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Abstract

Consider the following stochastic heat equation,

∂ut(x)

∂t
= −ν(−∆)α/2ut(x) + σ(ut(x))Ḟ (t, x), t > 0, x ∈ Rd.

Here −ν(−∆)α/2 is the fractional Laplacian with ν > 0 and α ∈ (0, 2], σ : R → R is
a globally Lipschitz function, and Ḟ (t, x) is a Gaussian noise which is white in time
and colored in space. Under some suitable additional conditions, we explore the effect
of the initial data on the spatial asymptotic properties of the solution. We also prove
a strong comparison theorem. This constitutes an important extension over a series of
works most notably [9], [10], [5] and [4].
Keywords: Stochastic PDEs, comparison theorems, colored noise.
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1 Introduction and main results

Consider the following stochastic heat equation,

∂ut(x)

∂t
= −ν(−∆)α/2ut(x) + σ(ut(x))Ḟ (t, x), t > 0, x ∈ Rd, (1.1)

where −ν(−∆)α/2 is the fractional Laplacian, that is, the infinitessimal generator of a
symmetric α-stable process with density pt(x), where α ∈ (0, 2], and ν > 0 is a viscosity
constant. The noise Ḟ (t, x) is white in time and colored in space satisfying

Cov(Ḟ (t, x), Ḟ (s, y)) = δ0(t− s)f(x− y),

where f is the spatial correlation function which we take to be the Riesz kernel

f(x) :=
1

|x|β
, 0 < β < d.
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The function σ : R→ R is a globally Lipschitz continuous function with σ(0) = 0, that is,
there exists a constant Lσ > 0 such that

|σ(x)| 6 Lσ|x|, for all x ∈ Rd.

The initial condition u0 is always going to be a nonnegative function in Rd such that

ū0 := sup
x∈Rd

u0(x) <∞.

Following Walsh [20], if one further assume that

β < min(α, d),

then (1.1) has a unique mild solution {ut(x), t > 0, x ∈ Rd} which is adapted and jointly
measurable and satisfies

ut(x) = (pt ∗ u0)(x) +

∫ t

0

∫
Rd

pt−s(x− y)σ(us(y))F (dsdy), (1.2)

where

(pt ∗ u0)(x) =

∫
Rd

pt(x− y)u0(y)dy,

and
sup

x∈Rd,t∈[0, T ]

E|ut(x)|k <∞ for all k > 2 and T <∞.

For more information about existence-uniqueness considerations, please consult [20], [11]
and [16].

The results of this paper are motivated by two comparison theorems proved recently in
[13] for the solution to (1.2). The first one is the following moment comparison theorem.

Theorem 1.1. [13] Let u and v two solutions to (1.2), one with σ, the other with another
globally Lipschitz continuous function σ̄ such that σ̄(0) = σ(0) = 0 and σ(x) > σ̄(x) > 0
for all x ∈ R+. Then for any k ∈ N, x ∈ Rd, and t > 0,

E[ut(x)k] > E[vt(x)k].

An important consequence of Theorem 1.1 are the following sharp estimates on the
moments of the solution to (1.2), when the initial condition is bounded below and under
the additional assumption that there exists a constant lσ > 0 such that

σ(x) > lσ|x|, for all x ∈ Rd. (1.3)

This was unknown till the work of [13].
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Theorem 1.2. Let u be the solution to (1.2). Assume (1.3) and

0 < u0 := inf
x∈Rd

u0(x). (1.4)

Then there exists a positive constant A such that for all x ∈ Rd and t > 0,

uk0
Ak

exp

(
1

A
k

2α−β
α−β tν

− β
α−β

)
6 E|ut(x)|k 6 Akūk0 exp

(
Ak

2α−β
α−β tν

− β
α−β
)
.

The upper bound holds for k > 2 while the lower bound holds for k > k0, where k0 is some
large positive number.

For the case σ(x) = x (known as the Parabolic Anderson model), the above is given
by [17, Lemma 4.1]. The scaling property of the heat kernel gives the dependence of the
bounds on the parameter ν. An immediate consequence of Theorem 1.2 is that the solution
to (1.1) is fully intermittent meaning that for all k > 2, the function

k → 1

k
γ(k) :=

1

k
lim sup
t→∞

logE|ut(x)|k is strictly increasing.

Intuitively, this means that the solution develops many high peaks distributed over small
x-intervals when t is large (see [12] and the references therein). The fact that the solution
to (1.1) is weakly intermittent was already known (see e.g.[14] and the references therein),
meaning that

γ(2) > 0 and γ(k) <∞, for all k > 2.

The previous results concern the moments of the solution to (1.1), but much less is
known about the almost sure asymptotic behaviour of the solution, which is crucial to
understand better its chaotic behaviour. The main purpose of this paper is to explore
how the almost surely spatial asymptotic behaviour of the solution to (1.1) depends on the
initial function u0. We start with the case that u0 is bounded below as in Theorem 1.2. A
first observation is that, since u0 is also bounded above, then we can easily see that

Eut(x) 6 c,

where c is the upper bound of u0. Since u0 is bounded below, it is not trivial to say more
about this. However, this is sufficient to show that almost surely, lim inf |x|→∞ ut(x) is
bounded as well. This is in sharp contrast with the behaviour of supremum of the solution
as described by the next theorem.
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Theorem 1.3. Let u be the unique solution to (1.2), and assume that (1.3) and (1.4) hold.
Then there exist positive constants c1, c2 such that for every t > 0,

c1
t(α−β)/(2α−β)

νβ/(2α−β)
6 lim inf

R→∞

log supx∈B(0, R) ut(x)

(logR)α/(2α−β)

6 lim sup
R→∞

log supx∈B(0, R) ut(x)

(logR)α/(2α−β)
6 c2

t(α−β)/(2α−β)

νβ/(2α−β)
a.s.

This theorem is a major improvement of [9, Theorem 1.3] (space-time white noise case)
and [10, Theorem 2.6] (Riesz kernel spatial covariance). See also [7] for exact spatial
asymptotics when then noise is fractional in time and correlated in space. All these papers
deal with the Parabolic Anderson model and the usual Laplacian (α = 2). Moreover, in
[9, 10] the dependence in time of the bounds is not explicit. The case σ(x) = x, fractional
Laplacian and Riesz kernel spatial covariance is considered in the preprint [17, Theorem 1.2],
without the dependence on ν and constant initial data. Obtaining the exact dependence on
the viscosity constant ν is important to understand in which universality class the equation
can be associated (see [9, Remark 1.5]). A key ingredient of the proof of Theorem 1.3 are
the moment bounds of Theorem 1.2, that will allow to obtain some tail estimates for the
solution.

Let us now consider an example where u0 is not bounded below.

Remark 1.4. If u0(x) := 1B(0,1)(x), then one can show that for x ∈ B(0, R)c and R large
enough, we have

Eut(x) = (pt ∗ u0)(x) 6
ct

Rα
.

