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We study the following equation

∂u(t, x)

∂t
= ∆u(t, x) + b(u(t, x)) + σẆ (t, x), t > 0,

where σ is a positive constant and Ẇ is a space-time white noise. The initial condition u(0, x) =
u0(x) is assumed to be a nonnegative and continuous function. We first study the problem on
[0, 1] with homogeneous Dirichlet boundary conditions. Under some suitable conditions, together
with a theorem of Bonder and Groisman in [1], our first result shows that the solution blows up
in finite time if and only if for some a > 0,∫ ∞

a

1

b(s)
ds <∞,

which is the well-known Osgood condition. We also consider the same equation on the whole line
and show that the above condition is sufficient for the nonexistence of global solutions. Various
other extensions are provided; we look at equations with fractional Laplacian and spatial colored
noise in Rd.
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1. Introduction and main results

Consider the following non-linear heat equation,∣∣∣∣∣∣
∂u(t, x)

∂t
= ∆u(t, x) + u(t, x)1+η, x ∈ Rd, t > 0,

u(0, x) = u0(x),

where u0(x) is a nonnegative, continuous, and bounded function. It is well known that
when 0 < η 6 2/d, there is no nontrivial global solution no matter how small the nontriv-
ial initial condition u0 is, while for η > 2/d, one can construct nontrivial global solutions
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2 Mohammud Foondun et al.

when u0 is small enough; see [7, 8, 11] for more precise statements and proofs. The
exponent ηc = 2/d is often called the Fujita exponent after the author of the very influ-
ential paper [7]. When the equation is considered on the interval [0, 1] with homogeneous
Dirichlet boundary conditions (ie. u(t, 0) = u(t, 1) = 0), a different picture emerges. In
this case, for any η > 0, one can always construct nontrivial global solutions by taking
u0 small enough. And when u0 is large enough, there is no global solution for any η > 0;
see Theorem 17.3 of [15] for a precise statement.

One can ask whether the above phenomena still occur when one perturbs the equation
with a noise term. For example, consider the following stochastic heat equation∣∣∣∣∣∣

∂u(t, x)

∂t
= ∆u(t, x) + u(t, x)1+η + Ẇ (t, x)

u(0, x) = u0(x),
(1)

where Ẇ is a space-time white noise and the initial condition u0(x) is as above. More
precisely, one can ask the following two questions.

• Does there exists a Fujita exponent? Or equivalently, for which values of η one can
find a nonnegative initial function so that there exist global solutions?

• For the same equation on [0, 1] with homogeneous Dirichlet boundary conditions,
can one take u0 small enough so that there exist global solutions no matter what
η > 0 is?

For stochastic differential equations, the answer to the analogous question is given by
Feller’s test for explosions; see [10, Chapter 5]. It is quite surprising that much less is
known for stochastic partial differential equations. To the best of our knowledge, there
are only two papers which look at these types of questions; [1] and [6]. In the first paper
the authors consider the equation on [0, 1] and give a negative answer to the second
question above. In fact they consider the following more general equation∣∣∣∣∣∣

∂u(t, x)

∂t
= ∆u(t, x) + b(u(t, x)) + σẆ (t, x), x ∈ [0, 1], t > 0,

u(0, x) = u0(x),
(2)

with homogeneous Dirichlet boundary conditions. Here σ > 0, b : R → R is a locally
Lipschitz function, and the initial condition u0(x) is taken to be nonnegative and con-
tinuous; we will assume this throughout the whole paper. The stochastic forcing term Ẇ
is a space-time white noise. The main result of [1] says that the solution to (2) blows up
in finite time whenever b is nonnegative, convex, and satisfies the following well-known
Osgood condition: for some a > 0 ∫ ∞

a

1

b(s)
ds <∞, (3)

where 1/0 =∞. In [6], the authors investigate whether the Osgood condition is optimal.
In particular, their Theorem 1.4 shows that if |b(x)| = O(|x| log |x|) as |x| → ∞, then
there exists a global solution to equation (2).
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Osgood Condition 3

As far as we know, the first question above has not been addressed till now. We briefly
summarise the main findings of this current paper. For equation (2), we will show that
Osgood condition (3) is also necessary. Together with the result in [1], this result shows
the optimality of the Osgood condition. We will then consider equation (1) and answer
the first question. We will show that ηc =∞ meaning that there is no global solution no
matter how small the initial condition is. This shows that the Fujita phenomenon does
not occur in this stochastic setting. In fact, we will show that the Osgood condition (3)
is sufficient for the nonexistence of global solutions for equation (1).

Before giving the main results of the paper, we provide some precision on various
assumptions and technicalities. We will need the following condition.

Assumption 1.1. The function b : R → R+ is nonnegative, locally Lipschitz and
nondecreasing on (0, ∞) and the initial condition u0(x) is nonnegative and continuous.

