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ARTICLE INFO ABSTRACT

Article history: In this paper, we consider a simple Lévy process given by a Brownian motion and a
Received 20 February 2014 compensated Poisson process, whose drift and diffusion parameters as well as its intensity
Accepted after revision 26 August 2014 are unknown. Supposing that the process is observed discretely at high frequency, we
Available online 20 September 2014 derive the local asymptotic normality (LAN) property. In order to obtain this result,
Presented by the Editorial Board Malliavin calculus and Girsanov’s theorem are applied in order to write the log-likelihood

ratio in terms of sums of conditional expectations, for which a central limit theorem for
triangular arrays can be applied.
© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RESUME

Dans cet article, nous considérons un processus de Lévy simple donné par un mouvement
brownien et un processus de Poisson compensé, dont les paramétres et l'intensité sont
inconnus. En supposant que le processus est observé a haute fréquence, nous obtenons la
propriété de normalité asymptotique locale. Pour cela, le calcul de Malliavin et le théoréme
de Girsanov sont appliqués afin d’écrire le logarithme du rapport de vraisemblances comme
une somme d’espérances conditionnelles, pour laquelle un théoréme central limite pour
des suites triangulaires peut étre appliqué.

© 2014 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

On a complete probability space (£2, F, P), we consider the stochastic process X?7-* = (Xf"m)tzo in R defined by

X?* = xo 4 6t + 0B + N — At, 1)

where B = (Bt)r>0 1S a standard Brownian motion, N = (N¢)>o 5 a Poisson process with intensity A > 0 independent of B,
and we denote by (N});>o the compensated Poisson process N} := N; — At. The parameters (6,0,1) € @ x ¥ x A are
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unknown and @, X' and A are closed intervals of R,R% and RY, where R% =R, \ {0}. Let {]?t}tzo denote the natural

filtration generated by B and N. We denote by P?:°* the probability law induced by the ]?t—adapted cadlag stochastic
pé),(r,l E(pﬁ.o,)\)
and

process X?:9-* and by E?9* the expectation with respect to P?-7-*, Let
p?-9-*_probability and in P?-?-*-law, respectively.

For fixed (8, 09, 10) € @ x X x A, we consider an equidistant discrete observation of the process X%-%-* denoted by
X" = (Xty, Xty --s Xt,), Where t, =kA, for k € {0, ...,n}, and A, <1. We assume that nA, — oo, and A; — 0, n — oo.

Given the process (X!'”"*);=0, we denote by p(-; (6,0, 1)) the density of the vector (Xfo’a’k, an"”’x). In particular, the
density of X" is p(-; (6p, 00, Ag)).

For (u, v, w) € R3, set 0, := 6 + \/nLTn’G” =09+ ﬁ,kn =20+ \/nLTn'

The aim of this paper is to prove that the following LAN property for the likelihood at (6p, 69, Ag) holds.

denote the convergence in

Theorem 1.1. For all z = (u, v, w) € R3, asn — oo,
p(X"; (6n, On, An)) L£(PP000%0)
p(X™; (6o, 00, 20))

where N'(0, I" (8, 00, Mo)) is a centered R>-valued Gaussian vector with covariance matrix

1 1 0 -1
F(GO,O’O,)\()):—Z 0 2 0 5

g

% \-1 0 1+4%

0
Ao

1
log ZTN(O7 F(007 0o, )"0)) - EZTF(G(L 0o, )\'0)27

Theorem 1.1 extends in the linear case and in the presence of jumps the results of Gobet in [5] and [6] for multidimen-
sional continuous elliptic diffusions. The main idea of these papers is to use the Malliavin calculus in order to obtain an
expression for the derivative of the log-likelihood function in terms of a conditional expectation. Some extensions of Gobet’s
work with the presence of jumps are given, e.g., in [2,4], and [7]. However, in the present note, we estimate the coefficients
and jump intensity parameters at the same time. Since we are dealing with a simple Lévy process with finite jumps, the
explicit expression of the density could be used in order to derive the LAN property, as, e.g., in [1]. However, the main
motivation for this paper is to show some of the important properties and arguments in order to prove the LAN property
in the non-linear case, whose proof is non-trivial. In particular, we present four important lemmas of independent interest,
which will be key elements in dealing with the non-linear case. The key argument consists in conditioning on the number
of jumps within the conditional expectation, which expresses the transition density and the number of jumps in the con-
ditioning random variable. When these two conditions relate to different jumps, one may use a large deviation principle in
the estimate. When they are equal, one uses the complementary set. Within all these arguments, the Gaussian-type upper
and lower bounds of the density conditioned on the jumps is again strongly used. This idea seems to have many other uses
in the set-up of stochastic differential equations driven by a Brownian motion and a jump process. We remark here that a
plain It6-Taylor expansion would not solve the problem as higher moments of the Poisson process do not become smaller
as the expansion order increases.

