

Multisensory integration of speech in social context

Magdalena Matyjek Universitat Pompeu Fabra, Spain

Sotaro Kita University of Warwick, UK

Salvador Soto Faraco Universitat Pompeu Fabra, Spain

BACKGROUND

- Speech in social contexts involves integration of auditory and visual information across interrelated levels of representation ranging from purely spatio-temporal correlations to semantics.
- In the process of multisensory integration (MSI), visual speech enhances auditory speech perception, especially in adverse listening conditions [1, 2, 3].
- Although the expression of audio-visual **speech** 'in the involves multiple levels of information processing (including wild' phonology, prosody, syntax, semantics, and pragmatics), these are seldom represented together in laboratory studies, which typically

Sample

- N = 36, typically developing adults
- M age = 25 (6.6), min/max: 19/49
- 18F, 18M

METHODS

Paradigm

• Participants watched a recording of a videoconference with 4 actors playing a word game

EEG recording

- 61 active electrodes (Brain Products)
- 500 Hz, reference: average
- 0.01Hz 40Hz band-pass filter

- use isolated syllables or, at most, words out of context.
- Yet, multilevel contextual cues help create expectations that trickle down to early processing stages of speech perception [4].

AIM & HYPOTHESIS

- We investigated gestural and visual-speech enhancement of auditory speech perception using stimuli embedded in a coherent discursive and social context, and therefore more ecologically valid.
- We hypothesise that the bimodal (audio-visual; AV) in comparison to unimodal (only A or only V) speech would elicit multisensory integration effects observed in behaviour (accuracy and reaction times) and in neuronal responses (alpha suppression).

DATA ANALYSES

	Behavioural data		
Alpha suppression We expected to observe stronger parieto- occipital alpha suppression in AV trials (linked to integratory processes [5, 6, 7]) in the first second after stimulus onset.	 Analysis steps: 1. Linear summation of all A and V combinations in the time domain 2. Power calculations for A+V and AV (wavelets) 	Sth percentile (=5% of the smallest bootstrapped A+V means) The observed AV mean for this participant	<pre>Planned: Accuracy We built a generalised linear mixed model (GLMM) with binary dependent variable for single-trial correct and incorrect responses: glmer(formula = correct ~ cond + (1 ID) + (1 + cond verb), family = binomial(link = "logit")</pre>
MSI estimation using oscillatory power	3. Bootstrapping A+V		Exploratory: Reaction times (RTs)