As in [6], we look at random field solutions.

Definition 1.2. A local random field solution to (2) is a jointly measurable and adapted
space-time process u = {u(t, x)}(t,x)∈R+×[0,1] satisfying the following integral equation

u(t, x) =

∫ 1

0

p(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

p(t− s, x, y)b(u(s, y)) dy ds

+ σ

∫ t

0

∫ 1

0

p(t− s, x, y)W (dy ds),

for all t ∈ (0, τ), where τ is some stopping time. If we can take τ = ∞, then the local
solution is also a global one. The function p(t, x, y) is the heat kernel associated with the
operator ∆ with Dirichlet boundary conditions.

As u0 is continuous and b is locally Lipschitz, the existence and uniqueness of a local
solution to equation (2) is not an issue. Indeed, for each N > 1, one can define the
truncation function

bN (x) := 1{|x|6N}b(x) + 1{|x|>N}b(N) + 1{|x|<−N}b(−N) (4)

and obtain a unique global solution {uN (t, x)}(t,x)∈R+×[0,1] to equation (2) where b is
replaced by bN . Moreover, uN (t, x) is almost surely continuous in (t, x). We consider the
stopping time

τN := inf

{
t > 0 : sup

x∈[0, 1]
|uN (t, x)| > N

}
,

where inf ∅ := ∞. Then by the local property of the stochastic integral, one can easily
show (see [6, Section 4]) that for each N > ‖u0‖∞, we have a unique local random
field solution u(t, x) = uN (t, x) for all x ∈ [0, 1] and t ∈ [0, τN ). In particular, u(t, x)
is almost surely continuous in (t, x). Moreover, τN 6 τN+1. Denote τ∞ = limN→∞ τN .
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If P(τ∞ < ∞) > 0, then we say that the solution blows up in finite time with positive
probability and if P(τ∞ < ∞) = 1, we say that the solution blows up in finite time
almost surely. Alternatively, since the noise is additive, one could also use a local inversion
theorem to obtain local existence of solutions. We are now ready to state the first result
of this paper.

Theorem 1.3. Suppose that Assumption 1.1 holds. If the solution to (2) blows up in
finite time with positive probability then b satisfies the Osgood condition (3).

Together with the result of Bonder and Groisman, this can be seen as an extension of
a similar result for stochastic differential equations with additive noise. Indeed in later
case, Feller’s test for explosions says that the Osgood condition is necessary and sufficient
for blow up of the solution when the noise is a Brownian motion. We will later describe
a new method for proving this without appealing to Feller’s test that works for a larger
class of processes including the bifractional Brownian motion. This is due to [14] which
was also the inspiration for the proof of the above theorem.

We also consider equation (2) in the whole line, that is,∣∣∣∣∣∣
∂u(t, x)

∂t
= ∆u(t, x) + b(u(t, x)) + σẆ (t, x) x ∈ R, t > 0,

u(0, x) = u0(x).
(5)

As before, we look at the random field solution u = {u(t, x)}(t,x)∈R+×R which in this
case, satisfies the following integral equation

u(t, x) =

∫
R

G(t, x, y)u0(y) dy +

∫ t

0

∫
R

G(t− s, x, y)b(u(s, y)) dy ds

+ σ

∫ t

0

∫
R

G(t− s, x, y)W (dy ds),

(6)

where now G(t, x, y) is the heat kernel associated with the Laplacian defined on the
whole line. Here, the existence of a local solution is not straightforward. We will be more
precise about this later. Next, we describe our second main result which is a non-existence
result.

Theorem 1.4. Suppose that Assumption 1.1 holds. Then, if b satisfies the Osgood
condition (3), then almost surely, there is no global solution to equation (5).

Here we use a completely different approach to that of [1]. We use the almost sure
growth properties of the stochastic term together with an observation borrowed from
[14] to arrive at our result. This observation is contained in the statement and proof of
Proposition 2.2 below. A key step in our strategy is to use the fact that for each x, the
stochastic term in (6) is a bifractional Brownian motion. We will use various continuity
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estimates as a well as the law of iterated logarithm for bifractional Brownian motion to
arrive at the growth properties we need.

Our method is flexible enough so that some of the results above can extended to a
wider class of equations. We describe these results next. Consider the following equation∣∣∣∣∣∣

∂u(t, x)

∂t
= Lu(t, x) + b(u(t, x)) + Ḟ (t, x), x ∈ B1(0), t > 0,

u(0, x) = u0(x),
(7)

where Br(z) denotes the (open) ball of center z and radius r inRd. Here L is the generator
of an α-stable process killed upon exiting the ball B1(0) and Ḟ is a Gaussian noise which
is white in time and has a spatial correlation given by the Riesz kernel. That is,

E(Ḟ (t, x)Ḟ (s, y)) = δ0(t− s)f(x− y),

where f(x) = |x|−β , 0 < β < d. The homogeneous Dirichlet boundary condition is given
by

u(t, x) = 0 x ∈ Rd \B1(0), t > 0.

