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Abstract. In this paper, a distributed optimal control epidemiological model is presented. The
model describes the dynamics of an epidemic with social distancing as a control policy. The model
belongs to the class of continuous-time models, usually involving ordinary/partial differential equa-
tions, but has a novel feature. The core model---a single integral equation---does not explicitly use
transition rates between compartments. Instead, it is based on statistical information on the disease
status of infected individuals, depending on the time since infection. The approach is especially rele-
vant for the coronavirus disease 2019 (COVID-19) in which infected individuals are infectious before
onset of symptoms during a relatively long incubation period. Based on the analysis of the proposed
optimal control problem, including necessary optimality conditions, this paper outlines some efficient
numerical approaches. Numerical solutions show some interesting features of the optimal policy for
social distancing, depending on the weights attributed to the number of isolated individuals with
symptoms and to economic losses due to the enforcement of the control policy. The general nature
of the model allows for inclusion of additional epidemic features with minor adaptations in the basic
equations. Therefore, the modeling approach may contribute to the analysis of combined intervention
strategies and to the guidance of public health decisions.
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1. Introduction. The COVID-19 pandemic, caused by the severe acute respi-
ratory coronavirus 2 (SARS-CoV-2), shows characteristics that are challenging for
public health care systems. High transmissibility of the causative virus, transmission
of the virus by asymptomatic and presymptomatic infected individuals (subclinical
infection), and lack of effective treatments and vaccines impede pandemic control.
Therefore, nonpharmaceutical interventions such as population- and individual-based
social distancing, testing, and contact tracing have so far been the principal public
health measures.

In the case of COVID-19, infected individuals are initially asymptomatic for a
period of approximately five to six days on average. Some of them may not develop
symptoms and recover without complications. A fraction of the asymptomatic infected
individuals progress to symptoms that, depending on the severity of the disease, may
lead to death. In most cases symptomatic individuals are isolated.

On the other hand, infectiousness starts shortly after infection during the asymp-
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tomatic period. The degree of infectiousness depends on the time since infection and
on the stadium of the disease at which the infected individual is. It is estimated that
infectiousness is at its highest shortly before or upon the onset of symptoms; see, e.g.,
He et al. (2020). Thus, epidemiological population groups such as asymptomatics,
presymptomatics, and symptomatics are infectious, can transmit the virus, and are
causes of major concern for the control of the epidemic; see He et al. (2020); Nishiura
et al. (2020); Mizumoto et al. (2020); Park et al. (2020); and Zhang et al. (2020).

Mathematical models have been developed to assess the transmission dynamics
of the virus, the severity of the disease, as well as the effectiveness of public health
measures. Major social distancing interventions have been population-based (e.g.,
lockdown at local, regional, or national level) and individual-based social distancing;
see, e.g., Peak et al. (2020); Hellewell et al. (2020); Tsay et al. (2020); and Kret-
zschmar et al. (2020). Predominant social distancing strategies at the individual level
are isolation of asymptomatically or symptomatically infected individuals, contact
tracing, and quarantine.

The vast majority of mathematical models are based on deterministic compart-
mental modeling, where the epidemiological subpopulations are classified into a sus-
ceptible category, several infected population groups as well as groups with recovered
individuals or fatalities. Dynamic transitions from one class to the next are based on
transition rates, usually constant and sometimes also variable over time. Interven-
tions are built into the models in a similar way. Stochastic approaches have similar
rationale allowing for uncertainty, and statistical approaches are usually used for the
estimation of epidemiological parameters.

A major issue with ordinary or partial differential equation models with compart-
ments is that transition rates are not directly observable and have to be identified
from available observable data. A main problem for the latter is that transition rates
are intrinsically variable---they may change in the course of the epidemic even in a
stationary environment (see section 2).

The main advantage of the model proposed in this paper is that it does not
involve transition rates between compartments. The only dynamic variable, y(t), is
the number of new infections as a function of the time, t. The dynamics of this
variable is described by a single evolutionary integral equation. It requires observable
statistical information on the medical status of infected individuals during the course
of infection, that is, depending on the time since infection, \theta . Examples for needed
information are as follows: fraction of infected individuals showing symptoms \theta days
after infection; fraction of infected individuals who die \theta days after infection; fraction
of infected individuals who recover \theta days after infection, etc. Knowledge of the
function y(\cdot ) on a time interval [0, t] and the needed statistical information allows
one to evaluate the size of various subpopulations at time t (infected, asymptomatic,
symptomatic, recovered, died, etc.) as well as to calculate several meaningful effective
reproduction numbers.

Since the infection age plays a decisive role in the type of required data and for
the model, we stress that models in which the infectiousness varies with the infection
age are well known in the literature which goes back to the 1920s of the 20th century
(Kermack and McKendrick (1927)). More about the history and the development
of models with infection-age-dependent infectiousness can be found in Thieme and
Castillo-Chavez (1993). Such models are especially relevant to epidemic diseases with
a long incubation period and high variability of the infectiousness with the infection
age, in particular to COVID-19, as argued above.

The basic model of the evolution of the epidemic is presented in section 2. As
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mentioned above, it consists of a single integral equation, which is not standard;
therefore existence of a (nonnegative) solution and some additional properties are
presented. This section also includes formulas for the sizes of the subpopulations of
interest, and for the effective reproduction numbers.

Optimal control theory has become a powerful tool designing of policies for pre-
vention and medical treatment of infectious diseases. The work by Feichtinger et al.
(2004) investigates an optimal control problem for a model involving infection-age-
dependent infectiousness. In the present paper we only consider social distancing as
control policy; therefore the main issue is to find a reasonable compromise between
the positive effect of the social distancing for the attenuation of the epidemic, and the
resulting economic losses due to the induced ``lockdown.""

In section 3, we present an optimal control model that combines the two opti-
mization criteria mentioned above. The effect of social distancing on the course of
epidemic is measured by the total number of isolated (or dead) individuals, while
the economic component in the objective functional involves a simple estimation of
the economic losses. Since the considered optimal control problem is not standard
we derive a necessary optimality condition, together with some additional properties
(subsection 3.1) which provide a basis for numerical approaches (subsection 3.2).

In order to demonstrate the usage of the proposed approach, section 4 analyzes a
numerical case study. The parametrization of the implemented instance is based on
distributions for the incubation period, the serial interval, and the time between onset
of symptoms and death. Subsection 4.1 discusses related literature and the estimates
used in the case study, and subsection 4.2 describes the construction of the imple-
mented parameter functions, which depend on the time since infection. Finally, in
subsection 4.3 a number of numerical results for the case study are presented, includ-
ing the evolution of the epidemic subpopulations with or without policy measures, the
optimal control policies for various optimization scenarios, the trade-off between the
economic and the humanitarian objectives, and the effective reproduction numbers.
An interesting observation is, for example, that for a larger weight attributed to the
humanitarian objective, the contact restrictions begin earlier and are removed later,
but the magnitude of the restrictions is milder. If more weight is attributed to the
economy, severe restrictions are undertaken, but later and for a relatively short time.

In the concluding section, section 5, we indicate some possible extensions.

2. The basic model. An individual is infected after exposure to the virus,
which allows the virus to enter, remain, and multiply in the host. One of the main
features of COVID-19 is that infected individuals may be infectious during a long
period of time, even until recovery, without having symptoms (asymptomatics). The
infectiousness of infected individuals strongly depends on the time since infection. For
this reason, the time since infection is essential in the model presented below. This
time, denoted further by \theta , will be shortly called infection age (not to be confused
with the biological age of individuals). Thus an individual infected at time t will have
infection age \theta = t1  - t at time t1 \geq t.