If we further assume that α > 1, then a Borel-Cantelli argument shows that

lim inf
|x|→∞

ut(x) = 0.

This indicates that having initial conditions which are not bounded below can influence the
behaviour of the solution drastically.

The above remark can be seen as a motivation for us to drop the assumption that the
initial function is bounded below. We have the following trichotomy result, that studies the
amount of decay that the initial conditions needs to ensure that the solution is a bounded
function a.s. For this result, we restrict ourselves to the case α = 2, so that the operator is
the usual Laplacian instead of the fractional Laplacian.

Theorem 1.5. Let u be the unique solution to (1.2) with α = 2. Assume (1.3) and that
u0(x) is a radial function satisfying

lim
x→∞

u0(x) = 0 and u0(x) 6 u0(y) whenever x > y.
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Set

Λ := lim
|x|→∞

| log u0(x)|
(log |x|)2/(2−β)

.

Then, if 0 < Λ <∞, there exists a random variable T such that

P

(
sup
x∈Rd

ut(x) <∞, ∀t < T and sup
x∈Rd

ut(x) =∞, ∀t > T

)
= 1.

Moreover, if Λ =∞, then

P

(
sup
x∈Rd

ut(x) <∞, ∀t > 0

)
= 1.

Finally, if Λ = 0, then

P

(
sup
x∈Rd

ut(x) =∞, ∀t > 0

)
= 1.

This result is an extension of [4, Theorem 1.1], where the case α = 2 and space-time
white noise is considered. The proof of their result is based on the technical Lemma [4,
Lemma 2.3] which follows the ideas of [2]. Here, we use the extension to the spatially
colored noise case developed in [6]. The extension of those techniques to the fractional
Laplacian are not straightforward and thus remain open for future work.

Observe that when u0 has compact support corresponds to the case where Λ =∞, and
Theorem 1.5 shows that the solution is bounded for all times a.s.

The second part of this paper is motivated by the following weak comparison principle.

Theorem 1.6. [13] Suppose that u and v are two solutions to (1.2) with initial conditions
u0 and v0 respectively such that u0 6 v0. Then

P(ut(x) 6 vt(x) for all x ∈ Rd, t > 0) = 1.

Theorem 1.6 ensures nonnegativity of the solution, since the initial condition is assumed
to be nonnegative. For the Parabolic Anderson model, this fact can be deduced from the
Feynman-Kac representation of the solution. However, for the general non-linear case, this
property for the solution to (1.2) was unknown until the work of [13].

In this paper we use Theorem 1.6 in order to show the following strong comparison
principle.

Theorem 1.7. Suppose that u and v are two solutions to (1.2) with initial conditions u0

and v0 respectively such that u0 < v0. Assume α > 1. Then

P(ut(x) < vt(x) for all x ∈ Rd, t > 0) = 1.
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The (strong) comparison principle for equation (1.1) with space-time white noise and
α = 2 is the well-known Mueller’s comprison principle (see [19]). Recently, several exten-
sions have been developed. In [5] the authors extend Mueller’s result when the initial data is
more general and there is a more general fractional differential operator than the fractional
Laplacian. In [3] the authors consider the non-linear heat equation in Rd with a general
spatial covariance and measured-valued initial data. The proof of our strong comparison
principle uses the same strategy as in the papers mentioned above. But the presence of the
fractional Laplacian and the colored noise makes it that we have to work a bit harder to
prove our result. Moreover, the method of the proof does not seem to extend to the case
α < 1; see Remark 5.2 for more details. Among other things, we provide a simplification
of the proofs of [3] and [5]. For the sake of conciseness, we only consider the Riesz kernel
spatial covariance. The extension to general spatial covariances as in [3] is left as further
work.

As another consequence of the weak comparison principle (Theorem 1.6), we show the
next quantitative result on the strict positivity of the solution, which is an extension of
[8, Theorem 5.1] (space-time white noise and α = 2). See also [5, Theorem 1.4] and [3,
Theorem 1.6]. Not that α is not required to be bigger than 1.

Theorem 1.8. Let T > 0 and K ⊂ Rd be a compact set contained in the support of the
initial condition u0. Then, there exist constants c1 and c2 depending on T and K such that
for all ε > 0, we have

P

(
inf

t∈[0, T ]
inf
x∈K

ut(x) < ε

)
6 c2 exp

(
−c1{| log ε| log | log ε|}

2α−β
α

)
.

We now give a plan of the article. In Section 2 we give some preliminary results needed
throughout the paper. Section 3 is devoted to an approximation result needed for the proof
of Theorems 1.3 and 1.5. These theorems are proved in Section 4. Finally, Section 5 gives
the proof of Theorems 1.7 and 1.8.

2 Preliminary results

LetXt be the symmetric α-stable process associated with the fractional Laplacian−ν(−∆)α/2

and let pt(x) denote its heat kernel. We will frequently use the following properties.

• Scaling property: For any positive constant a, we have

pt(x) = adpaαt(ax), for all x ∈ Rd, t > 0.

This property follows from

pt(x) = (2π)−d
∫
Rd

e−ix·ze−tν|z|
α

dz.
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• Heat kernel estimates (see [18] and references therein): For 0 < α < 2, there exist
positive constants c1 and c2 such that for all x ∈ Rd and t > 0,

c1

(
1

td/α
∧ t

|x|d+α

)
6 pt(x) 6 c2

(
1

td/α
∧ t

|x|d+α

)
.

Remark 2.1. The proofs of Theorems 1.3 and 1.5 will only use the upper bound

pt(x) 6 c2
t

|x|d+α
, for sufficiently large |x|, (2.1)

while the proof of Theorems 1.7 and 1.8 will only use the lower bound

pt(x) > c1
1

td/α
, for sufficiently small |x|. (2.2)

Both are also valid for α = 2.

The next result provides some estimates that involve the above heat kernel and the
correlation function f . They will be useful for proving Lemma 3.2.

Lemma 2.2. There exist positive constants c1, c2 and c3 such that for all t > 0, x ∈ Rd,
and R > 0, we have∫

B(x,R)c×B(x,R)c
pt(x− y)pt(x− w)f(y − w) dy dw 6 c1

t2

R2α+β
, (2.3)∫

B(x,R)c×B(x,R)
pt(x− y)pt(x− w)f(y − w) dy dw 6 c2

t1−β/α

Rα
, (2.4)∫

Rd×Rd

pt(x− y)pt(x− w)f(y − w) dy dw 6 c3t
−β/α. (2.5)

Proof. We start with (2.3).∫
B(x,R)c×B(x,R)c

pt(x− y)pt(x− w)f(y − w) dy dw

6
∫
B(0, R)c×B(0, R)c

pt(y)pt(w)f(y − w) dy dw.