As before, the solution to equation (7) is a jointly measurable adapted random field
u = {u(t, x)}t>0,x∈B1(0)

satisfying the integral equation

u(t, x) =

∫
B1(0)

pα(t, x, y)u0(y) dy +

∫ t

0

∫
B1(0)

pα(t− s, x, y)b(u(s, y)) dy ds

+ σ

∫ t

0

∫
B1(0)

pα(t− s, x, y)F (dy ds),

(8)

where pα(t, x, y) is the Dirichlet fractional heat kernel. Recall that we have the following
spectral decomposition

pα(t, x, y) =

∞∑
n=1

e−λntφn(x)φn(y) for all x, y ∈ B1(0), t > 0, (9)

where {φn}n>1 is an orthonormal basis of L2(B1(0)) and 0 < λ1 < λ2 6 λ3 6 · · · is a
sequence of positive numbers such that, for every n > 1,{

−(−∆)α/2φn(x) = −λnφn(x) x ∈ B1(0),

φn(x) = 0 x ∈ Rd \B1(0).

As for equation (2), one can easily show that if β < α, then for each N > ‖u0‖∞,
there exists a unique local random field solution u(t, x) to equation (7) defined for all
x ∈ B1(0) and t ∈ [0, τN ), where

τN := inf

{
t > 0 : sup

x∈B1(0)

|uN (t, x)| > N

}
,
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inf ∅ :=∞, and uN (t, x) is the solution to equation (7) where b is replaced by bN defined
in (4). The condition β < α ensures that the stochastic integral in (8) is well-defined and
almost surely continuous; see Remark 1.7 below.

The next result is the extension to equation (7) of Bonder and Groisman theorem and
of Theorem 1.3.

Theorem 1.5. Suppose that Assumption 1.1 holds. Then if b satisfies the Osgood con-
dition (3) and under the additional assumption that b is convex, the solution to (7) blows
up in finite time almost surely. On the other hand, if the solution blows up in finite time
with positive probability, then b satisfies the Osgood condition (3).

Remark 1.6. The proof of the first part of Theorem 1.5 is an adaptation of the proof
in [1]. But our method can do better, it can be used to prove that infx∈B(0, 1−ε) u(t, x)
blows up in finite time for any ε > 0. We leave the proof for future work.

Remark 1.7. Theorem 1.5 holds for a general spatial correlation f , where f : Rd → R
is a nonnegative and nonnegative definite (generalized) function, continuous on Rd \{0},
integrable in a neighborhood of 0, and whose Fourier transform Ff = µ is a tempered
measure satisfying ∫

Rd

µ(dξ)

(1 + |ξ|α)ρ
<∞, (10)

for some ρ ∈ (0, 1), where (Ff)(ξ) =
∫
Rd f(y)ei〈y,ξ〉dy. Condition (10) with ρ = 1 implies

the existence and uniqueness of solutions; see Dalang [3]. The slightly more stringent
condition (10) ensures that the solution is almost surely continuous as well; see Sanz-
Solé and Sarrà [16]. In particular, when f is the Riesz kernel, then µ(dξ) = c|ξ|−(d−β)dξ
and condition (10) holds for any ρ > β/α whenever β < α.

Consider now equation (7) in the whole space, that is,∣∣∣∣∣∣
∂u(t, x)

∂t
= Lu(t, x) + b(u(t, x)) + Ḟ (t, x), x ∈ Rd, t > 0,

u(0, x) = u0(x),
(11)

where all the parameters are the same as above except that now L is associated with an
α-stable process defined on the whole space.

As before, we are looking at random field solutions satisfying the following integral
equation

u(t, x) =

∫
Rd

Gα(t, x, y)u0(y) dy +

∫ t

0

∫
Rd

Gα(t− s, x, y)b(u(s, y)) dy ds

+ σ

∫ t

0

∫
Rd

Gα(t− s, x, y)F (dy ds),

(12)

where now Gα(t, x, y) is the heat kernel in Rd for the α-stable process. Our final theorem
is as follows.
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Theorem 1.8. Suppose that Assumption 1.1 holds. Then, if b satisfies the Osgood
condition (3), then almost surely, there is no global solution to equation (11).

We end this introduction with some remarks concerning local existence of solutions
when the equations are defined on the whole space. D. Khoshnevisan pointed to us that
since for any fixed t > 0, the last term of (6) grows like

√
log x as x goes to infinity,

the solution to (6) might blow up instantaneously. That is, any solution of (6) can
blow up for any t > 0 so that there is no local solution. In the deterministic setting,
similar phenomenon arises; see for instance [17] where the exponential reaction-diffusion
is studied. Proving such non-existence results is beyond the scope of this paper where
the main concern is non-existence of global solution. The above result for instance makes
no claim about the existence of a local solution.