Along with the infectiousness, the contact rates of individuals play a crucial
role in epidemiological models. These depend on the stage of the individual in the
course of the infection: asymptomatic/symptomatic, nonisolated/isolated, nonhos-
pitalized/hospitalized, etc. The same applies to the other parameters (related to
mortality, recovery, etc.) used in building an epidemiological model. In this paper, we
focus on the following subpopulations (with corresponding notation), characterizing
the status of an individual in the context of an epidemic:
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S I1 I4

I3

I2

D

R

Fig. 2.1. Possible paths for the development of the disease of an infected individual.

S -- susceptible;
I1 -- asymptomatic, nonisolated;
I2 -- asymptomatic, isolated;
I3 -- symptomatic, nonisolated;
I4 -- symptomatic, isolated;
R -- recovered;
D -- dead.
The possible stages that an infected individual may undergo are shown in Figure 2.1.
For example, S  - \rightarrow I1  - \rightarrow R and S  - \rightarrow I1  - \rightarrow I3  - \rightarrow I4  - \rightarrow D are possible paths.

Typical ODE epidemiological models (such as SIR, SIRS, SEIR, etc.) and some
PDE models describe the transitions between epidemiological population groups by
transition rates. Such models have (among others) the following two drawbacks:
(i) the transition rates cannot be directly extracted from observable data; (ii) even
in a stationary environment without, e.g., seasonal fluctuations and pharmaceuti-
cal or nonpharmaceutical measures, the transition rates may be intrinsically time-
dependent. For example, the transition rate from the group of infected to the group
of recovered or dead individuals during the expansion phase of the epidemic is smaller
than that in a phase of decreasing numbers of new infections. For this reason, the use
of models involving transition rates for real predictions gives reasonable results only
for relatively short time horizons if the dynamics of the epidemic are fast. Hence, the
transition rates have to be permanently updated using current measurements. Various
techniques for that have been published, especially after the emergence of COVID-19,
e.g., the recent papers of Ma (2020); Kounchev et al. (2020); Margenov et al. (2020).
The main advantage of the model proposed in this paper, compared with ODE models
(see, e.g., Giordano et al. (2020) where almost the same compartments are consid-
ered), is that our model is mainly based on data about the course of infection. These
data may be estimated from course of infection curves for, e.g., the incubation period,
serial intervals, or the time span between onset of symptoms and death. Such infor-
mation is the subject of epidemiological studies; see the discussion in subsection 4.1
below. Other relevant information about the course of infection can be observed by
public health authorities, e.g., by monitoring flows from and to the isolated classes or
using seroepidemiological studies of parts of the population. In contrast to the tran-
sition rates, this information can be considered as intrinsically stationary, although
it may depend on external factors---seasonality effects, pharmaceutical interventions,
etc. In particular, instead of transition rates, we use information about the probabil-
ity that an infected individual belongs to one or another population group at a given
infection age. Clearly, the availability and accuracy of these data increase during the
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evolution of the epidemic. Section 4 discusses in more detail the concrete information
used for a numerical case study.

Before formulating the model we make a few preliminary assumptions. First,
the environment is stationary, except possibly global restrictions on the contact rates
(social distancing). Second, the recovered individuals remain immune after recovery;
see, e.g., Huang et al. (2020), Peng et al. (2020), and Kojima and Klausner (2022).
Some more assumptions, concerning emergence of new cases, will be made below.

2.1. Formulation of the model. The model has a time-range [0, T ] (the time
measured in days), while the disease may have begun earlier than time 0. The follow-
ing data related to the progress of the disease along the infection age \theta are required.
Each of them represents the fraction of all individuals infected at the same time,
having a given status (I1, . . . , I4, R,D) at infection age \theta :
\alpha 1(\theta ) -- fraction of asymptomatic nonisolated individuals (I1);
\alpha 2(\theta ) -- fraction of asymptomatic isolated individuals (I2);
\alpha 3(\theta ) -- fraction of symptomatic nonisolated individuals (I3);
\alpha 4(\theta ) -- fraction of symptomatic isolated individuals (I4);
\rho (\theta ) -- fraction of recovered individuals (R);
\mu (\theta ) -- fraction of dead individuals (D).
These fractions have to be known on the interval [0,\Theta ], where \Theta is such that the
infected individuals of infection age \Theta can be assumed to be either recovered or dead.
Consistent with the meaning of \Theta , we extend \alpha k(\theta ) = 0, k = 1, . . . , 4, and \rho (\theta ) = \rho (\Theta ),
\mu (\theta ) = \mu (\Theta ) for \theta > \Theta . All of these fractions can be considered as time-dependent
without substantial changes in the model, but in this paper they are assumed to be
stationary.

Clearly, it must hold that for all \theta \geq 0

4\sum 
k=1

\alpha k(\theta ) + \rho (\theta ) + \mu (\theta ) = 1.

Figure 2.2 represents the above functions for the case study presented in section 4.
The above data allow one to express the sizes of each group with a given status (S,

I1, . . . , D) at any time t \geq 0 by means of a single function of time, y(\cdot ), which gives
the amount of new infections at any given time t \in [ - \Theta , T ]. Somewhat overloading
the notation, Ik(t) will be the size of the group Ik at time t \in [0, T ] (k = 1, . . . , 4)
and similarly for S(t), R(t), and D(t). Then, obviously,

Ik(t) =

\int \Theta 

0

\alpha k(\theta )y(t - \theta ) d\theta , k = 1, . . . , 4,(2.1)

S(t) = S( - \Theta ) - 
\int \Theta +t

0

y(t - \theta ) d\theta ,(2.2)

R(t) = R0 +

\int \Theta +t

0

\rho (\theta )y(t - \theta ) d\theta ,(2.3)

D(t) = D0 +

\int \Theta +t

0

\mu (\theta )y(t - \theta ) d\theta ,(2.4)

where S( - \Theta ) is the size of the susceptible population at time  - \Theta , R0 is the size of
the group of infected individuals before t =  - \Theta who have recovered until time t = 0,
and D0 is similar but for the dead individuals.
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Fig. 2.2. Parameter functions \alpha k, \rho , and \mu .

Thus, the only unknown variable in the model will be y(t)---the quantity of indi-
viduals who get infected (for the first time) at time t. All other variables of interest
are expressed in terms of y(\cdot ) by (2.1)--(2.4). According to the definition of \Theta , all
infected individuals either recover or die at most \Theta days after infection.

More data is needed for modeling the dynamics of y(t), some of which will be
time-dependent in order to later incorporate the distancing policy, namely
c(t) -- contact rate of susceptible and recovered individuals,
ck(t) -- contact rate of individuals of infection status Ik, k = 1, . . . , 4,
ik(\theta ) -- infectiousness of individuals of infection age \theta and infection status Ik, k =

1, . . . , 4.

Here it is assumed that the infectiousness is independent of time, which may not be
the case if medication treatment is applied. These parameters are more difficult to
be evaluated. One may consider c(t)---the normal contact rate of susceptibles---as a
reference value, and assume that
(2.5)

c1(t) = c(t), c2(t) = c4(t) = \varepsilon c(t) with a small \varepsilon , c3(t) = \delta c(t) with \delta \in [\varepsilon , 1].

Moreover, it is reasonable to assume that

(2.6) i1(\theta ) = i2(\theta ) =: iA(\theta ), i3(\theta ) = i4(\theta ) =: iS(\theta ),

since the infectiousness does not depend on whether a person is isolated or not, but
may depend (in addition to the infection age) on presence of symptoms (a sympto-
matic individual may shed more virus loaded droplets than an asymptomatic one).