When the LAN property holds true, convolution and minimax theorems can be applied, and one can derive, in particular,
lower bounds for the variance of the estimators. Using Proposition 2.1 below, one can check that the maximum likelihood
estimators of (A, 0o, Ag) are consistent and asymptotically normal with the asymptotic covariance matrix I"(6g, 09, Ag) "}
and the rate of convergence (v/nA,, /1, «/nAy) (see also [8]).

2. Preliminaries

In this section, we introduce the preliminary results needed for the proof of Theorem 1.1. In order to deal with the
log-likelihood ratio in Theorem 1.1, we will use the following decomposition

gp(X”; (Gn, On, An)) —Io p(X"™; (On, On, An)) Io p(X™; (6n, 00, An)) lo p(X™; (6n, 00, X0))
p(X"; (60, 00, A0)) p(X"; (6n, 00, An)) p(X"; (6n, 00, A0)) p(X™; (6o, 00, 20))

For each one of the above terms, we will use a mean value theorem and then analyze each term. We start as in Gobet [5]
by applying the integration by parts formula of the Malliavin calculus on each interval [ty, tx+1] to obtain an expression for
the derivatives of the log-likelihood functions w.r.t. & and o. Moreover, using Girsanov’s theorem, we obtain an expression
for the log-likelihood function w.r.t. A. In order to avoid confusion with the observed process, we consider on the same
probability space (2, F,P), the flow Y?9A(s,x) = (Yf‘”’l(s,x),t >5s), x € R on the time interval [s, o0) and with initial
condition Yf’a’)‘(s, Xx) = x satisfying

(2)

YEO (s, x) =x+0(t — ) + 0 (W, — W) + M} — M2, ©)

where W = (W;)¢>0 is a Brownian motion and M = (M¢)s>o is a Poisson process with intensity A, where (B, N, W, M) are

mutually independent. In particular, we write Yf’o’)‘ = Yf’”‘}‘(O,xo), for all t > 0. For any t > s, we denote by p?%*(t —
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6,0,x 6,0,)1

s,x, y) the transition density of Y/ conditioned on Yy = x. We consider the Malliavin calculus on the Wiener space
induced by the Brownian motion W. We denote by {}}}t>o the natural filtration generated by W and M, by Pe 7* the
probability law induced by Y?7-*(t;, x), and by Eg 7 the corresponding expectation.

Proposition 2.1. Forall (0,0,)) € ® x X x A,and k € {0, ...,n — 1},

dp?° 9
p@aA(Amxy> Eeawmmﬂ Wi | Y00t =],

aapea)» 1 ~0 o 5 0.0
W(An,x V=GB [(Wey =We)* [ Y 3" =y] -

’

1

(o2
6,0,h __

yfk+1 - yi|'

R We next present the four leNmmas mentioned in the introduction. For all m > 0 and k € {0, ..., n — 1}, consider the events
]m,k = {Ntk+1 - Nl’k :m} and Jm,k = {Mtk+] - Mfk :m}

A A
3, p%° ~oxl Wy —We Mg | — M
- (A , X, E OLA | +1 k + k+1 k
peak ( XYy = o N

Lemma 2.1. Forall (0,0,,) € ® x X x A, ke{0,....,n—1},andm >0,

S5 g 3 ¥ 0o e~ (Y—x—m—(0—1)An)*/ 20 Ap) GADT
0, !
PX,O', (]m,k | Ytk-H = y) = m

> %% ef(yfxfif(efxmn)z/aazAn>0\14_!#' '

