HAA workshop

Barcelona, Feb 1-2, 2017

Assignment of arguments in Movima: the role of semantics and discourse

Katharina Haude
CNRS, SEDYL UMR 8202
katharina.haude@cnrs.fr

Language and data

- South-Western Amazon (Bolivia)
- Isolate
- Heavily endangered: ~500 adult speakers, no L1 learners
- Fieldwork and description since 2001
- Annotated spontaneous discourse corpus of $>130,000$ words produced by ~ 50 speakers
[MAP here]

The structure of the transitive clause
[Verb ${ }_{\text {TRANS }}$ =ARG] [ARG]

The structure of the transitive clause

[Verb $\left.{ }_{\text {TRANS }} \quad=A R G\right]$
[ARG]

The structure of the transitive clause

[Verb $\left.{ }_{\text {TRANS }} \quad=A R G\right]$

The structure of the transitive clause

Free(er) position; not obligatory

[Verb $_{\text {trans }}$
=ARG]

Examples

Examples

Examples

	1	3
Direct	[ew-na =Ø]	[(as)]
	$\begin{aligned} & \text { hold-DR =1sg } \\ & \text { 'I held it.' } \end{aligned}$	3n
Inverse	[ew-kay =Ø]	[(as)]
	hold-INV =1sg 'It held me.'	3n
	\uparrow	\uparrow
	$\begin{array}{\|l\|} \hline 1 \mathrm{sG} / \mathrm{PL} \\ 2 \mathrm{sG} / \mathrm{PL} \\ 3 \mathrm{sG} / \mathrm{PL} \end{array}$	2PL 3sG/PL

Examples

$2 S G>3$

Direct
[ew-na =n] [(as)]
hold-DR $=2$ 3n
'You held it.'

Inverse
[ew-kaya $=n] \quad$ [(as)]
hold-INV $=2$ 3n
'It held you.'

Examples

2PL > 3

Direct

[ew-na	=nkwet] [(as)]
hold-DR	=2pl 3n
	held it.'

Inverse
[ew-kaya =nkwet] [(as)]
hold-INV $=2 \mathrm{pl} \quad 3 \mathrm{n}$
'It held you (pl).'

1SG/PL	
2SG/PL	2PL
3SG/PL	3SG/PL

Examples

$3>3$

Direct
[ew-na ='ne] [(kas)]
hold-DR =3f OBV.n
'She held it.'

Inverse
[ew-kaya='ne] [(kas)] hold-INV =3f OBV.n 'It held her.'

1SG/PL	
2SG/PL	2PL
3SG/PL	3SG/PL

Syntactic status of the arguments

- The formal properties of the external argument are identical to those of the single argument of an intransitive clause
- The external argument is syntactically privileged: it is the only one that can be relativized (i.e. by headed, headless, and lightheaded relative clauses)
- The internal argument has no syntactic privileges; it is coded like a nominal possessor

Syntactic status of the arguments

E.g. headless RCs (after pronominal predicates):

[asko] [ew-na='ne]
PROPRED.3n hold-DR=3f
'That was (what) she held.'
[asko] [ew-kaya='ne]
PROPRED.3n hold-INV=3f
'That was (what) held her.'
$\begin{array}{lllll} & \text { [i'ne] } & \text { [kwey } & \text { ew-na] (n-os } & \text { dokwe='ne) }\end{array}$
'She was (the one who) held her dress.'

Passive (not attested in corpus)

Assignment of argument position

1st and 2nd person must be encoded in the internal slot, but there is no formal restriction for 3rd persons.
\rightarrow What governs argument encoding in a $3>3$ scenario?

Assignment of argument position

1st and 2nd person must be encoded in the internal slot, but there is no formal restriction for 3rd persons.
\rightarrow What governs argument encoding in a $3>3$ scenario?