The rest of the paper is organized as follows. In Section 2 we give some preliminary
results needed for the proofs of our results. Section 3 is devoted to the proofs of Theorems
1.3 and 1.4. Theorems 1.5 and 1.8 are proved in Section 4. Finally, in Section 5 we discuss
the extension of the results to the multiplicative noise case.

2. Preliminary information and estimates

In this section, we give some background information needed for the proof of our results.
We start off with a deterministic result about integral equations. This is taken from [14]
where it is used to show blow up for stochastic differential equations. We include a proof
since it contains the main ideas of our method.

2.1. The Osgood condition for integral equations

We start off with the following remark. Suppose that b satisfies Assumption 1.1 and
consider the following integral equation for a > 0

y(t) = a+

∫ t

0

b(y(s)) ds, t > 0.

By Picard-Lindelöf theorem this equation admits a unique solution up to its blow up
time defined as

T := sup{t > 0 : |y(t)| <∞},
where sup ∅ := −∞. Then we say that the solution blows up in finite time if T <∞. One
can show that this blow up time is equal to the following∫ ∞

a

1

b(s)
ds.

Therefore, we have that the solution blows up in finite time if and only of
∫∞
a

1
b(s) ds <∞.

We next consider the following assumption. In the upcoming sections, we will show
that a large class of stochastic processes verify a similar condition.
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Assumption 2.1. g : [0, ∞)→ R is a continuous function such that

lim sup
t→∞

inf
06h61

g(t+ h) =∞.

Proposition 2.2. Let a > 0 and suppose that Assumptions 1.1 and 2.1 hold. Then the
solution to the integral equation

Xt = a+

∫ t

0

b(Xs) ds+ g(t) (13)

blows up in finite time if and only if the function b satisfies the Osgood condition (3).

Proof. Suppose that the solution blows up at finite time T . Since g is continuous, we
can set

M := sup
06s6T

|g(s)|.

Let 0 6 t 6 T . Upon noting that b is nonnegative, (13) gives

Xt 6 a+M +

∫ t

0

b(Xs) ds.

The nonnegativity of b together with the continuity of g imply that Xt can only blow up
to positive infinity. Let Yt = a + M + 1 +

∫ t
0
b(Ys) ds. Then by a standard comparison

result, we have Xt 6 Yt on [0, T ]. But since Xt blows up at time T , Yt should also blow
up by time T . This means that b satisfies the Osgood condition (3).

We now suppose thatXt does not blow up in finite time. Let {tn}∞n=1 be some sequence
which tends to infinity. The nonnegativity of b implies that

Xt+tn > a+

∫ t+tn

tn

b(Xs) ds+ g(t+ tn)

> a+

∫ t

0

b(Xs+tn) ds+ g(t+ tn)

> a+ inf
06h61

g(h+ tn) +

∫ t

0

b(Xs+tn) ds,

where the last inequality holds whenever 0 6 t 6 1. This means that Xt+tn > Zt where

Zt =
1

2

(
a+ inf

06h61
g(h+ tn)

)
+

∫ t

0

b(Zs) ds.

Since we are assuming that Xt does not blow up in finite time, the blow up time of Zt
has to be greater than 1, which implies that∫ ∞

1
2 (a+inf06h61 g(h+tn))

1

b(s)
ds > 1.

But from Assumption 2.1, we can find a sequence tn →∞ such that 1
2 (a+inf06h61 g(h+

tn))→∞. This contradicts the Osgood condition (3) and the proof is complete.
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Osgood Condition 9

As mentioned in the introduction, the above result provides an alternative way to
prove blow-up for stochastic differential equations of the following type,

dXt = b(Xt) dt+ dBt, X0 = a,

where Bt is a Brownian motion. This can be written as the following integral equation,

Xt = a+

∫ t

0

b(Xs) ds+Bt.

We can now show that almost surely Bt satisfies Assumption 2.1 above. Hence the Osgood
condition is a necessary and sufficient condition for blow-up of the solution to the above
equation. As showed in [14], one can replace the Brownian motion by a more general
class of processes including the bifractional Brownian motion for which Feller’s test for
explosions is not applicable.