From (2.2), the above quantity is bounded by a constant times

t2

R2α+β

∫
B(0, 1)c×B(0, 1)c

1

|y|d+α|w|d+α

1

|y − w|β
dw dy.
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The above integral is finite so the proof of (2.3) is complete. For (2.4), we write∫
B(x,R)c×B(x,R)

pt(x− y)pt(x− w)f(y − w) dy dw

6
∫
B(0, R)c×Rd

pt(y)pt(w)f(y − w) dy dw.

By the scaling property,∫
Rd

pt(w)f(y − w) dw = Ey|Xt|−β 6 t−β/αE0|X1|−β.

Finally, proceeding as before, we get∫
B(0, R)c

pt(y)dy 6 c
t

Rα
.

Combining the above estimates, we obtain (2.4). For (2.5), it suffices to use the semigroup
property ∫

Rd×Rd

pt(x− y)pt(x− w)f(y − w) dy dw =

∫
Rd

p2t(w)f(w) dw,

and using the scaling property as before we obtain the desired bound.

We now return to ut(x) the solution to (1.2). Our next property can be read from [1].
For any k > 2, there exists a positive constant c := c(k) such that for all s, t > 0, and
x, y ∈ Rd

E|us(x)− ut(y)|k 6 c
(
|x− y|ηk + |s− t|η̃k

)
,

where η = α−β
2 and η̃ = α−β

2α . The above together with the upper moment bound of
Theorem 1.2 has the following consequence.

Proposition 2.3. ut(x) has a continuous version, that is, for any k > 2, there exist positive
constants c1, c2 := c2(k) such that

E

 sup
x 6=y,s6=t

x, y∈K⊂Rd

|us(x)− ut(y)|k

|x− y|ηk + |s− t|η̃k

 6 c2e
c1k(2α−β)/(α−β)ν−β/(α−β)t.

Proof. The proof is very similar to Theorem 4.3 of [11] and is therefore omitted.
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We also have the following property.

Lemma 2.4. Fix x ∈ Rd, then the solution ut(x) satisfies the strong Markov Property.

Proof. We omit the proof since it is very similar to [19, Lemma 3.3].

We end this section by recalling the following fractional Gronwall’s inequality.

Proposition 2.5. [15, Lemma 7.1.1] Let ρ > 0 and suppose that f(t) is a locally integrable
function satisfying

f(t) 6 c1 + k

∫ t

0
(t− s)ρ−1f(s)ds for all t > 0,

for some positive constants c1, k. Then there exist positive constants c2, c3 such that

f(t) 6 c2e
c3k1/ρt for all t > 0.

3 An approximation result

Theorems 1.3 and 1.5 are almost sure limit theorems and rely on some Borel-Cantelli
type arguments. To be able to carry out the proof, we will need to find an appropriate
independent sequence of random variables and it is apriori not clear how to find such a
sequence. We follow [9] and [10] where this issue was successfully resolved.

Let n > 1 and consider the following approximation F (n) of the measure F appearing
in (1.2). Recall that the covariance of Ḟ is given by f(x) = 1

|x|β , x ∈ Rd. This can be

written as f = h ∗ h̃, where h(x) = 1

|x|
d+β
2

and h̃(x) := h(−x). Define hn(x) := h(x)Qn(x)

and fn(x) = (h− hn) ∗ (h̃− h̃n), where

Qn(x) =
d∏
j=1

(
1− |xj |

n

)
+

.

We take Ḟ (n) to be the noise satisfying

Cov(Ḟ (n)(t, x), Ḟ (n)(s, y)) = δ0(t− s)gn(x− y),

where gn = hn ∗ h̃n.
By an argument similar to that of the proof of [10, Lemma 9.3], we have that for any

γ ∈ (0, β ∧ 1) there exists a positive constant c such that for all s > 0 and n > 1,

(ps ∗ fn)(0) 6 c
1

nγ
1

s(β−γ)/α
.
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As a consequence, using the semigroup property, we obtain that∫ t

0

∫
Rd×Rd

pt−s(x− y)pt−s(x− z)fn(y − z) dy dz ds

=

∫ t

0

∫
Rd

p2(t−s)(z)fn(z) dz ds =

∫ t

0
(p2r ∗ fn)(0)dr

6 ct1−
β−γ
α

1

nγ
.

(3.1)

Next, consider the following integral equation,

U
(n)
t (x) = (pt ∗ u0)(x) +

∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)σ(U (n)
s (y))F (n)(dsdy). (3.2)

The unique solution to this integral equation can be found via a standard fixed point

argument. Fix n > 1. Set U
(n,0)
t := u0 and for each j > 1, the jth Picard iteration is given

by

U
(n,j)
t (x) =

∫
Rd

pt(x− y)u0(y) dy +

∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)σ(U (n,j−1)
s (y))F (n)(dsdy).

Moreover, one can show that under our current standing conditions, the unique solution
satisfies for all t > 0 and k > 2,

sup
n>1

sup
s∈[0, t]

sup
x∈Rd

E|U (n)
s (x)|k 6 c2e

c1k(2α−β)/(α−β)t,

for some positive constants c1, c2(k). As a consequence, for all t > 0, k > 2, and sufficiently
large n,

sup
s∈[0, t]

sup
x∈Rd

E|U (n,n−1)
s (x)|k 6 c2e

c1k(2α−β)/(α−β)t, (3.3)

for some positive constants c1, c2(k). We also have the following result which gives us the
independent quantities we need.

Lemma 3.1. Let t > 0 and n > 1. Suppose that {xi}∞i=1 ⊂ Rd with |xi − xj | > 2n1+1/αt1/α

for all i 6= j. Then {U (n,n)
t (xi)}∞i=1 are independent random variables.

Proof. The proof is similar to that of [10, Lemma 5.4] and is omitted.

We will also need the fact that the random variables defined above approximate the
solution to (1.1). We provide a proof of this fact next.
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Lemma 3.2. For all T > 0 and k > 2, there exist positive constants c1 and c2 such that for
large enough n,

sup
t∈[0,T ]

sup
x∈Rd

E|ut(x)− U (n,n)
t (x)|k 6 c2

1

nγk/2
ec1k

(2α−β)/(α−β)t.

Proof. Consider the following integral equation,

V
(n)
t (x) = (pt ∗ u0)(x) +

∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)σ(V (n)
s (y))F (dsdy).

We first look at V
(n)
t (x)− U (n,n)

t (x) and its moments.

V
(n)
t (x)− U (n,n)

t (x) =

∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)σ(V (n)
s (y))F (dsdy)

−
∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)σ(U (n,n−1)
s (y))F (n)(dsdy).

We rewrite the above as

V
(n)
t (x)− U (n,n)

t (x) =

∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)[σ(V (n)
s (y))− σ(U (n,n−1)

s (y))]F (dsdy)

−
∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)σ(U (n,n−1)
s (y))[F (n)(dsdy)− F (dsdy)]

:= I1 + I2.