1. Agenthood ("attention flow"; DeLancey 1981)

Assignment of argument position

1st and 2nd person must be encoded in the internal slot, but there is no formal restriction for 3rd persons.
\rightarrow What governs argument encoding in a $3>3$ scenario?

1. Agenthood ("attention flow"; DeLancey 1981)
2. Animacy (human > non-human animate > inanimate)

Assignment of argument position

1st and 2nd person must be encoded in the internal slot, but there is no formal restriction for 3rd persons.
\rightarrow What governs argument encoding in a $3>3$ scenario?

1. Agenthood ("attention flow"; DeLancey 1981)
2. Animacy (human > non-human animate > inanimate)
3. Discourse topicality ("viewpoint"; DeLancey 1981)

Assignment of argument position

1st and 2nd person must be encoded in the internal slot, but there is no formal restriction for 3rd persons.
\rightarrow What governs argument encoding in a $3>3$ scenario?

1. Agenthood ("attention flow"; DeLancey 1981)
2. Animacy (human > non-human animate > inanimate)
3. Discourse topicality ("viewpoint"; DeLancey 1981)
\square
Quantitative evaluation of a database of ~ 1250 transitive sentences describing $3>3$ scenarios (Haude 2014).

1. Agenthood

1. Agenthood

The default construction for encoding $3>3$ scenarios is DR, i.e. the internal argument is A.

1. Agenthood

The default construction for encoding $3>3$ scenarios is DR, i.e. the internal argument is A.

- $\quad 93 \%$ of all transitive $3>3$ constructions in the corpus are direct.

1. Agenthood

The default construction for encoding $3>3$ scenarios is DR, i.e. the internal argument is A.

- $\quad 93 \%$ of all transitive $3>3$ constructions in the corpus are direct.
- The direct form is the first one offered in elicitation:

1. Agenthood

The default construction for encoding $3>3$ scenarios is DR, i.e. the internal argument is A.

- $\quad 93 \%$ of all transitive $3>3$ constructions in the corpus are direct.
- The direct form is the first one offered in elicitation:
[lap-na=os mimi:di] [us itila:kwa] bite-DR=ART snake ART man
'The snake bit the man.' (spontaneous in elicitation)

1. Agenthood

The default construction for encoding $3>3$ scenarios is DR, i.e. the internal argument is A.

- $\quad 93 \%$ of all transitive $3>3$ constructions in the corpus are direct.
- The direct form is the first one offered in elicitation:

	$\begin{aligned} & \text { [lap-na=os } \\ & \text { bite-DR=ART } \end{aligned}$	mimi:di] snake	[us ART	itila:kwa]
Direct				man
	'he snake	n.' (sp	tan	elicitatio

$\begin{array}{cl}\text { Inverse } & \text { bite-INV=ART snake ART } \\ & \text { 'The man was bitten by the snake.' (prompted in elicitation) }\end{array}$

1. Agenthood

The default construction for encoding $3>3$ scenarios is DR, i.e. the internal argument is A.

- $\quad 93 \%$ of all transitive $3>3$ constructions in the corpus are direct.
- The direct form is the first one offered in elicitation:

Dir	[lap-na=os	mimi:di]	[us	itila:kwa]
Direct	bite-DR=ART	snake	ART	
	'The snake	n.' (sp	ane	elicitation)

Inverse
[lap-kaya=os mimi:di] [us itila:kwa]
bite-INV=ART snake ART man
'The man was bitten by the snake.' (prompted in elicitation)

When other factors are overridden, this is usually done with the direct construction.

2. Topicality

Argument expressions are indicators of "topicality" (i.e. here: discourse prominence, givenness, identifiability etc.):

- Pronouns tend to represent topical entities, taking up a "given" referent
- Less topical entities are likely to be encoded as NPs (introducing/specifying a referent)
- In Movima, less topical entities often remain unexpressed $(\rightarrow$ further research!)