In the derivation of the equation for y below, natural deaths and births are ig-
nored, which is plausible if the duration of the epidemic is not too long or the natural
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demographic change is slow. The foundation of this equation follows.
First, the restriction of y(\cdot ) on [ - \Theta , 0), denoted further by y0(\cdot ), is considered as

known from records for the new infections before time t = 0.
It is assumed that the amount of newly infected individuals at time t is propor-

tional to the number of contacting susceptibles, S(t), regarding their contact rate,
c(t), and to the infectiousness of the environment in which the contacts take place:

y(t) = \scrI (t)c(t)S(t).

In the representation of \scrI (t) it is assumed, roughly speaking, that an infectious in-
dividual with a certain level of infectiousness i(\theta ), and having a certain number of
risky contacts per unit of time, is equally infectious as one who is twice as infectious
but has half of the risky contacts. In addition, it is assumed that the individuals
participating in contacts are homogeneously mixed. Then

(2.7) y(t) =
V (t)

W (t)
c(t)S(t),

where V (t) is the participation of infected individuals, weighed by their infectious-
ness and their contact rates, and W (t) is the total population participating in risky
contacts, weighed by their contact rates. Thus,

V (t) =

\int \Theta 

0

y(t - \theta )

4\sum 
k=1

ik(\theta )ck(t)\alpha k(\theta ) d\theta .

Similarly,

W (t) =

\int \Theta 

0

y(t - \theta )

4\sum 
k=1

ck(t)\alpha k(\theta ) d\theta + c(t)(S(t) +R(t)).

Using (2.5) and (2.6), and having in mind that all \alpha k(\theta ) = 0 for \theta > \Theta , we represent

V (t) = c(t)

\int \Theta +t

0

\bigl[ 
iA(\alpha 1 + \varepsilon \alpha 2) + iS(\delta \alpha 3 + \varepsilon \alpha 4)

\bigr] 
(\theta ) y(t - \theta ) d\theta ,

W (t) = c(t)

\biggl[ 
S( - \Theta ) +R0 +

\int \Theta +t

0

[\alpha 1 + \varepsilon \alpha 2 + \delta \alpha 3 + \varepsilon \alpha 4 + \rho  - 1
\bigr] 
(\theta ) y(t - \theta ) d\theta 

\biggr] 
.

Substituting these expressions in (2.7) we obtain the following equation describing
the dynamics of the new cases, y(\cdot ):

(2.8) y(t) = c(t)

\int \Theta +t

0
\~q(\theta )y(t - \theta ) d\theta 

\Bigl( 
S( - \Theta ) - 

\int \Theta +t

0
y(t - \theta ) d\theta 

\Bigr) 
S( - \Theta ) +R0 +

\int \Theta +t

0
[q(\theta ) + \rho (\theta ) - 1]y(t - \theta ) d\theta 

,

where

(2.9) \~q(\theta ) = [iA(\alpha 1 + \varepsilon \alpha 2) + iS(\delta \alpha 3 + \varepsilon \alpha 4)](\theta ), q(\theta ) = [\alpha 1 + \varepsilon \alpha 2 + \delta \alpha 3 + \varepsilon \alpha 4](\theta ).

Equation (2.8) is an evolutionary integral equation for y(\cdot ), supplemented with the
initial condition

(2.10) y(t) = y0(t) for t \in [ - \Theta , 0).
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This is the basic equation of the model. Knowing its solution, one may calculate the
quantities of interest in (2.1)--(2.4).

Having in mind (2.2)--(2.3) with t = 0, we can equivalently reformulate equation
(2.8) in the following way, explicitly including y0 in the equation:

(2.11) y(t) = c(t)

\Bigl( 
d1(t) +

\int t

0
\~q(\theta )y(t - \theta ) d\theta 

\Bigr) \Bigl( 
d2  - 

\int t

0
y(t - \theta ) d\theta 

\Bigr) 
d3(t) +

\int t

0
[q(\theta ) + \rho (\theta ) - 1]y(t - \theta ) d\theta 

,

where

d1(t) :=

\int 0

 - \Theta 

\~q(t - \tau )y0(\tau ) d\theta , d2 := S(0),(2.12)

d3(t) := S(0) +R0 +

\int 0

 - \Theta 

[q(t - \tau ) + \rho (t - \tau )]y0(\tau ) d\theta .

We mention that the model can be further extended, say by including hospitalized
individuals, hospitalized with intensive care, etc., provided that data similar to \alpha k are
available for these groups. Such extensions, however, do not change the structural
form of the transmission dynamics (2.8) or (2.11). More about extensions is given in
section 5.

2.2. Preliminary analysis of the basic integral equation. Concerning the
data involved in (2.8) we make the following assumptions:

(i) the functions \alpha k (k = 1, . . . , 4), \rho , \mu , iA, iS , c, y0 are measurable, bounded, and
nonnegative, c(t) \leq \=c, \varepsilon , \delta \in (0, 1];

(ii) S( - \Theta ) - 
\int 0

 - \Theta 
y0(\theta ) \geq 0;

(iii) \eta := R0 +
\int \Theta 

0
\rho (\theta )y0( - \theta ) d\theta > 0.

Here \=c represents the average contact rate of individuals in absence of the epi-
demic---a positive number that may become lower, c(t) \leq \=c, due to restrictions on the
contacts during the epidemic. Assumption (ii) formally means that the susceptible
population, S(0), at time t = 0 is nonnegative (see (2.2) with t = 0). Assumption
(iii) requires that at time t = 0 there are recovered individuals. This assumption can
be relaxed, because it is only needed to ensure that the denominator in (2.8) does
not vanish. For that it is enough to assume that the population does not go extinct
before t = T , but such an assumption is not a priori checkable.

Below \| \cdot \| i denotes the norm in the usual space Li[0, \tau ] on a scalar interval [0, \tau ]
(which is sometimes skipped in the notation).

Proposition 2.1. For every nonnegative function c \in L2[0, T ], equation (2.11)
has a unique solution y \in L2[0, T ]. This solution is nonnegative, and the denomi-
nator in (2.11) is a.e. strictly larger than \eta along the solution y. Moreover, y(t) \leq 
c(t)max\theta \in [0,\Theta ]\{ iA(\theta ), iS(\theta )\} S(0).

The proof is based on the contraction mapping theorem. The specific form of
(2.11), where the denominator can vanish for some y \in L2, makes the proof not
straightforward. Therefore, it is given in the appendix.

2.3. Reproduction numbers. The notion of an effective reproduction number
may have various meanings depending on the group of infected individuals to which
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it applies. Roughly, this number should give the average number of secondary cases
per primary cases from the considered group at time t. The model presented in
this paper allows one to define in a meaningful way several types of reproduction
numbers (further on we drop the adjective ``effective""). Let I(t) be the size of the
infected population at time t (the latter merely called ``group I(t)""). We consider the
following:

\bullet \scrR (t) -- aggregated reproduction number at time t---the average number of
individuals who are directly infected by an individual from the group I(t).

\bullet \scrR coh(t) -- reproduction number of newly infected individuals at time t---the
average number of individuals who are directly infected by a member of the
cohort of newly infected individuals emerging at time t.

Given that the basic equation (2.11) (or (2.8)--(2.10)) is solved until time t + \Theta 
(with any t \in [0, T - \Theta ]), one can represent the above reproduction numbers as follows:

(2.13) \scrR (t) =
1

I(t)

\int t+\Theta 

t

c(\tau )
S(\tau )

\int \Theta 

\tau  - t
\~q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

d\tau ,

(2.14) \scrR coh(t) =

\int t+\Theta 

t

c(\tau )
\~q(\tau  - t)S(\tau )

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

d\tau .