We start bounding I2. Using Burkholder-Davis-Gundy inequality and Minkowski’s inequal-
ities together with (3.3), we get that

E|I2|k 6 c2e
c1k(2α−β)/α−βt

(∫ t

0

∫
Rd×Rd

pt−s(x− y)pt−s(x− z)fn(y − z) dy dz ds

)k/2
.

Appealing to (3.1), we conclude that

sup
t∈[0,T ]

sup
x∈Rd

E|I2|k 6 c2(T )
ec1k

(2α−β)/α−βt

nγk/2
.

We next treat I1. We look at U
(n,n)
t (x)− U (n,n−1)

t (x). Using Burkholder-Davis-Gundy
and Minkowski’s inequalities together with Lemma 2.2(c), we obtain

E|U (n,n)
t (x)− U (n,n−1)

t (x)|k 6 c(k) sup
s∈[0,t]

sup
x∈Rd

E|U (n,n−1)
s (x)− U (n,n−2)

s (x)|k
(∫ t

0
s−β/αds

)k/2
.
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Iterating n times this procedure and choosing T 6 1/2, we get

sup
t∈[0,T ]

E|U (n,n)
t (x)− U (n,n−1)

t (x)|k 6 c(k)Tnk/2 6 c(k)

(
1

2

)nk/2
6 c(k)

1

nγk/2
.

Splitting the interval [0, T ] into subintervals of length 1
2 , we deduce that for all T > 0,

sup
t∈[0,T ]

E|U (n,n)
t (x)− U (n,n−1)

t (x)|k 6 c(k, T )
1

nγk/2
.

We next set
Dnt := sup

x∈Rd

E|V (n)
t (x)− U (n,n)

t (x)|k.

Using Burkholder-Davis-Gundy inequality and Minkowski’s inequalities, together with Lemma

2.2(c), and adding and substracting the term U
(n,n)
s (y), we obtain

E|I1|k 6 c(k, T )

∫ t

0

Dns + n−γk/2

(t− s)β/α
ds

Using Proposition 2.5,

E|I1|k 6 c2

(∫ t

0

Dns
(t− s)β/α

ds+
ec1k

(2α−β)/α−βt

nγk/2

)
.

Combining the bound for I2 and I1, we obtain

Dnt 6 c2

(
ec1k

(2α−β)/α−βt

nγk/2
+

∫ t

0

Dns
(t− s)β/α

ds

)
.

By an appropriate use of Proposition 2.5, we conclude that

Dnt 6 c2
ec1k

(2α−β)/α−βt

nγk/2
. (3.4)

We now look at ut(x)− V (n)
t (x) to obtain

ut(x)− V (n)
t (x) =

∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)[σ(us(y)− V (n)
s (y))]F (dsdy)

+

∫ t

0

∫
B(x, (nt)1/α)c

pt−s(x− y)σ(us(y))F (dsdy),
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which gives us

E|ut(x)− V (n)
s (x)|k 6 c

(
E

∣∣∣∣∣
∫ t

0

∫
B(x, (nt)1/α)

pt−s(x− y)[σ(us(y)− V (n)
s (y))]F (dsdy)

∣∣∣∣∣
k

+ E

∣∣∣∣∣
∫ t

0

∫
B(x, (nt)1/α)c

pt−s(x− y)σ(us(y))F (dsdy)

∣∣∣∣∣
k )

:= I1 + I2.

We bound the second term first. Using the bound on the moments of the solution together
with Lemma 2.2(a), we obtain

I2 6 c2e
c1k(2α−β)/(α−β)t

[∫ t

0

∫
B(x, (nt)1/α)2,c

pt−s(x− y)pt−s(x− w)f(y − w) dy dw ds

]k/2
6 c2

1

n(2+β/α)k/2
ec1k

(2α−β)/(α−β)t.

We now consider the first term.

I1 6 c

∫ t

0
sup
y∈Rd

E|us(y)− V (n)
s (y)|k

∫
Rd×Rd

pt−s(x− y)pt−s(x− w)f(y − w) dy dw ds

6 c

∫ t

0
sup
y∈Rd

E|us(y)− V (n)
s (y)|k 1

(t− s)β/α
ds.

Putting these two bounds together and using Proposition 2.2, we obtain

sup
s∈[0,T ]

sup
x∈Rd

E|us(x)− V (n)
s (x)|k 6 c2

1

n(2+β/α)k/2
ec1k

(2α−β)/(α−β)t. (3.5)

Combining the estimates (3.4) and (3.5) and using the fact that γ < 2 +β/α we obtain the
required result.

4 Proof of the spatial asymptotic results

In this section we give the proof of Theorems 1.3 and 1.5. We start with several preliminary
results.

4.1 Tail estimates I

This subsection is devoted to the proof of two tail estimates which are a consequence of the
sharp moment estimates in Theorem 1.2.
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Lemma 4.1. There exists a constant cA,α,β > 0 such that for all λ > 0 and t > 0,

sup
x∈Rd

P(ut(x) > λ) 6 exp

(
−
cA,α,βν

β/α

t(α−β)/α

∣∣∣∣log
λ

Aū0

∣∣∣∣(2α−β)/α
)
,

where A and ū0 are defined in Theorem 1.2.

Proof. We start by using Chebyshev’s inequality to obtain,

P(ut(x) > λ) 6
1

λk
E|ut(x)|k

6 Akūk0λ
−keAk

(2α−β)/(α−β)ν−β/(α−β)t

6 exp

(
Ak

2α−β
α−β ν−β/(α−β)t− k log

λ

Aū0

)
.

The function F (k) := Ak
2α−β
α−β ν−β/(α−β)t− k log λ

Aū0
is optimised at the point

k∗ =

[
νβ/(α−β)

At

(
α− β
2α− β

)(
log

λ

Aū0

)](α−β)/α

.

Some computations then give

P(ut(x) > λ) 6 exp

(
−
cA,α,βν

β/α

t(α−β)/α

∣∣∣∣log
λ

Aū0

∣∣∣∣(2α−β)/α
)
,

where cA,α,β = α
2α−β

[
1
A

(
α−β
2α−β

)](α−β)/α
.

Lemma 4.2. Fix t > 0. Set λ :=
u0
2Ae

tkα/(α−β)ν−β/(α−β)/A for k > k0, where k0 is a large
number. Then there exists a constant c̃A,α,β > 0,

inf
x∈Rd

P(ut(x) > λ) >
1

4
exp

(
−
c̃A,α,βν

β/α

t(α−β)/α

(
log

2λA

u0

)(2α−β)/α
(

1 +
1

log 2λA
u0

))
.

The quantities A and u0 are defined in Theorem 1.2.