2.2. The bifractional Brownian motion and related results

The bifractional Brownian motion introduced in [9] is a generalization of the fractional
Brownian motion. It is defined as a centered Gaussian process BH,K = (BH,Kt , t > 0)
with covariance

RH,K(t, s) = 2−K
(
(t2H + s2H)K − |t− s|2HK

)
,

where H ∈ (0, 1) and K ∈ (0, 1]. Note that if K = 1, then BH,1 is a fractional Brownian
motion with Hurst parameter H. The bifractional Brownian motion is Hölder continuous
for any exponent less that HK. Moreover, it satisfies the following law of iterated loga-
rithm; see for instance Lemma 4.1 of [14] for an idea of the proof and further references.
Set

ψH,K(t) := tHK
√

2 log log t, t > e.

Lemma 2.3. Almost surely,

lim sup
t→∞

BH,Kt

ψH,K(t)
= 1.

Consider now the process

g(t, x) :=

∫ t

0

∫
R

G(t− s, x, y)W (dy ds),

where we recall that G(t, x, y) denotes the Gaussian heat kernel. Clearly the above is
the solution to the stochastic heat equation (5) with zero drift, zero initial condition, and
σ = 1.
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It is shown in [13] that for a fixed x ∈ R, the process (g(t, x), t > 0) is a bifractional
Brownian motion with parameters H = K = 1

2 multiplied by a constant. In fact, the
covariance of g(t, x) is given by

E(g(t, x)g(s, x)) =
1√
2π

(
√
t+ s−

√
|t− s|).

In particular, the process (g(t, x), t > 0) is Hölder continuous for any exponent less than
HK = 1/4.

The following estimates on the increments of g(t, x) are well known. For instance see
Theorem 6.7 in p.28 of [4] and the proof of Corollary 3.4 in [18].

Lemma 2.4. For all p > 2 there exist constants cp, c̃p > 0 such that for all x, y ∈ R
and s, t > 0,

sup
t>0

E [|g(t, x)− g(t, y)|p] 6 cp|x− y|p/2

and
sup
x∈R

E [|g(t, x)− g(s, x)|p] 6 c̃p|s− t|p/4.

As a consequence of Lemma 2.4 and the improvement of the classical Garsia’s lemma
obtained in Proposition A.1. of [5], we have the following estimate.

Proposition 2.5. For all p > 2, there exists a constant Ap > 0 such that for any
integer n > 1,

E

[
sup

s,t∈[n,n+2],x,y∈[0,1]
|g(t, x)− g(s, y)|p

]
6 Ap2

p/4.

Proof. The proof follows along the same lines as the proof of Lemma 4.5 in [5]. Indeed,
by Lemma 2.4 and Proposition A.1. in [5], we get that for all p > 2, there exists a constant
Ap > 0 such that for any ε > 0,

E

[
sup

(|t−s|1/2+|x−y|)1/26ε
|g(t, x)− g(s, y)|p

]
6 Apε

p.

Then, using this inequality with ε =
√

221/4 implies the desired result.

We can now use Proposition 2.5 to get the following almost sure result. This is an
extension to the multiparameter case of Lemma 4.2 in [14].

Proposition 2.6. Almost surely,

sup
s,t∈[n,n+2],x,y∈[0,1]

|g(t, x)− g(s, y)|
ψ 1

2 ,
1
2
(n)

−→ 0, as n→∞.
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Proof. Proposition 2.5 implies that for p > 4,

E

[ ∞∑
n=1

sup
s,t∈[n,n+2],x,y∈[0,1]

|g(t, x)− g(s, y)|p

ψ 1
2 ,

1
2
(n)p

]
6
∞∑
n=1

Ap2
p/4

ψ 1
2 ,

1
2
(n)p

<∞,

which gives us the desired result.

As a consequence of Proposition 2.6, we get the following estimate.

Proposition 2.7. Almost surely, there exists a sequence tn →∞ such that

inf
h∈[0,1],x∈[0,1]

g(tn + h, x)→∞ as n→∞.

Proof. Fix x0 ∈ [0, 1]. Choose ω such that both Proposition 2.6 and Lemma 2.3 hold.
We now write

inf
h∈[0,1],x∈[0,1]

g(t+ h, x) = g(t, x0) + inf
h∈[0,1],x∈[0,1]

(g(t+ h, x)− g(t, x0))

> g(t, x0) + inf
h∈[0,1],x∈[0,1]

(−|g(t+ h, x)− g(t, x0)|)

>
g(t, x0)

ψ 1
2 ,

1
2
(t)
ψ 1

2 ,
1
2
(t)− sup

h∈[0,1],x∈[0,1]

|g(t+ h, x)− g(t, x0)|
ψ 1

2 ,
1
2
([t])

ψ 1
2 ,

1
2
([t]).

We use Proposition 2.6 and Lemma 2.3 to choose an appropriate sequence tn and finish
the proof.

3. Proofs of Theorems 1.3 and 1.4

As mention earlier, the proof of Theorem 1.3 follows that of Proposition 2.2 but it heavily
relies on the fact that the stochastic term in the random field formulation is continuous
and that the equation itself is defined on an interval.