Here S(\tau ), R(\tau ), and I(\tau ) :=
\sum 4

k=1 Ik(\tau ) have to be calculated from (2.1)--(2.3). To
obtain the above expressions one may just follow the derivation of the basic model
(2.8), tracing the role of the respective group (either I(t) or y(t)) in the evolution
of the size of the infected population in [t, t + \Theta ], not counting infections caused by
secondary cases.

Essentially, \scrR (t) indicates what is the averaged per capita ``production"" of new
cases by the individuals infected prior to time t, while \scrR coh(t) is the averaged per
capita ``production"" of newly infected individuals at time t.

Notice the number \scrR (t) only includes the per capita secondary cases produced by
individuals who are infectious at time t. This undervalues the contribution of these
individuals to the epidemic, because they may have already produced secondary cases
before time t. If also these secondary infections are counted, then we have a more
relevant effective reproduction number of the currently infected individuals:

\scrR all(t) =
1

I(t)

\int t+\Theta 

t

c(\tau )
S(\tau )

\int \Theta 

\tau  - t
\~q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

d\tau 

+
1

I(t)

\int t

t - \Theta 

c(\tau )
S(\tau )

\int \tau  - t+\Theta 

0
\~q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

d\tau .

In addition, one can distinguish the contribution of members of the cohort of new
cases at time t during various phases of their infection period. For example, a newly
infected individual emerging at time t will create an average of \scrR 1

coh(t) secondary
cases during her asymptomatic period and before potential isolation, where

\scrR 1
coh(t) =

\int t+\Theta 

t

c(\tau )
iA(\tau  - t)\alpha 1(\tau  - t)S(\tau )

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

d\tau .

Similarly, one can calculate the contribution of the members of the cohort infected
at time t during the other phases of their infection period. This may give valuable
information for efficiently focusing potential policies for attenuation of the epidemic.
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Of course, it is of particular interest to evaluate the basic reproduction number of
the epidemic. The effect of a single infected individual put in a completely susceptible
population depends on the specific infection age at the time of emergence. If (in the
worst case) the infected individual has infection age \theta = 0, the number of secondary
cases will be

\scrR 0 =

\int \Theta 

0

c1(\theta )i(\theta ) d\theta .

This expression is straightforward, but it could also be obtained from (2.3) for t = 0
and passing to the limit with I(0) \rightarrow 0.

The calculation of the effective reproduction numbers at time t requires knowledge
of the evolution of the basic variable y(\cdot ) on [t, t+\Theta ]; thus their usefulness may look
questionable. However, the calculation of the reproduction numbers at time t  - \Theta 
may be based (using the same formulas) on the real measurements on y(\tau ) in the
interval [t - \Theta , t]. Moreover, having in mind that secondary cases dominantly appear
in a much shorter period than \Theta , one may replace \Theta in the formulas for \scrR (t) and
\scrR coh(t) with a much smaller number (e.g., 7 days instead of \Theta = 40 days). The
resulting approximations of the reproduction numbers based only on measured data
can be helpful for assessment of the current potential of the epidemic.

3. Optimal ``social/physical distancing"" policy. In this section we consider
the contact rate c(t) as a policy variable and introduce an objective functional to be
minimized, including in a simple way human/medical concerns, but also regarding
the economic losses due to the epidemic and due to restrictions on the contact rates
(``physical distancing""). For this, the contact rate c in (2.8) will take the form c(t) =
\=cu(t), where u(t) \in [u0, 1] is a control function to be chosen (we remind the reader
that \=c is the ``normal"" average contact rate without epidemic).

We denote the total human damage of the epidemic in [0, T ] (assuming that the
chosen time horizon is long enough, so that the epidemic is close to extinction at T )
by \int T

0

I4(t) dt,

which is the total number of isolated symptomatic individuals in the period [0, T ];
see (2.1). Keeping in mind that the number of individuals who need hospitalization
or intensive care is a statistically estimated proportion of the isolated symptomatic
ones, the same expression, weighted appropriately, can represent the total number of
each of these groups, or the total number of deaths.1

Modeling the economic damages of an epidemic (with or without ``lockdown"") is
a complicated issue (see, e.g., the review by Bloom et al. (2020) and Acemoglu et al.
(2020) for comprehensive analysis of the issue). Here we keep the model simple by
making a reasonable shortcut. The economic part of the objective functional is a
simple version of the ``cost-of-illness"" approach (see section 3 in Bloom et al. (2020)),
where medical costs and the (temporarily or ultimately) lost labor are counted. The
instantaneous gross domestic product (GDP) without epidemic is assumed to be pro-
portional to K1 - \sigma L\sigma (the Cobb--Douglas production function), where K is the capital
stock at a given time (which will be assumed constant in the horizon [0, T ]), L is the

1Here we ignore possible susceptible individuals in quarantine, and the infected asymptomatic
individuals, because quarantine/isolation of such individuals can only be achieved by additional
policy measures (testing and contact tracing), which will be the subject of a further upgrade of the
model.
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available labor, and \sigma \in (0, 1). With the restriction u \in [u0, 1], and due to the fact
that isolated symptomatic individuals normally do not work, the economic losses at
time t can be assumed to be proportional to

K1 - \sigma L\sigma  - K1 - \sigma (u(t))\sigma 
\Bigl( 
L - L

N
I4(t)

\Bigr) \sigma 

= K1 - \sigma L\sigma 
\Bigl( 
1 - (u(t))\sigma 

\Bigl( 
1 - I4(t)

N

\Bigr) \sigma \Bigr) 
.

Here N and L are the total population and labor before the epidemic; thus L/N is
the fraction of labor in the total population. The dead individuals are disregarded in
the above expression, because the fraction of individuals in working ages who die due
to the COVID-19 epidemic is relatively low. Summarizing, we consider the following
objective functional to be minimized:

(3.1)

\int T

0

\Bigl[ 
\pi I4(t) + p

\Bigl( 
1 - (u(t))\sigma 

\bigl( 
1 - \beta I4(t)

\bigr) \sigma \Bigr) \Bigr] 
dt,

where \pi \geq 1 is a weight (formally redundant), which allows one to take into account
the costs per capita for medical treatment (\pi  - 1). The parameter \beta may take values
between zero and L/N , and p is a weight which incorporates (in a multiplicative way)
the following three components: the pre-epidemic GDP (proportional toK1 - \sigma L\sigma ), the
discounted postepidemic economic losses (which may be considered as proportional to
the economic losses during the epidemic), and the weight needed to put on a common
scale the human losses and the economic losses. The latter is a matter of political
decision. Using the parameter p one can analyze the trade-off between humanitarian
and economic objectives. Summarizing and disregarding the constant summand p in
(3.1), we obtain the following optimal control problem:

(3.2) min

\int T

0

\Bigl( 
\pi I4(t) - p (u(t))\sigma [1 - \beta I4(t)]

\sigma 
\Bigr) 
dt

subject to the equations

y(t) = u(t) \=c

\Bigl( 
d1(t) +

\int t

0
\~q(\theta )y(t - \theta ) d\theta 

\Bigr) \Bigl( 
d2  - 

\int t

0
y(t - \theta ) d\theta 

\Bigr) 
d3(t) +

\int t

0
[q(\theta ) + \rho (\theta ) - 1]y(t - \theta ) d\theta 

,(3.3)

I4(t) = d4(t) +

\int t

0

\alpha 4(\theta )y(t - \theta ) d\theta ,(3.4)

and the control constraint u(t) \in [u0, 1], where

(3.5) d4(t) =

\int 0

 - \Theta 

\alpha 4(t - s)y0(s) ds.