Proof. By Paley-Zygmund inequality, we have for all k > 2,

P(ut(x) >
1

2
‖ut(x)‖L2k(Ω)) >

(E|ut(x)|2k)2

4E|ut(x)|4k
.
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Set λ :=
u0
2Ae

tkα/(α−β)ν−β/(α−β)/A. Taking into account the bounds on the moments, we
obtain

P(ut(x) > λ) >
1

4
exp

(
−cA,α,βk(2α−β)/(α−β)ν−β/(α−β)t+ k log

(
ũ4

0

A8

))
, (4.1)

where cA,α,β := 2(2α−β)/(α−β)[A2(2α−β)/(α−β)− 2
A ] and ũ0 =

u0
ū0
. Finally, some computations

we get the desired bound.

4.2 Insensitivity analysis

The next theorem is crucial in the proof of the spatial asymptotic result when the initial
condition is not bounded below. Intuitively, we study how the solution is sensible to changes
to the initial data, and we conclude that when R is large, the values of the solution in a
given ball of radius R are insensitive to the changes of the initial value outside the ball. Here
α = 2, so that the operator now is the usual Laplacian instead of the fractional Laplacian.

Theorem 4.3. Let a ∈ Rd and R > 1. Let u and v be the solution to (1.2) for α = 2
with respective initial conditions u0 and v0. Suppose that on B(a, 2R), u0(x) = v0(x) and
v0(x) > u0(x) or v0(x) 6 u0(x) everywhere else. Then, there exists a function g(t) such
that for all t > 0,

sup
x∈B(a,R)

E|ut(x)− vt(x)|2 6 g(t)‖u0 − v0‖2L∞(Rd)e
−R

2

t .

Proof. The proof will relies on computations done in [6]. More precisely, we make use of
the proof of part(2) of Theorem 2.4 of that paper. We first introduce some notations. Set

Et(x) := (Gu0)t(x)− (Gv0)t(x)

Dt(x, x̃) := E[ut(x)− vt(x)][ut(x̃)− vt(x̃)]

Dσ
t (x, x̃) := E[σ(ut(x))− σ(vt(x))][σ(ut(x̃))− σ(vt(x̃))].

From the mild solution and the fact σ is globally Lipschitz, we have

Dt(x, x̃)

= Et(x)Et(x̃) +

∫ t

0

∫∫
Rd×Rd

pt−s(x− y1)pt−s(x− ỹ1)f(y1, ỹ1)Dσ
s (y1, ỹ1) dy1 dỹ1ds

6 Et(x)Et(x̃) + c1

∫ t

0

∫∫
Rd×Rd

pt−s(x− y1)pt−s(x− ỹ1)f(y1, ỹ1)Ds(y1, ỹ1) dy1 dỹ1ds.

The recursive argument used in the proof of Theorem 2.4 of [6] together with inequality
(2.19) of Lemma 2.7 of the same paper yield the following bound,

Dt(x, x̃) 6 F (t)Et(x)Et(x̃),
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where F (t) is some function of t. Other than the fact that it is well defined for any t > 0,
we won’t need any other information on this function. We now use Lemma 2.2 of [4], to
see that

sup
x∈B(a,R)

Et(x) 6 c2‖u0 − v0‖L∞(Rd)e
−R2/(2t).

We combine the above estimate with x = x̃ to see that there exists a function g(t) such
that

sup
x∈B(a,R)

E|ut(x)− vt(x)|2 6 g(t)‖u0 − v0‖2L∞(Rd)e
−R

2

t .

4.3 Tail Estimates II

In this subsection we are going to prove tail estimates when the initial condition is not
bounded below. The next result is an extension of [4, Theorem 2.4]. Here, we are still in
the case α = 2.

Theorem 4.4. Suppose that u and u0 are as in Theorem 1.5. Then, there exist positive
constants K1,K2 such that for all λ > 0,

−K1
Λ2−β/2

t1−β/2
6 lim inf
|x|→∞

log P(ut(x) > λ)

log |x|
6 lim sup
|x|→∞

log P(ut(x) > λ)

log |x|
6 −K2

Λ2−β/2

t1−β/2
,

uniformly for all t in every fixed compact subset of (0,∞).

Proof. We prove the lower bound first. Fix a ∈ Rd. Let wt be the solution to (1.1) when
the initial condition is given by the following

w0(x) := u0(|x| ∨ (3|a|)) for all x ∈ Rd.

Since w0 6 u0, the weak comparison principle Theorem 1.6 tells us that for all t > 0 and
x ∈ Rd,

wt(x) 6 ut(x).

This means that finding a lower bound on the tail distribution of ut(x) amounts to finding
a lower bound for the corresponding distribution of wt(x).

Now, let uat (x) be the solution to (1.1) with initial condition u0(3|a|). Fix λ > 0. Then,
by Theorem 4.3, whenever R = |a| > 1,

sup
x∈B(a, |a|)

P(|uat (x)− wt(x)| > λ) 6 sup
x∈B(a, |a|)

E|uat (x)− wt(x)|2

λ2

6 g(t)
1

λ2
e−|a|

2/t,
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where g(t) is independent of a.
Recall that u0(3|a|) is decreasing in a and

lim
a→∞

u0(3|a|) = 0.

Let k0 to be as in Lemma 4.2, we can take |a| large enough so that

k :=

(
Aν

β
2−β

t
log

(
4Aλ

u0(3|a|)

))1−β/2

> k0,

and ∣∣∣∣log

(
4λA

u0(3|a|)

)∣∣∣∣ > 1

2
.

We now use Lemma 4.2 to obtain

inf
x∈B(a, |a|)

P(uat (x) > 2λ) >
1

4
exp

(
−
cA,βν

β/2

t1−β/2

(
log

4λA

u0

)2−β/2
)
.

Upon taking |a| larger if required so that∣∣∣∣log
4λA

u0(3|a|)

∣∣∣∣ 6 2| log u0(3|a|)|,

we can use the above together with the definition of Λ to write

inf
x∈B(a, |a|)

P(ut(x) > λ) > inf
x∈B(a, |a|)

P(uat (x) > 2λ)− sup
x∈B(a, |a|)

P(|uat (x)− wt(x)| > λ)

>
1

4
exp

(
−
c̃A,βν

β/2Λ2−β/2

t1−β/2
log |a|

)
− g(t)

1

λ2
e−|a|

2/t.

The above immediately gives the lower bound needed. We now turn our attention to the
upper bound. The proof uses a similar strategy to the one of the upper bound. We look at
wt, the solution to (1.1) but this time, the initial condition is defined by

w0(x) := u0(|x| ∧ 2|a|),

so that now we have w0(x) > u0(x) which gives us wt(x) > ut(x) by the weak comparison
principle. Now consider uat a solution with constant initial condition given by

z0(x) := u0(2|a|).
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We choose a large enough such that∣∣∣∣log
λ

2Au0(2|a|)

∣∣∣∣ > | log u0(2|a|)|
2

.