Proof of Theorem 1.3. Set

T := sup{t > 0 : sup
x∈[0, 1]

|u(t, x)| <∞},

where sup ∅ := −∞. Since the solution blows up in finite time with positive probability,
we can find a set Ω satisfying P(Ω) > 0 such that for any ω ∈ Ω, we have T (ω) < ∞.
We now fix such an ω but for the sake of notational convenience, we won’t indicate the
dependence on ω in what follows. We recall that we are looking at the mild formulation

u(t, x) =

∫ 1

0

p(t, x, y)u0(y) dy +

∫ t

0

∫ 1

0

p(t− s, x, y)b(u(s, y)) dy ds

+ σ

∫ t

0

∫ 1

0

p(t− s, x, y)W (dy ds).
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The third term in the above display is almost surely continuous. Therefore the following
quantity below is finite almost surely

M := sup
x∈[0, 1] t∈(0,T ]

∣∣∣∣∫ t

0

∫ 1

0

p(t− s, x, y)W (dy ds)

∣∣∣∣ .
Moreover by the nonnegativity of b and the initial condition, we have

u(t, x) > σ

∫ t

0

∫ 1

0

p(t− s, x, y)W (dy ds).

This means that
inf

t∈[0, T ],x∈[0, 1]
u(t, x) > −σM.

Since u0 is bounded, we have ∣∣∣∣∫ 1

0

p(t, x, y)u0(y) dy

∣∣∣∣ 6 a,

for some positive constant a. Denote A := {s ∈ (0, t), y ∈ (0, 1);−σM 6 u(s, y) 6 0}
and B := {s ∈ (0, t), y ∈ (0, 1);u(s, y) > 0} and write∫ t

0

∫ 1

0

p(t− s, x, y)b(u(s, y)) dy ds =

∫∫
A
p(t− s, x, y)b(u(s, y)) dy ds

+

∫∫
B
p(t− s, x, y)b(u(s, y)) dy ds

:= I1 + I2.

Since we are assuming that b is nonnegative and nondecreasing on (0,∞), this immedi-
ately gives us

I2 6
∫ t

0

b(Ys) ds,

where Yt := supx∈[0, 1] u(t, x). Since b is assumed to be continuous, we have I1 6 K,
where K is an almost sure finite quantity. Putting all these estimates together, we obtain

Yt 6 a+ σM +K +

∫ t

0

b(Ys) ds.

We can now proceed as in the proof of Proposition 2.2 to conclude the proof.

Remark 3.1. We remark that the blow up time T used above is the same as τ∞ defined
in the introduction. Indeed if T < τ∞, then T < t < τ∞ for some t. By the definition of
T , we should have supx∈[0,1] |u(t, x)| =∞, but then this would imply (by the definition of
τN ) that t > τN for any N . Thus, t > τ∞, which contradicts the assumption. Therefore,
we have that τ∞ 6 T . If τ∞ < T , then τ∞ < t < T for some t. As t > τ∞, we get
supx∈[0,1] |u(t, x)| =∞ which contradicts the fact that t < T . Therefore, we conclude that
T = τ∞.
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Proof of Theorem 1.4. Let {tn} be a sequence of positive numbers which we are going
to choose later. From the mild formulation of the solution and the nonnegativity of the
function b, we obtain

u(t+ tn, x) =

∫
R

G(t+ tn, x, y)u0(y) dy +

∫ t+tn

0

∫
R

G(t+ tn − s, x, y)b(u(s, y)) dy ds

+ σ

∫ t+tn

0

∫
R

G(t+ tn − s, x, y)W (dy ds)

>
∫
R

G(t+ tn, x, y)u0(y) dy +

∫ t

0

∫
R

G(t− s, x, y)b(u(s+ tn, y)) dy ds

+ σ

∫ t+tn

0

∫
R

G(t+ tn − s, x, y)W (dy ds).

We will take 0 6 t 6 1 and x ∈ (0, 1). Recall that

g(t+ tn, x) :=

∫ t+tn

0

∫
R

G(t+ tn − s, x, y)W (dy ds).

Hence by Proposition 2.7, we can find a sequence tn → ∞ so that the above quantity
is positive for 0 6 t 6 1 and x ∈ (0, 1). Therefore u(t + tn, x) is also positive for any
x ∈ (0, 1) and any 0 6 t 6 1. We now use the fact that b is nondecreasing on (0, ∞) to
bound the second term as follows. For fixed x ∈ (0, 1),∫ t

0

∫
R

G(t− s, x, y)b(u(s+ tn, y)) dy ds

>
∫ t

0

b

(
inf

y∈(0, 1)
u(s+ tn, y)

)∫
(0, 1)

G(t− s, x, y) dy ds

>
∫ t

0

b

(
inf

y∈(0, 1)
u(s+ tn, y)

)
ds,

where we have used that fact that G(t, x, y) > c
t1/2

whenever |x− y| 6 t1/2. We now set
Yt := infy∈(0, 1) u(t+ tn, y) and combine the above estimates to obtain

Yt > inf
06h61,x∈(0, 1)

{∫
R

G(h+ tn, x, y)u0(y) dy + σg(h+ tn, x)
}

+

∫ t

0

b(Ys) ds.