The parameter \beta can be assumed to belong to [0, 1], provided that the population
size N before the beginning of the epidemic is normalized to 1 as we further assume.

3.1. Analysis of the optimization problem. Problem (3.2)--(3.4) can be writ-
ten in the following more general form with states y \in \BbbR and z \in \BbbR n and control values
u \in U \subset \BbbR m:

(3.6) min

\int T

0

g(z(t), u(t)) dt
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subject to

y(t) = f(z(t), u(t)) for t \in [0, T ],(3.7)

zk(t) = dk(t) +

\int t

0

\varphi k(\theta )y(t - \theta ) d\theta , k = 1, . . . , n,(3.8)

u(t) \in U.(3.9)

Indeed, with z = (z1, z2, z3, z4) and U = [u0, 1], one can set

(3.10) \varphi 1(\theta ) = \~q(\theta ), \varphi 2(\theta ) =  - 1, \varphi 3(\theta ) = q(\theta ) + \rho (\theta ) - 1, \varphi 4(\theta ) = \alpha 4(\theta ),

f(u, z) := u \=c
z1 z2
z3

, g(z, u) = \pi z4  - p u\sigma (1 - \beta z4)
\sigma ,

where d1, d2, d3 are defined in (2.12), d4 is defined in (3.5), and q and \~q are introduced
in (2.9). According to the last statement of Proposition 2.1, z3 > \eta for every z3 in
the domain of interest in the particular model (3.2)--(3.4). Since the analysis below
is local, the function f is smooth in the domain of interest. Thus, also taking into
account Proposition 2.1, the assumptions made in the next paragraph for the more
general problem (3.6)--(3.9) can be considered as fulfilled for the particular problem
(3.2)--(3.4).

Assumptions for problem (3.6)--(3.9). The functions f, g : \BbbR n \times \BbbR m \rightarrow \BbbR are
differentiable, \varphi , dk \in L\infty [0, T ], and U is convex and closed. Moreover, g, and all first
derivatives of f and g, are (globally) Lipschitz continuous in u \in \BbbR m, uniformly with
respect to z in any compact set, and locally Lipschitz continuous in z, uniformly with
respect to u in any compact set. In addition, there exists a constant M such that
for every u \in L2[0, T ] the system (3.7)--(3.8) has a unique solution (y, z) in L2, and
\| z\| \infty \leq M\| u\| 2.

Remark 3.1. More general problems than (3.6)--(3.9) can be investigated in the
same way as below, but we do not seek generality in this paper (the same applies
to the assumptions above). We consider (3.6)--(3.9) mainly in order to simplify the
notation involved in (3.2)--(3.4).

In the particular problem of interest, (3.2)--(3.4), the function f is linear in u,
and I4 linearly depends on y. Moreover, the multiplier [1  - \beta I4(t)]

\sigma is nonnegative,
since I4(t) < N = 1, hence the integrand in (3.2) is convex in u. Then existence
of a solution of this problem is implied by the classical Tonelli argument. In the
more general problem (3.6)--(3.9) we just assume existence of a local solution, further
denoted by (\^u, \^y, \^z). To be more precise, denote by J(u) the value of the functional
(3.6), where z results from (3.7)--(3.8). Also denote \scrU := \{ u \in L\infty [0, T ] : u(t) \in 
U for a.e. t \in [0, T ]\} ---the set of admissible controls. Then ``local solution"" means
that J(u) \geq J(\^u) for all u \in \scrU belonging to an L\infty -neighborhood of \^u.

Further on, we indicate by subscripts the partial derivatives of functions. For
example, gu(z, u) denotes the derivative of g with respect to u (a (1\times m)-dimensional
matrix), fz(z, u) is a (1\times n)-dimensional, etc.

Proposition 3.2. Under the assumptions made above, the functional J is Fr\'echet
differentiable in the set \scrU with respect to the L2-norm, and its derivative has the fol-
lowing representation (belonging to L\infty [0, T ]): for every u \in \scrU 

(3.11) J \prime (u)(t) = \lambda (t)fu(z(t), u(t)) + gu(z(t), u(t)),
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where z is the solution of (3.7)--(3.8) corresponding to u, and \lambda is the unique solution
in L\infty [0, T ] of

(3.12) \lambda (t) =

\int T

t

\varphi (s - t)[\lambda (s)fz(z(s), u(s)) + gz(z(s), u(s))] ds.

Notice that (3.12) is a Volterra integral equation of the second kind (in inverse
time), and therefore it has a unique solution in L\infty [0, T ]; see, e.g., Gripenberg (1990)
(we remind that any solution z of (3.7)--(3.8) corresponding to u \in \scrU belongs to
L\infty [0, T ]).

The considered optimal control problem is not standard, but the proof of Propo-
sition 3.2 is more or less routine for specialists in optimal control theory. We present
a sketch of the proof in the appendix.

Corollary 3.3. If (\^u, \^y, \^z) is a locally optimal solution of problem (3.6)--(3.9),

then there exists a unique solution \^\lambda \in L\infty [0, T ] of (3.12), with (z, u) replaced with
(\^z, \^u), such that

\^\lambda (t)fu(\^z(t), \^u(t)) + gu(\^z(t), \^u(t)) \in NU (\^u(t)) for a.e. t \in [0, T ],

where NU (u) is the usual normal cone to the convex set U at the point u.

To obtain the above necessary optimality condition it is not necessary to have
differentiability of J in the space L2 (the straightforward differentiability in L\infty is
enough). However, the differentiability in L2 is important for investigation of various
approximation approaches, such as gradient projection or Newton-type methods (see
the next subsection).

Further in this section, we focus on the particular case of problem (3.2)--(3.4).
Formula (3.11) takes the form

(3.13) J \prime (u) = \lambda (t) \=c
z1(t) z2(t)

z3(t)
 - p\sigma (u(t))\sigma  - 1

\bigl( 
1 - \beta z4(t)

\bigr) \sigma 
,

where \lambda is the solution of the Volterra equation

\lambda (t) =

\int T

t

\lambda (s)u(s)\=c

\biggl[ 
z2(s)

z3(s)
\varphi 1(s - t) - z1(s)

z3(s)
 - z1(s) z2(s)

(z3(s))2
\varphi 3(s - t)

\biggr] 
ds(3.14)

+

\int T

t

\bigl[ 
\pi + p(u(s))\sigma \sigma \beta 

\bigl( 
1 - \beta z4(s)

\bigr) \sigma  - 1
\varphi 4(s - t)

\bigr] 
ds.

Let us assume that the functions \alpha k, \rho , iA, iS are Lipschitz continuous. This is
a natural assumption, since there is no reason to expect an abrupt change of these
functions with the infection age, as also the statistically based estimation in Figure
2.2 suggests. Hence, the functions \varphi k in (3.10) are Lipschitz continuous. From (3.14)
we obtain that \lambda is also Lipschitz continuous. The solution with respect to u of the
variational inequality in Corollary 3.3 is obvious:

\^u(t) = proj[u0,1] u
\#(\lambda (t), z(t)),

where proj[u0,1](v) is the projection of the number v on the interval [u0, 1] and

u\#(\lambda , z) :=
\Bigl( \=c\lambda z1z2
p\sigma z3(1 - \beta z4)\sigma 

\Bigr) 1
\sigma  - 1

.

