma 7.1 and the change of variables z = x−y√
s

, we see that

b∫

a

1∫

0

G2
s (x, y) dyds ≤ C

b∫

a

∞∫

−∞

1√
s

e−z2
dzds

= C̃

b∫

a

1√
s

ds = 2C̃(
√

b − √
a),

which concludes the proof. ��
The next result is a straightforward extension to d ≥ 1 of Morien [8, Lemma 4.2]

for d = 1.
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Lemma 7.5 Assume P1. For all q ≥ 1, T > 0 there exists C > 0 such that for all
T ≥ t ≥ s ≥ ε > 0 and 0 ≤ y ≤ 1,

d∑

k=1

E

⎡

⎣

⎛

⎝
s∫

s−ε
dr

1∫

0

dv

∣∣∣∣∣

d∑

i=1

D(k)
r,v (ui (t, y))

∣∣∣∣∣

2⎞

⎠
q⎤

⎦ ≤ Cεq/2.

The next result is Burkholder’s inequality for Hilbert-space-valued martingales.

Lemma 7.6 [2, Eq.(4.18)] Let Hs,t be a predictable L2(([0, t]×[0, 1])m, dα)-valued
process, where m ≥ 1 and dα denotes Lebesgue measure. Then, for any p ≥ 1, there
exists C > 0 such that

E

⎡

⎢⎣
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