For all j,p>0 and k € {0, ...,n — 1}, we introduce the random variable

T0,0,A 0,0 ,A
S EXt [(Mtk+1 - Mtk)pljgyk | Y = ka+1]'

tkt1

_1]jk

Lemma 2.2. Forall (#,0,.) € ® x ¥ x A, j,p>0andk €{0,...,n—1},

2 m
p o= (00 (By | =By )+i—m+(0o—6—ro+2) An)? /(202 Ap) (hAD™
Zm Om7é_)m e k1 k T m!l

—(00(Bry, ; —Bty)+j—i+(0o—0—1o+1) An)2 /202 Ap) (AAp)!
Zi:o e k+1 k ]

.]jk

We next fix « € (0, %). and analyze Sj.’ in two separate cases as follows:
p_ ¢cp p _.¢cb p
S =Sy, —Byl=af) T Sy, By >a8) =151+ 355

p _gP p p p
Furthermore, we write §7 ;=S ; ; + sP ojpand Sy, =55, ;+ s? 2.j» Where S 5 and S2 1j contain the terms }_,_;, and

sP_ . and S?

12, 2.2.] contain the terms Zm>] in (4).

Lemma 2.3. Assume that |0 — 6p| < J% and |A — Ag| < J%,for some constant C > 0. Then forallo € X, j,p >0, ke {0, ...,
n — 1}, and for n large enough,

—U=m? () Ap)™ )paAmf
|

1
p mPe 402 p o mla,
S”’_ljf"()»A )JZ e S s1ge D (t+]
>0

()»An)

p D1~ p
52’1’1' =J 11j.l<1{|Bfk+1 —By I>A7} 52 2,j = 1]1 k1{‘3fk+1 —By |>A7} Z(E +it+1D
£=0
Forall p>0and k€ {0, ...,n — 1}, set

o0

Mip:=)  JPERO [y B 1y |Vl =X, ]| Fl.
=0

o
M3 p = ZEQO‘GO’AO [1] 0 > )L[(Mthrl Mtk)pljj’k | YG’G’A = thm] | ffk]

fit1
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C c
Lemma 2.4. Assume that |6y — 0| < N and [Ag — A| < N

enough, there exist constants C1, C; > 0 such that for any o € (0, %), kef0,..,n—1},

for some constant C > 0. Then, forall 0 € X, p > 0, and n large

1
T2
M1,p+M2,p§C1e Coan ™

We next recall a convergence in probability result, and a central limit theorem for triangular arrays of random variables.
For each n e N, let (Zy n)k>1 and ({xn)k>1 be two sequences of random variables defined on the filtered probability space
(2, F, (Ft)t=0, P), and assume that they are Fy, » -measurable.

Lemma 2.5. (See [3, Lemma 9].) Assume that "4 —3 E[Zy n|F¢, 1 2> 0, and 33— E[Z2 | F3,1 5> 0, asn — oo. Then Yj_y Zkn > O,
asn— od.

Lemma 2.6. Assume that there exist real numbers M and V > 0 such that as n — oo,

n—1 n—1 n—1
> Ellenl P > M, > ([, | A ] - (Elgenl 7)) B>V, and Y E[gd 1 F] >0
k=0 k=0 k=0

LP ) , . ) .
Then as n — oo, Zk o Skn — ® — N + M, where N is a centered Gaussian variable with variance V.

3. Proof of Theorem 1.1

Set 0(£) :=6,(¢,u) :=6p + F,G(ﬁ) =op,(L,v) =0y —|— A(E) =An(l, w):=Ao + \/_, for ¢ € [0, 1]. Applying the
Markov property and Proposition 2.1 to each term in (2), we obtam that

p9n ,00,A0
p90 00, M0 ( n» th7 th+1)

p(xn’ (9n7 007 )"0))
p(X™; (6, 70, %0)) Z %8 pho.coko

k=0
1
n-1 6(6),00,
u dpp”'+)-00: 70
= nAn/ pe(z)aUOv)‘O (Anvxt,pX[kJr])dZ
k=0 0

I
M|

1

T [~0).00.1 0(0),00,2

G_/E ” 0 /<+1 - Wy, | Y o0 =ka+1]d£’
0

k1
(:0
POXT; (On, 0m i) L v [ By pfho O
log —~ - —/W(An,xtk,xtm)dg
p(X™; (6n, 00, An)) s ﬁ J pbn: JAn
n—1 v 1 1 :
_\v 60,0 (€),hn B 2 oo @A ~
_k 0ﬁ/<0’(€)Aﬂ Eth [(Wl’k+l Wtk) ‘Ytkﬂ —th_H] —o(€)>d€’
= 0
and
1
P(X™; (6n. 00, M) X 9, P00 M(0)
- p0n00.-(0) (An, Xo» Xy, )dl