In particular, we obtain the following result.
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Proposition 3.4. Any optimal control \^u in problem (3.2)--(3.4) is Lipschitz con-
tinuous.

Indeed, from (3.8) we obtain (after a change of the variable of integration) that zi
are Lipschitz continuous. Since \sigma \in (0, 1) and the assumptions made imply that z1(t)
and z2(t) are separated from zero, we have that u\#(\lambda (t), z(t)) is Lipschitz continuous,
hence also \^u(t).

3.2. Numerical approach. At the abstract level, one can make use of Propo-
sition 3.2 and implement any gradient projection method for minimization of the
functional J subject to the constraint u \in \scrU in the Hilbert space L2[0, T ]. Of course,
in practice one has to pass to a discretized version of the problem.

To be specific, we focus on the particular problem (3.2)--(3.4), although the ap-
proach briefly discussed below is also applicable to problem (3.6)--(3.9), in principle.
With a mesh of step size h in [0, T ], and for a given piecewise linear admissible control
u \in \scrU , one can solve numerically the integral equation (3.3) by similar discretization
techniques used for Volterra integral equations of the second kind. Namely, one can
implement the rectangular rule for integration (which will result in a first order accu-
racy with respect to h) or the trapezoidal formula (which becomes implicit, but easily
tractable, and may provide a second order accuracy). Then, one can solve the adjoint
equation (3.14) for \lambda and obtain a discrete approximation of the gradient of J at u
using (3.13). (Notice that the Volterra equation (3.14) has a separable kernel; there-
fore it does not provide a heavy numerical burden.) This enables implementation of
any gradient procedure for mathematical programming problems. The error analysis
of this solution procedure is not simple and is not a subject of this paper.

4. Parameter identification and case study. In the following, we demon-
strate our proposed modeling and optimization approaches by applying them to a
numerical case study. It is explained how the parametrization can be based on avail-
able epidemiological data. While we present a reasonable parametrization, additional
empirical research is necessary in order to develop more realistic, fully data driven
instances.

We first discuss some important waiting time distributions, estimated in the lit-
erature to describe the course of disease. Based on this, we describe the construction
of the parameter functions \alpha k, \mu , \rho . Finally, we apply the proposed optimization ap-
proach to the resulting illustrative model.

4.1. Basic data: The course of disease. Many publications on COVID-19
describe aspects of its infection course, i.e., the dependency of relevant parameters
on the time since infection, or since onset of symptoms. Usually the distribution
of the random time until some relevant event, e.g., onset of symptoms or death, is
characterized by an estimated probability density function (PDF). This information
can be restated using the related cumulative distribution function (CDF), which can
be interpreted as the fraction of infected individuals for which the event already
happened up to some time. Using such information fits perfectly with the proposed
mathematical modeling approach.

The incubation period is the time interval between infection and the onset of
symptoms. For COVID-19, several probability densities for the length of this time
span have been estimated in the literature. In the subsequent numerical example
we use Li et al. (2020), who estimated the incubation period density for COVID-19
as the density of a Log-normal distribution with parameters \mu = 1.434, \sigma = 0.661.
Alternative estimates based on the Weibull distribution can be found, e.g., in Zhang
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et al. (2020) and Guan et al. (2020).
If one analyzes chains of infection, serial intervals are important observable quan-

tities, measuring the time between the respective onset of symptoms for a pair of an
infecting and an infected individual. In the present paper we base our findings on
an early estimation of the serial interval for COVID-19 from He et al. (2020). The
authors analyzed the (publicly available) data of 77 transmission pairs from mainland
China and estimated a \Gamma [2.116, 2.307] as the serial interval distribution.

We use these early estimations, because there is evidence that the changed behav-
ior of individuals and the measures taken by the states had an impact on the effective
serial interval.

The third basic time information used in the following is the time between symp-
tom onset and death. We use here Verity et al. (2020), who analyzed the early
deaths in mainland China and estimated a Log-normal distribution with parameters
\alpha = 2.81, \beta = 0.370. We mention that, based on a much larger sample, Wu and
McGoogan (2020) communicated very similar estimates.

While these three distributions contain the basic information on the course of
disease for the subsequent case study, further information, e.g., the time between
onset of symptoms and reporting of a case (see, e.g., MIDAS Network (2020)), may
be used for more detailed modeling.

4.2. The benchmark parameters. The available information on the course of
infection can be used to construct the parameter functions \alpha k, \mu , \rho , and c. Without
going into the details, we give a sketch of the considerations that lead to the parameter
functions depicted in Figure 2.2, which are used subsequently for the optimization case
study.

The generation interval is the difference between the infection time of an infected
individual and the infection time of the infecting person. An estimated PDF of the
generation interval is based on pairs of infectors and infected individuals, and must be
interpreted as the conditional PDF that an infection happened at time \theta after the in-
fector was infected, given that the secondary infection takes place. The infectiousness
function iS is obtained by multiplying the generation time PDF with the probability
that a contact between an infected and a susceptible individual leads to an infection.
For the case study we assume that asymptomatic and symptomatic cases have the
same infectiousness, i.e., iS(\theta ) = iA(\theta ).

The generation time PDF can be derived from the incubation time density and
the serial interval density: let T 1

I , T 2
I denote i.i.d. versions of the incubation time

(i.e., the incubation time for a first and a second infection). Moreover, let TS be the
serial interval for these two infections. Assuming independence, the time between the
first and the second infection is then given by

(4.1) TII = T 1
I + TS  - T 2

I .

Because we know that the first individual infects the second, it is necessary to
apply the condition \~TII > 0. Consequently, the PDF for the time between consecutive
infections is

(4.2) fII(\theta ) =
fTI

\ast fTS
\ast f - TI

(\theta )\int \infty 
0

fTI
\ast fTS

\ast f - TI
(s) ds

for \theta \geq 0 where for any random variable X the related probability density is denoted
by fX and \ast denotes the convolution of densities. For the case study, we applied this
approach to the estimated densities in Li et al. (2020) and He et al. (2020).
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Table 1
Estimated parameter values.

Overall probability of infection per contact 0.1199, estimated
Basic contact rate 15.37, estimated
Reduction of contact rate for isolated individuals 0.057, estimated
Reduction of contact rate for nonisolated symptomatic individuals 0.98, estimated
Surviving of symptomatically infected 0.89, JHCRC (2020)
Infected individuals without symptoms 0.425, estimated
Percentage of isolated asymptomatic individuals 0.41, estimated
Percentage of isolated symptomatic individuals 0.93, estimated
Individuals infected before time zero 0.00001, chosen

The class of infected individuals consists of individuals who show symptoms over
some time and of completely asymptomatic infected individuals who recover without
having shown any symptoms. Asymptomatic cases at time t in the sense of the
proposed model (I1 and I2) are infected individuals who do not have symptoms at
time t, whether or not they show symptoms later on.

Only individuals with symptoms may die, and we use the mortality function
estimated by Verity et al. (2020), as discussed above. The function \mu can then be
constructed by multiplying the mortality function with the proportion of eventually
symptomatic individuals within the class of infected and with the proportion of fatally
ill individuals within the class of eventually symptomatics.

The joint recovery function \rho for symptomatic individuals is constructed based on
information about symptomatic cases such that individuals recover on an average of
14 days after the onset of symptoms. We assume that recovery of fully asymptomatic
cases follows the same timing.

The way into isolation works in different ways for symptomatic and completely
asymptomatic individuals. We assume that a (high) proportion of eventually sympto-
matic cases becomes isolated when symptoms occur. Within this group, the fraction
of isolated cases at time \theta is given by the CDF of the incubation time, discussed
above. On the other hand, a (lower) proportion of completely asymptomatic cases is
isolated.