Then, by Theorem 4.3 and Lemma 4.1, for |a| large enough

sup
x∈B(a, |a|)

P(ut(x) > λ) 6 sup
x∈B(a, |a|)

P(wt(x) > λ)

6 sup
x∈B(a, |a|)

P(uat (x) > λ/2) + sup
x∈B(a, |a|)

P(|uat (x)− wt(x)| > λ/2)

6 exp

(
−
cA,βΛ2−β/2

t1−β/2
log |a|

)
+ g(t)

1

λ2
e−|a|

2/t,

which implies the desired upper bound and thus finishes the proof.

4.4 Proof of Theorem 1.3

Proof of Theorem 1.3. Let t > 0 and set

L :=
u0

6A
exp

[
δ1t

(α−β)/(2α−β) |logR|α/(2α−β) ν−β/(2α−β)
]
,

where δ1 be a positive constant. Then, we choose

k = (Aδ1)(α−β)/α

(
| log(R)|

t

)(α−β)/(2α−β)

νβ/(2α−β)

so that L becomes

L :=
u0

6A
etk

α/(α−β)ν−β/(α−β)/A.

We now apply inequality (4.1) to obtain for sufficiently large R,

P(ut(x) > 3L)

>
1

4
exp

(
− cA,α,β(Aδ1)(2α−β)/α| logR|

− log
(
A8
)

(Aδ1)(α−β)/α (| logR|/t)(α−β)/(2α−β) νβ/(2α−β)

)
>

1

4Rδ2
,

where δ1 is chosen such that δ2 < 2.
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Let N > 0 and choose x1, x2, . . . , xN ∈ Rd such that |xi − xj | > 2n1+1/αt1/α for i 6= j.

Lemma 3.1 then implies that the U
(n,n)
t (xi)’s are independent for large enough n. We have

P( max
16i6N

ut(xi) < L) 6 P( max
16i6N

|U (n,n)
t (xi)| < 2L)

+ P(|ut(xi)− U (n,n)
t (xi)| > L for some 1 6 i 6 N)

:= I1 + I2.

We will look at the second term first. By Lemma 3.2, for all k > 2 and large n,

I2 6
NE|ut(xi)− U (n,n)

t (xi)|k

Lk
6 c2

N

nγk/2
ec1k

(2α−β)/(α−β)t,

where we have chosen R large enough such that L > 1.
We now choose n > N10/(3γ) so that we have

I2 6 c2
1

N2/3
ec1k

(2α−β)/(α−β)t.

Upon choosing N to be an integer greater than R3, we obtain

I2 6 c(T, k)
1

R2
.

To bound I1, we have for large enough R,

P(U
(n,n)
t (xi) > 2L) > P(|ut(xi)| > 3L)− P(|ut(xi)− U (n,n)

t (xi)| > L)

> c

(
1

Rδ2
− 1

R2

)
>

c

R2
.

By independence, we have

I1 6
(

1− P(U
(n,n)
t (xi) > 2L)

)N
.

Combining the above and bearing in mind that N is larger than R3, we obtain

P( max
16i6N

ut(xi) < L) 6
(

1− P(U
(n,n)
t (xi) > 2L)

)N
+

c

R2

6
c

R2
,

for R large enough. And hence by a standard monotonicity argument, we have

P

(
sup

x∈B(0, R)
ut(x) 6

u0

6A
exp

[
δ1t

(α−β)/(2α−β) (logR)
α

(2α−β) ν−β/(2α−β)
])

6
c

R2
.
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We now use Borel Cantelli lemma to obtain that almost surely, for R→∞, we have

sup
x∈B(0, R)

ut(x) >
u0

6A
exp

[
δ1t

(α−β)/(2α−β) (logR)
α

2α−β
]
,

which concludes the proof of the lower bound. We now prove the upper bound. Set

U := Aū0 exp
[
δ3t

(α−β)/(2α−β) (logR)
α

2α−β ν−β/(2α−β)
]
,

for some positive constant δ3. For x ∈ Zd, denote the cube of side length 1 by Qx. Let R be
a positive integer and decompose [−R, R]d into cubes of the form Qx so that [−R, R]d =
∪x∈SQx where S is some set of finite cardinality. By Proposition 2.3, for any x ∈ Rd and
k > 2, we have

E

[
sup

w, y∈Qx
|ut(w)− ut(y)|k

]
6 c2 exp

[
c1k

(2α−β)/(α−β)t
]
. (4.2)

We can now write

P

(
sup

x∈[−R,R]d
ut(x) > 2U

)
6 P

(
max
x∈S

ut(x) > U

)
+ P

(
max
x∈S

sup
y∈Qx

|ut(y)− ut(x)| > U

)
:= I1 + I2.

To bound I1, we use Lemma 4.1 to obtain

I1 6 |S|P(ut(x) > U) 6
c

Rδ4
,

where the constant δ3 is chosen so that δ4 > 1. We now bound I2 by making use of (4.2),

I2 6 |S|P

(
sup
y∈Qx

|ut(y)− ut(x)| > U

)
6

c2|S| exp(c1k
(2α−β)/(α−β)t)

exp(kδ3t(α−β)/(2α−β)(logR)α/(2α−β)ν−β/(2α−β))
.

We now set k = δ5

(
logR
t

)(α−β)/(2α−β)
νβ/(2α−β) to obtain

I2 6
c

Rδ6
,

where we choose δ3 so that δ6 > 1. We can conclude that

∞∑
R=1

P

(
sup

x∈[−R,R]d
ut(x) > 2U

)
<∞.

We can now use Borel-Cantelli and the fact that B(0, R) ⊂ [−R, R]d to finish the proof.
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4.5 Proof of Theorem 1.5.

Proof of Theorem 1.5. We split the proof into two parts. In the first part we assume that
Λ > 0, although Λ =∞ is also possible as a particular case. Consider a sequence {xn}n>1 ⊂
Rd such that |xn| = n1/2 and all xn lie on a straight line through the origin. We next choose

λ ∈ (0, Λ),

and consider

t(j, n) :=
jT

n
, for j ∈ [

nτ

T
, n] ∩ Z.

We look at the following parameters τ and T such that

0 < τ < T :=
K

2/(2−β)
2 λ(4−β)/(2−β)

82/(2−β)
,

where K2 is the constant in the statement of Theorem 4.4. Then, by Theorem 4.4, for all
θ > 0, t ∈ (τ, T ) and large enough n,

P

(
max

j∈[nτ
T
, n]
ut(j, n)(xn) > θ

)
6

∑
j∈[nτ

T
, n]∩Z

P
(
ut(j, n)(xn) > θ

)
6 c

∑
j∈[nτ

T
, n]∩Z

exp

(
− K2λ

(4−β)/2

t(j, n)(2−β)/2
log |xn|

)

6 cn exp

(
−K2λ

(4−β)/2

2T (2−β)/2
log n

)
6

c

n3
.