We now choose ω as in Proposition 2.7, and we can therefore find a sequence tn → ∞
such that inf06h61,x∈(0, 1) g(h + tn, x) goes to infinity. By the proof of Proposition 2.2,
we have the required result.

4. Extension to fractional Laplacian and colored noise

The aim of this section is to prove Theorems 1.5 and 1.8. For this, we first define rigorously
the Gaussian noise F and extend the results of Section 2.2 to the equation in Rd.
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4.1. The Gaussian noise F

Let D(R+ ×Rd) be the space of real-valued infinitely differentiable functions with com-
pact support. Following [3], on a complete probability space (Ω,F ,P), we consider a
centered Gaussian family of random variables {F (ϕ), ϕ ∈ D(R+ ×Rd)} with covariance

E [F (ϕ)F (ψ)] =

∫
R+×R2d

ϕ(t, x)ψ(t, y)f(x− y)dxdydt,

where f is as in Remark 1.7. Let H be the completion of D(R+ ×Rd) with respect to
the inner product

〈ϕ,ψ〉H =

∫
R+×R2d

ϕ(t, x)ψ(t, y)f(x− y)dxdydt

=

∫
R+×Rd

Fϕ(t, ·)(ξ)Fψ(t, ·)(ξ)µ(dξ)dt,

(14)

where the last equality follows by Parseval’s identity. The mapping ϕ 7→ F (ϕ) defined in
D(R+ ×Rd) extends to a linear isometry between H and the Gaussian space spanned
by F . We will denote the isometry by

F (ϕ) =

∫
R+×Rd

ϕ(t, x)F (dtdx), ϕ ∈ H.

Notice that if ϕ,ψ ∈ H, then E [F (ϕ)F (ψ)] = 〈ϕ,ψ〉H. Moreover, H contains the space
of measurable functions φ on R+ ×Rd such that∫

R+×R2d

|φ(t, x)φ(t, y)|f(x− y)dxdydt <∞.

4.2. Estimates for the whole space

Consider the solution to the stochastic heat equation (11) with zero drift, zero initial
condition, and σ = 1, that is,

gα,β(t, x) :=

∫ t

0

∫
Rd

Gα(t− s, x, y)F (dy ds),

where recall that Gα(t, x, y) is the fractional heat kernel in Rd and F has a spatial
correlation given by the Riesz kernel.

Let us compute the covariance of the Gaussian process (gα,β(t, x), t > 0) for x ∈ Rd

fixed. By (14), as
FGα(t, x, ·)(ξ) = ei〈x,ξ〉−

1
2 t|ξ|

α

, ξ ∈ Rd, (15)
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we get that, for s 6 t,

E(gα,β(t, x)gα,β(s, x))

=

∫ s

0

∫
Rd×Rd

Gα(t− u, x, y)Gα(s− u, x, z)|z − y|−βdydzdu

= cd,β

∫ s

0

∫
Rd

|ξ|−(d−β)e− 1
2 (t−u)|ξ|

α

e−
1
2 (s−u)|ξ|

α

dξdu

= cd,β

∫
Rd

|ξ|−(d−β)−αe− 1
2 (t+s)|ξ|

α
(
es|ξ|

α

− 1
)

dξ

= cd,β

∫
Rd

|ξ|−(d−β)−α
(
e−

1
2 (t−s)|ξ|

α

− e− 1
2 (t+s)|ξ|

α
)

dξ

= cd,β

∫
Rd

|ξ|−(d−β)−α
(∫ 0

− 1
2 (t+s)|ξ|α

ezdz −
∫ 0

− 1
2 (t−s)|ξ|α

ezdz

)
dξ

= cd,β,α

(
(t+ s)1−

β
α − (t− s)1−

β
α

)
,

where cd,β,α = cd,β
∫
Rd |ξ|−(d−β)−α(1− e− 1

2 |ξ|
α

)dξ.
Therefore, for x ∈ Rd fixed, the process (g(t, x), t > 0) is a bifractional Brownian

motion with parameters H = α−β
2 and K = 1

α , multiplied by a constant. In particular,
it is Hölder continuous for any exponent less than HK = α−β

2α .
The next proposition is the extension of Lemma 2.4 and Propositions 2.5, 2.6 and 2.7

to the process gα,β .