O _ o

w
p(X"; (6n, 00, 20)) =0 V4n
w ~ w -w
E??’GO,)L(Z) |:_ k1 ty + ti+1 ty Y@n,O’O,)»(() — th+1i|d€‘

00 X0) et
Now using Eq. (3), we obtain the following expansion of the log-likelihood ratio

p(Xn§ (bn, on, An))
p(X™; (6o, 00, A0))

n—1
= Z@k,n + Hgn + Nien +Min + Bien — Rien)s
k=0

log

where
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£ 1 (ooBy. — By — MAn )
= — | 0o - e B
T A g2\ T P T g A,
1
. u 1 N0 N0 TO(0),00,A0[ p7r0 o 0(6),00,40 _
Hyp = MU_()z (Ntk+1 - Ntk - EX[k [Mtk+1 - Mfk Yfk+1
0

1
1 002 s Ap
= —\|\—= (B¢, —B - de
Nk,n \/ﬁ ,0/. An (O_(E):; ( i1 tk) O'(Z) s

o),

1 ~%0)2
Mg := 7l mows {(BoAn + Ntk+1 —Ni°)" +200(Bt,,, — Br)(60An + Ntk+1
0
T6n,0 (£), Ay A7n 2
- Eth [(9 An + Mtk+l o Mtk )
Y n 67’!5 Z, n
+ ZO'(K)(WtkH Wtk)(enA” + Mtk 1 Mi;c ) | Ytk+<17( M= th+1]}d£’
5 w 1( (Be. — By )+ wA, uAn)
k,n = — — | Oolby, £ -
ol VA, o ket TS o A, Jndy
1 O _ o
Qn 00,1(0) tee1 Utk On,00,1(£)
Y =X de,
nAn/ th [ )\’(z) ‘ L+ tk+l}
0
1
. w ~0p,00.1(0) 6n,00,A(£)
Rk,n = / Ntk+1 - - EX[k ° [Mtk+l - Mtk | Yfk+10 = th+1])d£'
0

863

We next show that the random variables & n, nk.n. Bk.n are the terms that contribute to the limit in Theorem 1.1, and

Hg.n, Mk n and Ry, are the negligible contributions. That is,

Lemma 3.1. Asn — oo,

n—1 n—1
PY%-90-40 00,0000 [ 4 4 4 | = 7 PPt

Z(Hk,n + Mk,n - Rk,n) — 0, ZE 0.7 O[Sk,n + nk,n + IBk,n ‘ ffk] 0,
k=0 k=0
n—1 2 2 2

~ _ plo0g.ro u ve 2 w uw
S ER LG+ B B T2 - (14 %) L 2
k=0 90 90 90 90
n—1

Z(Ego,ﬁg,ko [é[in + n]in + ﬁ]in { ﬁk] _ EQ0,0'O,)»O [%—k’n|ﬁk]2 _ E@O,UO’)LO[nk,nlﬁk]z _ E@Oyo'o,)uo [lsk,n|-ftk]2)

k=0
plooo g U2 v2 w2 ol
O'O O'O O'O 0
n—1 . .
00,00, = 00,00, M 7 1100,00,A = p%-90-*0
(E? 9020 nmien | F ] — EP 0040y | Fy, JE- 000 [y | F, ) ———>
k=0
n—1

=~
Il
<)

=
—_

~
Il
o

(160,00, = 60,00, A 2 1560.00.A 7= 1\ Pfo-%-*o
(E 0,00, O[Ek,nﬂk,nurtk] — E%0:90, 0[$I<,n|-7:tk]E 0,00 O[,Bk,n|-7:tk]) —_— —

. 60,00, A T 00,00, 7 160,00, = P%:%0-*0
(E 0-90 0[nl<,n.3k,n ‘ -7:tk] — E70:%0 O[nlc,n|ft/<]E 0-90 O[ﬂk,n|ft,<]) — 0.

uw

2

0y

Finally, Lemma 2.6 applied to &k, = &k.n + Nk.n + Pr.n concludes the proof of Theorem 1.1.
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