The way out of isolation is modeled as follows: individuals that show symptoms
begin to leave isolation 14 days after the onset of symptoms, a small proportion still
remains infected and leaves isolation later, according to decay of the infectiousness
function. All infected individuals without any symptoms leave isolation after 14 days.

At several points, proportionality factors and further basic parameters (like start-
ing values for the new cases y) are needed to fully calibrate the model. Most of these
values were estimated by fitting the model to official data (Jan. 31--May 1, 2020) from
Great Britain, downloaded from CDCP (2020). Table 1 states the used values.

In order to estimate the parameter vector \sigma , containing the parameters in Table
1, we use the number of daily (day i) observed new infections yi and the number of
daily observed newly dead individuals Di for fitting the model. Recall that according
to our assumptions we observe infected only when they get symptoms. Therefore,
y(t)---the number of newly infected---in our model cannot be directly compared with
the observed number of infected and it is important to consider the incubation time
and the fact that not all infected show symptoms.

We now write y\sigma (t) instead of y(t) to emphasize the dependence of the central
model variable on the parameter vector. Then, using our model based on a parameter
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vector \sigma , an estimate \^y\sigma i of the observed yi is obtained by

(4.3) \^y\sigma i = z\sigma (i) - z\sigma (i - 1),

where

(4.4) z\sigma (t) = \pi SQ

\int t

0

\int \Theta 

0

y\sigma (t - s)fTI
(s) ds

and \pi SQ is the product of the fraction of infected with symptoms and the fraction of
isolated asymptomatic cases (both in Table 1).

In the same manner, given a parameter vector \sigma , the dead individuals resulting
from the model, \^D\sigma 

i can be estimated by

(4.5) \^D\sigma 
i = D\sigma (i) - D\sigma (i - 1),

where D\sigma (t) denotes the dead individuals up to time t based on the model when
parameter vector \sigma is used. This estimate is compared with the observed dead at day
i, Di.

Based on these preparations, we use nonlinear regression to get an estimate \^\sigma for
the parameter vector \sigma :

(4.6) \^\sigma = argmin
\sigma 

\Biggl\{ 
N\sum 
i=1

| \^y\sigma i  - yi| + \omega 

N\sum 
i=1

| \^D\sigma 
i  - Di| 

\Biggr\} 
,

where \omega is a weight, in our numerical example chosen such that the weighted numbers
for dead individuals and newly infected have the same order of magnitude. The
absolute deviation is used here instead of the squared-deviation to increase robustness
of the estimated parameters.

4.3. Numerical results. Below we present some numerical results showing the
evolution of the epidemic in the benchmark scenario without and with implemen-
tation of optimal control policies. Three optimal control scenarios are considered:
case 1, where the weight p = 0.0375; case 2, with p = 0.0350, and case 3, with
p = 0.0310. Thus, in case 1 more weight is attributed to the economic losses, in case
2 the humanitarian component is more important, and even more in case 3.

Optimal policies of global social distancing are computed for the benchmark sce-
nario in cases 1--3 with \pi = 1 and control restrictions u(t) \in [0.5, 1]. The left plot
in Figure 4.1 shows the corresponding optimal controls. A remarkable observation is
that the more weight is attributed to the economic losses (case 1), the later emerge
and the sooner are removed the social contact restrictions, while the strength of the
restrictions is higher. In case 3, for example, the control never reaches the lower bound
u = 0.5, but the period in which restrictions are in effect is more than 50 weeks, while
for case 1 it is only about 18 weeks. The reason is that when the prevalence is small,
the contact restrictions bring a small reduction of the new cases (in absolute num-
bers), but the economic losses from the restrictions are only slightly dependent on
the prevalence. Thus contact restrictions are not efficient in times of low prevalence,
unless the parameter p is small enough.

Another remarkable observation is that in all cases the epidemic becomes almost
extinct, both in the uncontrolled and the optimally controlled cases. For the un-
controlled case this is expected due to the obtained ``herd immunity,"" but for the
optimally controlled scenarios the number of recovered individuals is too low for that.
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In fact, in the controlled cases a second wave actually appears (beyond the plotted
time horizon), but it is due to the finiteness of the time interval on which the optimal
control problem is solved (T = 450 days). We mention that the above observations
are valid in numerous additional experiments not presented here.

The right plot in Figure 4.1 and the two plots in Figure 4.2 show the evolution
of the main compartment sizes without and with implementation of optimal control
policies in cases 1 and 2. The shaded areas become rather tiny in case 3 and are
not plotted. Applying no policy measures leads to 1.53\% dead individuals during
the considered time horizon of one year, and a maximum of 5.29\% of the popula-
tion is infected simultaneously. These numbers decrease to (0.5\%, 2.72\%) in case 1,
(0.2\%, 1.0\%) in case 2, and (0.05\%, 0.9\%) in case 3.
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Fig. 4.1. Left plot shows three optimal control functions: for case 1 (p = 0.0375), case 2
(p = 0.0350), and case 3 (p = 0.0310). Right plot: evolution of the population compartments
without control.

Fig. 4.2. Optimal evolution of the population compartments in case 1 (p = 0.0375) and case 2
(p = 0.0370).

Figure 4.3 shows the optimal trade-off between the proportion of dead individuals
at the end of the planning horizon versus the reduction of GDP as a percentage of the
pre-epidemic GDP. The figure can therefore be interpreted as showing the efficient
frontier for the two parts of the objective (3.2). It is computed by solving the optimal
control problem for a large number of weights p. The points on the efficiency frontier
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corresponding the uncontrolled case and to cases 1 and 2 are indicated on the figure.
The reduction of the GDP is about 0.5 0/00 in the uncontrolled case, while it increases
to about 41 0/00 in case 1 and to 61 0/00 in case 2 (we remind that only direct economic
costs due to lost working hours are counted).
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Fig. 4.3. Efficient frontier: Trade-off between the proportion of dead individuals and the eco-
nomic loss. The case without social distancing and the two main cases are placed on the curve.

Finally, Figure 4.4 depicts the reproduction number \scrR coh(t) together with the
number of new cases y(t) (appropriately rescaled to fit to the same figure) for the
uncontrolled case and in case 1. Clearly, the value \scrR coh(t) gives an indication for
the change in the number of new cases in the near future. In particular 4--7 days
after \scrR coh(t) crosses the line \scrR = 1, the trend of the new cases changes qualitatively
(increase versus decrease).
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Fig. 4.4. Reproduction number \scrR coh and the number of new cases y(t) (multiplied by 10 - 3.
Left plot: no control is applied. Right plot: the optimal control as in case 1 is applied.

5. Discussion. The aim of this work is to develop a new epidemiological mod-
eling approach that describes the dynamics of an epidemic also under interventional
conditions that differs from the typical compartmental models with transition rates
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between the involved epidemic subpopulations. The model is based on a minimal num-
ber of dynamic variables with high generalization potential. Specifically, the model
is built up using the number of new infections as a single time-dependent variable.
Optimal control theory approaches can be embedded in the model including substan-
tial expansions of the specific features of an epidemic. The model is applied to the
COVID-19 pandemic; however, it can be employed and adapted for other types of
epidemics with different transmission modes and a variety of intervention measures.

The main feature of the presented model is that it is based on the probability
of an infected individual being in a particular stage of the disease (asymptomatic,
symptomatic, isolated, dead, etc.) and of the infectiousness, depending on the time
since infection.