2. Topicality

Argument expressions in 1254 transitive clauses with $3>3$ scenarios

| [Verb=ARG] [ARG] | \# Total | $\%$ Total | $\%$ DR | $\%$ INV |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | |
| [V=PRO] [NP] | 696 | 55% | 93% | 7% |
| $[$ V=PRO] [Ø] | 380 | 30% | 93% | 7% |
| [V=PRO] [PRO] | 88 | 7% | 93% | 7% |
| $[$ V=NP] [NP] | 52 | 4% | 98% | 2% |
| [V=NP] [Ø] | 38 | 3% | 95% | 5% |
| $[$ V=NP] [PRO] | 4 | 0% | 100% | 0% |

2. Topicality

The internal argument is most commonly a pronoun, taking up a previously introduced referent. The external argument is NP or unexpressed.

[V=PRO] [NP] (55\%):

2. Topicality

The internal argument is most commonly a pronoun, taking up a previously introduced referent. The external argument is NP or unexpressed.
[V=PRO] [-/-] (30\%)

Direct	Jayna n-os $[s u<w e>w e=a s]$, DSC OBL-ART near-NMZ $=3 n$											
[way-na=us] łat, [man-na=us] lift-DR $=3 \mathrm{~m}$ EV shoot-DR=3m												
	'Then, when it (the jaguar) was near, he lifted (his gun) and shot (the jaguar).'											

Inverse	[tino:ka]	[us]	łat	bo	[yok-kaya=us]
	fear	3m	EV	because	catch-INV=3m

2. Topicality

The internal argument is most commonly a pronoun, taking up a previously introduced referent. The external argument is NP or unexpressed.

[V=PRO] [PRO] (7\%)

'There was a gecko in her doorway and she was bitten by it in her toe.'

2. Topicality

The internal argument is most commonly a pronoun, taking up a previously introduced referent. The external argument is NP or unexpressed.

Counterexamples: [V=NP] [-/-] (3\%)

```
Direct [pachot-na=os pa:kona:nak]
    spy_on-DR=ART fox
    'The fox spied on (him).'
(36 tokens)
\begin{tabular}{lllll} 
Inverse & \begin{tabular}{l} 
[ba:kalomaj-kaya=is \\
finish_off-INV=ART
\end{tabular} & \begin{tabular}{c} 
o:kaka-poy \\
\\
\end{tabular} & all_kind-CLF.animal REL & di'
\end{tabular}\(\quad\)\begin{tabular}{l} 
popoykwa] \\
\\
\end{tabular}
```


2. Topicality

The internal argument is most commonly a pronoun, taking up a previously introduced referent. The external argument is NP or unexpressed.

Counterexamples: [V=NP] [NP] (4\%)

Direct [man<a>ye=is pa:ko] [os o:ma] find<DR>=ART dog ART tapir
'The dogs found a tapir.'
(51 tokens)

Inverse (only a few lexicalized examples)

2. Topicality

The internal argument is most commonly a pronoun, taking up a previously introduced referent. The external argument is NP or unexpressed.

Counterexamples: [V=NP] [PRO]: <1\%

Direct	[yok-na=is catch-DR=ART 'The dogs caught it.'	pa:ko] dog	[kas] OBV.3n

(4 tokens; idioms?)
Inverse (unattested)
\rightarrow [V=NP] only occurs in the direct construction.
\rightarrow Constituent order (V-A-P) is a possible alternative to direct/inverse opposition
\rightarrow Again, influence of agentivity (see DeLancey's 1981 "attention flow": crosslinguistic tendency to code agents before patients).