Proposition 4.1. (a) For all p > 2 there exists constants cp, c̃p > 0 such that for all
x, y ∈ Rd and s, t > 0,

sup
t>0

E [|gα,β(t, x)− gα,β(t, y)|p] 6 cp|x− y|
(α−β)p

2

and
sup
x∈Rd

E [|gα,β(t, x)− gα,β(s, x)|p] 6 c̃p|s− t|
(α−β)p

2α .

(b) For all p > 2, there exists a constant Ap > 0 such that for any integer n > 1,

E

[
sup

s,t∈[n,n+2],x,y∈B1(0)

|gα,β(t, x)− gα,β(s, y)|p
]
6 Ap2

(α−β)p
2α .

(c) Almost surely,

sup
s,t∈[n,n+2],x,y∈B1(0)

|gα,β(t, x)− gα,β(s, y)|
ψα−β

2 , 1α
(n)

−→ 0, as n→∞.

(d) Almost surely, there exists a sequence tn →∞ such that

inf
h∈[0,1],x∈B1(0)

gα,β(tn + h, x)→∞.
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Proof. The proof of (a) follows from [16] and (15). Moreover, (a) implies that Lemma
4.5 in [5] also holds for our process gα,β(t, x), which gives (b). Finally, (c) and (d) follow
as in the proof of Propositions 2.6 and 2.7.

4.3. Proof of Theorems 1.5 and 1.8

The proof of the first part of Theorem 1.5 follows as in the proof of the main result in
[1], but a different constant arises in Feller’s test. The proof of the second part follows
along the same lines as the proof of Theorem 1.3 and is therefore omitted.

Proof of the first part of Theorem 1.5. As in [1], we set

Yt =

∫
B1(0)

u(t, x)cφ1(x)dx

where u(t, x) is the local solution to (8), φ1 is defined in (9) and c−1 =
∫
B1(0)

φ1(x)dx.
Recall that φ1(x) > 0 for all x ∈ B1(0), see for e.g. [2, Theorem 4.2]. Then we obtain
that Yt > Xt a.s., where Xt is the solution to the stochastic differential equation

dXt = (−λ1Xt + b(Xt))dt+ dZt, X0 = Y0

and

Zt :=

∫ t

0

∫
B1(0)

cφ1(y)F (dy ds).

Finally, we can use Feller’s test for explosion as in [1] to show that Xt explodes in finite
time with probability one. In fact, it suffices to consider as scale function

p(x) =

∫ x

0

exp

(
− 2

κ

∫ s

0

(−λ1ξ + b(ξ))dξ

)
ds,

where κ := c2
∫
B1(0)×B1(0)

φ1(y)φ1(z)|y − z|−βdydz, as Zt =
√
κBt, where Bt is a Brow-

nian motion.

The proof of Theorem 1.8 is similar to that of Theorem 1.4. We will indicate the
differences only.

Proof of Theorem 1.8. The proof follows that of Theorem 1.4. We use the last part
of Proposition 4.1 together with the following inequality

Gα(t, x, y) >
c

td/α
whenever |x− y| 6 t1/α (16)

to prove the required result. See for instance [12] for justifications of the above inequality.
We leave it to the reader to fill in the details.
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5. Extension to multiplicative noise

In this section we discuss the extension of the previous results when the constant σ is
replaced by a locally Lipschitz function σ : R→ R. For equations on bounded domains,
we believe that the Osgood condition is necessary and sufficient for finite time blow-up
under the condition 1

K 6 σ(x) 6 K for all x ∈ R, for some constant K > 0. We leave this
for future work but the following extension is straightforward. We start with equations
(2) and (7) on [0, 1] and B1(0), respectively. In this case, the proof of Theorem 1.3 and
the second half of Theorem 1.5 extend easily if σ is bounded. This yields the following
result.

Theorem 5.1. Consider equations (2) or (7) with σ replaced by σ(u(t, x)), where σ :
R→ R is a locally Lipschitz and bounded function. Suppose that Assumption 1.1 holds. If
the corresponding solution blows up in finite time with positive probability, then b satisfies
the Osgood condition (3).

However, the proof of the first half of Theorem 1.5 which follows by Bonder and
Groisman’s method does not directly extend to the multiplicative noise case. We can
apply the method used in the proof of Theorem 1.4 but we require a new idea since the
stochastic term is no longer Gaussian.

Consider now equation (5) on the real line and assume that σ is replaced by a locally
Lipschitz function σ : R→ R bounded away from zero and infinity. Then, the statement
of Theorem 1.4 holds true provided that we prove Proposition 2.7 for

g(t, x) :=

∫ t

0

∫
R

G(t− s, x, y)σ(u(s, y))W (dy ds).

We believe that this is true but the proof is out of the scope of this paper and is left for
further work. The same discussion applies for the equation on the whole space (11) and
Theorem 1.8.
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