An application of Borel-Cantelli lemma gives us

lim
n→∞

max
j∈[nτ

T
, n]∩Z

ut(j, n)(xn) = 0 a.s.

We now use Proposition 2.3 to obtain for all θ > 0,

P
{

sup
t∈(τ, T )

min
j∈[nτ

T
, n]∩Z

|ut(j, n)(xn)− ut(xn)| > θ
}

6 P
{

sup
t∈(τ, T ):|s−t|6T/n

|us(xn)− ut(xn)| > θ
}

6
cT,k
nη̃k

.
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By choosing k large enough, we can apply Borel-Cantelli and use the above to see that

lim
n→∞

sup
t∈(τ, T )

ut(xn) = 0 a.s. (4.3)

We next use Proposition 2.3, to get for all θ > 0,

P
{

sup
t∈(τ, T )

sup
x∈[xn, xn+1]

|ut(xn)− ut(x)| > θ
}

6 cn1/2P
{

sup
t∈(τ, T )

sup
|x−y|6 1

n

|ut(x)− ut(y)| > θ
}

6 c
n1/2

nηk
.

We then take k large enough, use Borel-Cantelli again and (4.3) to conclude that

lim
|x|→∞

sup
t∈(τ, T )

ut(x) = 0 a.s,

where in the above, x tends to infinity along a fixed straight line. Since the line is arbitrary
and u is almost surely jointly continuous (Proposition 2.3), it follows that

P

(
sup
x∈Rd

ut(x) <∞, for all t ∈ (τ, T )

)
= 1.

We next assume that Λ <∞. Fix θ > 0 and set

Et(x) := {ω ∈ Ω : ut(x) 6 θ} for every t > 0, x ∈ Rd.

We will show that solution is almost surely unbounded for large enough times. Let

τ > (2K1Λ2−β/2)2/(2−β) and T > τ.

According to Theorem 4.4, for every λ ∈ (Λ, (τ1−β/2/(2K1))2/(4−β)], we can find a real
number n(λ, θ) > 1 such that

P(Et(x)) 6
(

1− |x|−K1λ2−β/2/t1−β/2
)
6

(
1− 1

|x|1/2

)
, (4.4)

uniformly for all |x| > n(λ, θ) and t ∈ (τ, T ). Consider the events

E
(n)
t (x) := {ω ∈ Ω : U

(n, n)
t (x) 6 2θ} for every x ∈ Rd, n > 1.
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By Lemma 3.2, we get

sup
t∈(τ, T )

P(Et(x)\Ent (x)) 6 sup
t∈(τ, T )

P
(∣∣∣ut(x)− U (n, n)

t (x)
∣∣∣ > θ

)
6

cT,k

nγk/2
.

(4.5)

Therefore,

P

 ⋂
x∈[n4, 2n4]d

Et(x)

 6 P

 ⋂
`∈[n4, 2n4]d∩Zd

Et(`)


6 P

 ⋂
`∈[n4, 2n4]d∩Zd

E
(n)
t (`)

+
c

nγk/2
,

uniformly for all n > 1 and t ∈ (τ, T ). We will now look at the first term of the above
display. Set x1 := (n4, . . . , n4) ∈ Rd and define iteratively for j > 1,

xj+1 := xj + (2n3/2t1/2, . . . , 2n3/2t1/2).

Let

γn := max
{
j > 1 : xj,i 6 2n4, for all i = 1, . . . , d

}
,

where xj = (xj,1, . . . , xj,d). Observe that

γn >
n5/2

2T 1/2
.

By independence (Lemma 3.1), (4.5) and (4.4), we get

P

 ⋂
`∈[n4, 2n4]d∩Zd

E
(n)
t (`)

 6 P

 γn⋂
j=1

E
(n)
t (xj)

 =

γn∏
j=1

P
(
E

(n)
t (xj)

)

6
γn∏
j=1

[P (Et(xj)) +
c

nγk/2
]

6

[
1− 1√

2n4
+

c

nγk/2

]γn
.

We now take k larger if necessary to obtain

P

 ⋂
`∈[n4, 2n4]d∩Zd

E
(n)
t (`)

 6 exp(−c1n
1/2).
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Combining the above estimates, we have for large enough k,

sup
t∈(τ, T )

P

(
sup

x∈[n4,2n4]d
ut(x) 6 θ

)
6

c

nγk/2
. (4.6)

We next write

P

(
inf

t∈(τ, T )
sup

x∈[n4, 2n4]d
ut(x) 6 θ

)
6 P

(
inf

16i6n
sup

x∈[n4, 2n4]d
uti(x) 6 2θ

)

+ P

(
inf

|t−s|<1/n
sup

x∈[n4, 2n4]d
|us(x)− ut(x)| > θ

)
:= I1 + I2.

From (4.6), we can bound the first term as follows

I1 6
cn

nγk/2
.

We now look at the second term. Using Proposition 2.3 we obtain that

I2 6
1+n4∑
k=1

P

(
inf

|t−s|<1/n
sup

x∈(k,k+1)d
|us(x)− ut(x)| > θ

)
6

c

nκ
,

where κ can be made as large as possible. Combining the above estimates, we conclude
that

P

(
inf

t∈(τ, T )
sup
x∈Rd

ut(x) < θ

)
= 0.

For each N > 1, set

TN := inf{t > 0 : sup
x∈Rd

ut(x) > N}.

And let T := limN→∞ TN . By the above computations, we have t1 < T < t2, where t1 and
t2 are deterministic constant depending on Λ. For any t < T , we have supx∈Rd ut(x) <∞
otherwise this would contradict the definition of T . On the other hand, if we have t > T ,
we then have supx∈Rd ut(x) =∞.

5 Proof of the comparison principle and strict positivity

In order to prove the strong comparison principle (Theorem 1.7), we need the next two
preliminary results which are extensions of [3, Lemmas 7.1 and 7.2] (see also [5, Lemmas
4.1 and 4.3]). In particular, the proof of the next proposition is new compared with that
of [3, Lemma 7.1] or [5, Lemma 4.1].
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Proposition 5.1. Let M > 0. For all R > 0 and t > 0, there exist constants 0 < cR < 1
and 1 < m0(t, R) <∞ such that for all m > m0,∫

B(0, R)
ps(x− y) dy > cR for all (s, x) ∈ Am,t,R,

where

Am,t,R := {(s, x) : x ∈ B(0, R+M(t/m)1/α) and
t

2m
6 s 6

t

m
}.

Proof. We take m large enough so that ( tm)1/α 6 R. Then, using the the lower bound (2.1),
we obtain ∫

B(0, R)
ps(x− y) dy >

∫
B(0, R)∩B(x, 2M(t/m)1/α)

ps(x− y) dy

> c

(
t

m

)d/α
s−d/α

> c

where the constant c might depend on R and M but can be chosen to be strictly less than
1.