3. Animacy

- In descriptions of inverse systems, an animacy hierarchy (hum > nonhuman animate > inanimate) is usually evoked as a decisive factor (e.g. Klaiman's 1991 "ontological hierarchy")
- Animacy typically correlates with topicality and agentivity ("Human A's are seldom lexical"; Haig and Schnell in press) \rightarrow difficulty of teasing the factors apart

3. Animacy: corpus counts

Table 2. Animacy scenarios in $3>3$ transitive clauses (> means "acts on")

Type	Subtype	\# total	\% of total	\% DR	\% INV
	human > inanimate	451	36%	$\mathbf{1 0 0 \%}$	0%
"direct scenarios"	human > animate	145	12%	$\mathbf{1 0 0 \%}$	0%
	animate > inanimate	146	12%	$\mathbf{1 0 0 \%}$	0%
	human > human	300	24%	87%	13%
"equal scenarios"	animate > animate	127	10%	91%	9%
	inanim > inanim	5	0%	$\mathbf{6 0 \%}$	$\mathbf{4 0 \%}$
	animate > human	62	5%	$\mathbf{6 3 \%}$	37%
"inverse scenarios"	inanim > human	8	1%	0%	$\mathbf{1 0 0 \%}$
	inanimate > animate	10	1%	30%	$\mathbf{7 0 \%}$

3. Animacy: corpus counts

3. Animacy: "Direct scenarios"

Subtype	\# total	\% of total	\# DR	\# INV	\% DR	\% INV
human > inanimate	451	36%	451	0	$\mathbf{1 0 0 \%}$	0%
human > animate	145	12%	145	0	$\mathbf{1 0 0 \%}$	0%
animate > inanimate	146	12%	146	0	$\mathbf{1 0 0 \%}$	$\mathbf{0} \%$

- Direct scenarios ([+hum/anim] $\mathrm{A}>[$-hum/anim] P) are the most frequent (60%)
- Direct scenarios are always encoded by the direct construction
- This is independent of argument encoding:

Table 3. Argument encoding for direct scenarios

	$\%$
$[\mathrm{~V}=\mathrm{PRO}][\mathrm{NP}]$	58%
$[\mathrm{~V}=\mathrm{PRO}][\varnothing]$	33%
$[\mathrm{~V}=\mathrm{PRO}][\mathrm{PRO}]$	3%
$[\mathrm{~V}=\mathrm{NP}][\mathrm{NP}]$	4%
$[\mathrm{~V}=\mathrm{NP}][\varnothing]$	2%
$[\mathrm{~V}=\mathrm{NP}][\mathrm{PRO}]$	0%

3. Animacy: "Direct scenarios"

Subtype	\# total	\% of total	\# DR	\# INV	\% DR	\% INV
human > inanimate	451	36%	451	0	$\mathbf{1 0 0 \%}$	0%
human > animate	145	12%	145	0	$\mathbf{1 0 0 \%}$	0%
animate > inanimate	146	12%	146	0	$\mathbf{1 0 0 \%}$	$\mathbf{0} \%$

No inverse, even if expected from discourse topicality:

| Asko | jayna bijaw-ni-na=i, | [kis | ney
 here | wa:ka]
 cow | jayna,
 DSC |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| PRO.N.AB | DSC old-PRC-LOC=3PL ART | | | | |

'This is where they were raised, these cows, even if now, they (i.e., its actual keepers) replaced them.' (from a text about the cow herd)

3. Animacy: "Equal scenarios"

Subtype	\# total	\% of total	\# DR	\# INV	\% DR	\% INV
human > human	300	24%	260	40	87%	13%
animate > animate	127	10%	115	12	$\mathbf{9 1 \%}$	9%
inanimate > inanimate	5	0%	3	2	$\mathbf{6 0 \%}$	$\mathbf{4 0 \%}$

Equal scenarios are predominantly coded as DR, but the percentage of INV is relatively high.

```
n-os joyaj-wa=us pa:'i, jayna [itloba-kaya=is] [kus] ney
OBL-ART arrive-NMZ=ART priest DSC gather-INV=3PL OBV.3M here
```

'Then, when the priest arrived, they were assembled by him here.' (from text on Movima people)

Again, no influence from argument expression:

Argument expressions in equal scenarios

[Verb=ARG] [ARG]	INV
[V=PRO] [NP]	11%
[V=PRO] [Ø]	10%
[V=PRO] [PRO]	17%

3. Animacy: "Inverse scenarios"

Subtype	\# total	\% of total	\# DR	\# INV	\% DR	\% INV
animate $>$ human	62	5%	39	23	63%	37%
inanimate $>$ human	8	1%	0	8	0%	$\mathbf{1 0 0 \%}$
inanimate $>$ animate	10	1%	3	7	30%	$\mathbf{7 0 \%}$

The three examples where an inanimate>animate scenario is described with the direct construction involve natural forces:

```
[is loy rey supte:-wa], jaa rey [kavujkate-na=a]
ART NEG.SUB MOD tie:APPL-NMZ IJ MOD blow_away-DR=3N
```

'Those who are not tied (onto something), ah!, it (i.e. the hurricane) blows (them) away.'
\rightarrow Inverse scenarios with inanimate actors always take the inverse form. NB: in all examples, the human/animate Ps are pronouns and the inanimate As are NPs.

3. Animacy: "Inverse scenarios"

Subtype	\# total	\% of total	\# DR	\# INV	\% DR	\% INV
animate $>$ human	62	5%	39	23	$\mathbf{6 3 \%}$	37%
inanimate $>$ human	8	1%	0	8	0%	$\mathbf{1 0 0 \%}$
inanimate $>$ animate	10	1%	3	7	30%	$\mathbf{7 0 \%}$

Animals acting on humans: 63% direct; not always explained by topicality:

[isnos	tolkosya] jayna	ka:;	jayna	[jom<a>ni=is	bi:law]	
ART	girl	DSC	not_be	DSC	devour<DR>=ART	fish

'The girl didn't exist anymore, the fishes had devoured (her) already.' (from a text about the girl)

3. Animacy: Summary

- Direct scenarios (human > animate > inanimate) are always expressed with the direct construction.
- Inverse scenarios with inanimate As are always expressed with the inverse construction (but: few examples, and the inanimate As are low in topicality).
- Intermediate inverse (anim>human) and equal scenarios are preferredly expressed with the direct construction, i.e. constituent order can be used to indicate semantic roles.

Conclusions

- The assignment of the syntactic argument slots in Movima is not syntactically determined. If it were, then Movima would be a straightforward syntactically ergative language, with DR as the default construction and an antipassive to match syntactic requirements.
- INV is grammatically obligatory when $1^{\text {st }}$ and $2^{\text {nd }}$ person are involved.
- In $3>3$ interactions, the factors that determine the choice of the construction are:
- Animacy: human > (non-human animate $>$) inanimate
\rightarrow Humans and inanimates form the poles of the animacy hierarchy and are a strong predictor of construction choice.
- Topicality: prominent > less prominent
\rightarrow When animacy factors permit, the speaker is free to choose for discourse-pragmatic purposes.
- Agenthood: agent > patient
\rightarrow The direct construction (agent first) is the default.

Abbreviations

$\mathrm{A}=$ agent
$\mathrm{P}=$ patient
ART=article
DR=direct
INV=inverse
OBL=oblique
OBV=obviative
PROPRED=pronominal predicate
VALDECR=valency decrease
(APPL=applicative, DSC=discontinuous, EV=evidential, f=feminine, HYP=hypothetical, $I J=$ interjection, $m=$ masculine, MOD=modal, $n=$ neuter, NEG.SUB=negator of subordinate, $\mathrm{NMZ}=$ =nominalizer, pl=plural, $\mathrm{sg}=$ singular)

References

DeLancey, Scott. 1981. "An interpretation of split ergativity and related patterns." Language 57(3): 626-657.
Haig, Geoffrey and Stefan Schnell. In press. "The discourse basis of ergativity revisited." Language.
Haude, Katharina. 2014. Animacy and inverse in Movima: a corpus study.
Anthropological Linguistics 56(3-4): 294-314.
Klaiman, M.H. 1991. Grammatical Voice. Cambridge: Cambridge University Press.