Remark 5.2. While the above result holds for all α ∈ (0, 2), we were unable to use it to
prove strict positivity for α < 1. Ideally, we would need Lemma 4.1 of [5] for α < 1 as well.
Let d = 1 and set u0(x) = 1[0, 1](x). We now choose x = 1 + 1

m and t
2m 6 s 6 t

m so that
we are exactly in the setting of Lemma 4.1 of [5]. We now use the usual bound on the heat
kernel to find that ∫

R
ps(x− y)u0(y) dy 6

∫ 1

0

s

|x− y|1+α
dy

6 c
t

m

(
1

|x| − 1

)α
6 cmα−1.

Since α < 1, the right hand of the above inequality goes to zero as m→∞. We have thus
proved that for Lemma 4.1 of [5] cannot hold for α < 1 and therefore the strict positivity
result cannot follow directly from the method of that paper. The failure of this method can
also be seen by the fact that as m tends to infinity, Bm

k defined in the proof of Theorem 1.7
tends to B(0, R) when α < 1.

Proposition 5.3. Fix R > 0, t > 0 and M > 0 and assume that

u0(x) > 1B(0, R)(x).
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Then there exist positive constants c1(R), c2(R), and m0(t, R) such that for all m > m0,

P(us(x) > c11B(0, R+M(t/m)1/α)(x) for all
t

2m
6 s 6

t

m
and x ∈ Rd)

> 1− cm,

where
cm := exp

(
−c2m

(α−β)/α[logm](2β−α)/α
)
.

Proof. From the mild formulation of the solution of the equation, we have

us(x) =

∫
Rd

ps(x− y)u0(y) dy +

∫ s

0

∫
Rd

ps−l(x− y)σ(ul(y))F (dy dl).

By Proposition 5.1, there exists a 0 < c1 < 1 such that for large enough m,∫
Rd

ps(x− y)u0(y) dy > 2c11B(0, R+M(t/m)1/α)(x) for all x ∈ Rd and
t

2m
6 s 6

t

m
.

By using the mild formulation and the above, we obtain

P(us(x) 6 c11B(0, R+M(t/m)1/α)(x) for some
t

2m
6 s 6

t

m
)

6 P
(∫ s

0

∫
Rd

ps−l(x− y)σ(ul(y))F (dy dl) < −c1 for some (s, x) ∈ Am,t,R
)

6 P
( ∣∣∣∣∫ s

0

∫
Rd

ps−l(x− y)σ(ul(y))F (dy dl)

∣∣∣∣ > c1 for some (s, x) ∈ Am,t,R
)
.

The term in the above display can now be bounded by

c−k1 E sup
(s,x)∈Am,t,R

∣∣∣∣∫ s

0

∫
Rd

ps−l(x− y)σ(ul(y))F (dy dl)

∣∣∣∣k .
The above in turn can be bounded using Proposition 2.3 to obtain

E sup
(s,x)∈Am,t,R

∣∣∣∣∫ s

0

∫
Rd

ps−l(x− y)σ(ul(y))F (dy dl)

∣∣∣∣k
6 cρη̃k exp(Ak(2α−β)/(α−β)ρ),

where ρ := t/m and η̃ := α−β
2α . We now optimise the above quantity with respect to k and

combine all our estimates to end up with the result. See [3] and [5] for details.
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5.1 Proof of Theorem 1.7

We next prove the strong comparison principle. We leave it to the reader ro consult [19]
for the original idea and to [3] and [5] for further details.

Proof. It suffices to show that if u0 has compact support then ut(x) > 0 for all t > 0 and
x ∈ Rd a.s. The general case will follow as in [3] and [5]. Assume that u0(x) = 1B(0, R)(x),
for some R > 0. Choose M > 0, t > 0 and m > 0. Define for k = 1, . . . , 2m− 1,

Ak :=

{
us(x) > ck+1

1 1Bmk (x) for all s ∈
[ kt

2m
,

(k + 1)t

2m

]
and x ∈ Rd

}
,

where Bm
k = B(0, R+kM(t/m)1/α) and c1 is as in Proposition 5.3. It is clear that if α > 1,

then as m gets large, the sets Bm
k cover the whole space. For α = 1, the sets Bm

k cover
B(0, R+Mt1/α). We write

P(us(x) > 0 for all t/2 6 s 6 t and x ∈ B(0, M/2))

> lim
m→∞

P(∩16k62m−1Ak)

= lim
m→∞

P(A1)
∏

26k62m−1

P(Ak|Ak−1 ∩ · · · ∩A1).

(5.1)

Proposition 5.3 can be used to obtain

P(A1) > 1− cm, (5.2)

whenever m is large enough since c1 > c2
1. On the other hand, on the event Ak−1, k > 2,

u kt
2m

(x) > ck11Bmk−1
(x), for all x ∈ Rd.

By the Markov property, {us+ kt
2m

(x), s > 0, x ∈ Rd} solves (1.1) with the time-shifted noise

Ḟk(s, x) := Ḟ (s+ kt
2m , x) starting from u kt

2m
(x). Let {v(k)

s (x), s > 0, x ∈ Rd} be the solution

to (1.1) with the time-shifted noise Ḟk(s, x), σ replaced by σk(x) = c−k1 σ(ck1x), and initial
condition 1Bmk−1

(x). On one hand, by Proposition 5.3 we get that

P
(
v(k)
s (x) > c11Bmk (x) for all s ∈

[ t

2m
,
t

m

]
and x ∈ Rd

)
> 1− cm,

whenever m is large enough. On the other hand, by Markov property and the weak compar-

ison principle (Theorem 1.6) we see that on Ak−1, us+kt/(2m)(x) > ck1v
(k)
s (x) for all x ∈ Rd

and s > 0. We therefore have

P(Ak|Fkt/(2m)) > 1− cm on Ak−1.
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And hence
P(Ak|Ak−1 ∩ · · · ∩A1) > 1− cm. (5.3)

From (5.1), (5.2) and (5.3), we conclude that

P(us(x) > 0 for all t/2 6 s 6 t and x ∈ B(0, M/2)) > (1− cm)2m−1 → 1,

as m → ∞. Since the above holds any arbitrary t > 0 and R,M > 0, the proof is
complete.

5.2 Proof of Theorem 1.8

Proof. The proof is very similar to those in [3], [5] and [8], using the strong Markov property
(Lemma 2.4) and the weak comparison principle (Theorem 1.6). So we omit it.

Remark 5.4. As mentioned in the introduction, the above comparison theorem and strict
positivity results are shown under the assumption that the initial conditions are bounded
functions. A wider class of initial conditions could be studied as in [3] and [5]. We leave it
for further work.
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