As already mentioned, more possible stages an infected individual might undergo
(hospitalization, intensive care) can be easily incorporated in the basic integral equa-
tion without any structural change. Changes of immunological status after recovery
can also be modeled within the same framework.

More challenging are other widely used policy measures, in particular quarantine
as a result of testing and/or contact tracing. The model will need an upgrade which
is a subject of current work. Another issue is the optimization of vaccination or
treatment strategies that may become available during the course of the epidemic. For
instance, the population groups to be prioritized to receive a vaccine as well as which
vaccination strategy should be implemented. The intuitive strategy for vaccination
might not necessarily be the prioritization for health care workers and vulnerable
populations but rather those with high risk of transmitting the pathogen due to their
working, living, or other conditions. An upgraded version of the model in this paper,
which includes vaccination as a control policy, is a subject of a separate paper.

Several optimal control problems can be meaningful in the context of pandemics
the size of COVID-19. For example, the one of minimization of the economic losses
subject to the constraint that the number of infected individuals does not exceed
a certain bound. This is an optimal control problem of the same form as the one
considered in this paper, but with a state constraint, which makes it more demanding.

The economic component of the optimal control problem is introduced mainly
for illustrative purposes. More detailed economic modeling should include at least a
dynamic economic component (cf. Acemoglu et al. (2020) and Bloom et al. (2020)).

6. Appendix.

Proof of Proposition 2.1. For any nonnegative function y \in L2[0, T ] one can de-
fine S[y](t) and R[y](t) as in (2.2)--(2.3) (after extending y as y0 on [0, - \Theta ]). Appar-
ently, both S[y] and R[y] belong to L2[0, T ], S[y] is continuous, S[y](0) = S(0) and
R[y](0) = R(0) are independent of y, and S[y](t) \leq S(0) for every t \in [0, T ]. Equation
(2.11) can be rewritten as

(6.1) y(t) = c(t)
d1(t) +

\int t

0
\~q(\theta )y(t - \theta ) d\theta 

S[y](t) +R[y](t) +
\int 0

 - \Theta 
q(t - \tau )y0(\tau ) d\tau +

\int t

0
q(\theta )y(t - \theta ) d\theta 

S[y](t).

Denote i := max\theta \in [0,\Theta ]\{ iA(\theta ), iS(\theta )\} , and let \sigma > 0 be such that i
\int \sigma 

0
c(t) dt \leq 1.

Define the set

\scrY \sigma := \{ y \in L\infty [0, \sigma ] : y(t) \geq 0, S[y](t) \in [0, ic(t)S(0)] for a.e. t \in [0, \sigma ]\} .

Let the mapping \scrF : \scrY \sigma \rightarrow L2[0, \sigma ] be defined so that \scrF (y)(t) is the right-hand side
of (6.1) for t \in [0, \sigma ]. Since S[y](t) \geq 0 for y \in \scrY \sigma , assumption (iii) implies that the
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denominator in (6.1) is not smaller than \eta ; thus \scrF (y) is well defined on \scrY \sigma . Next, we
show that \scrY \sigma is invariant with respect to \scrF . From (6.1) it is obvious that \scrF (y)(t) \geq 0.
Moreover, due to assumption (i) and the inequality \~q(\theta ) \leq iq(\theta ), we have (now using
(2.8)) that for y \in \scrY \sigma 

(6.2)

\scrF (y)(t) \leq 
c(t)i

\int \Theta +t

0
q(\theta )y(t - \theta ) d\theta 

S[y](t) +R[y](t) +
\int \Theta +t

0
q(\theta )y(t - \theta ) d\theta 

S[y](t) \leq ic(t)S[y](t) \leq ic(t)S(0).

In particular, \scrF (y) \in L2[0, \sigma ]. Finally, for t \in [0, \sigma ],

S[\scrF (y)](t) = S[y](0) - 
\int t

0

\scrF (y)(\tau ) d\tau \geq S(0) - i

\int t

0

c(\tau ) d\tau S(0)

\geq S(0)

\biggl( 
1 - i

\int \sigma 

0

c(\tau ) d\tau 

\biggr) 
\geq 0.

Thus \scrF (\scrY \sigma ) \subset \scrY \sigma . We define in \scrY \sigma the metric induced by the weighted norm

\| y\| 2,\nu :=

\biggl( \int \sigma 

0

e - \nu t| y(t)| dt
\biggr) 1

2

, \nu > 0,

in the space L2[0, \sigma ]. With this metric, \scrY \sigma is a complete metric space. In order to
prove that \scrF is contractive, we mention (skipping the details) that there exists a
constant L (independent of c \in L\infty [0, T ]) such that

(6.3) | \scrF (y1)(t) - \scrF (y2)(t)| \leq Lc(t)

\int t

0

| y1(s) - y2(s)| ds

for every y1, y2 \in \scrY \sigma and a.e. t \in [0, \sigma ]. This is due to assumption (iii), which
implies that the denominator in (6.1) is not smaller than \eta > 0. Then, denoting
\Delta y(t) := y1(t) - y2(t), we have

\| \scrF (y1) - \scrF (y2)\| 22,\nu \leq L2

\int \sigma 

0

e - \nu t(c(t))2
\biggl( \int t

0

| \Delta y(s)| ds
\biggr) 2

dt

\leq L2\| c\| 22 sup
t\in [0,t]

e - \nu t

\biggl( \int t

0

| \Delta y(s)| ds
\biggr) 2

= L2\| c\| 22 sup
t\in [0,t]

e - \nu t

\biggl( \int t

0

e
\nu s
2

\bigl( 
e - 

\nu s
2 | \Delta y(s)| 

\bigr) 
ds

\biggr) 2

\leq L2\| c\| 22 sup
t\in [0,t]

e - \nu t

\int t

0

e\nu s ds

\int t

0

e - \nu s| \Delta y(s)| 2 ds

\leq L2\| c\| 22 sup
t\in [0,t]

e - \nu t 1

\nu 

\bigl( 
e\nu t  - 1

\bigr) 
\| \Delta y\| 2,\nu \leq L2\| c\| 22

\nu 
\| \Delta y\| 2,\nu .

We can choose \nu > L2\| c\| 22, so that \scrF is contractive. Thus y = \scrF (y) has a unique
solution \^y \in \scrY \sigma .

Now, we have to extend it (if \sigma < T ) to a solution of (6.1) on [0, T ]. For this,
using (6.1) we estimate \^S := S[\^y] for t \in [0, \sigma ] as follows:

\^S(t) = S(0) - 
\int t

0

\^y(s) ds = S(0) - 
\int t

0

l(s) \^S(s),
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where

l(s) := c(t)

\int \Theta +s

0
\~q(\theta )\^y(s - \theta ) d\theta 

S[\^y](s) +R[\^y](s) +
\int \Theta +s

0
q(\theta )\^y(s - \theta ) d\theta 

\leq ic(t)

as already argued above. Hence,

(6.4) \^S(\sigma ) \geq e - i
\int \sigma 
0

c(s) dsS(0) > 0.

Thus assumption (ii) is also fulfilled for the same equation (2.11), but starting at
time \sigma . Moreover, R(\sigma ) \geq R(0) \geq \eta , thus (iii) is also satisfied. One can repeat the
above argument to show that a solution exists on [\sigma , 2\sigma ] (or [0, T ]) with y(t) = \^y(t)
on [\sigma  - \Theta , \sigma ], and so on until time T is reached. Thus a unique solution of (6.1) exists
in the set \scrY T .

Now, consider an arbitrary solution y of (6.1) in L2[0, T ]. Assume that S :=
S[y](t) is not nonnegative. Since S is continuous and S(0) > 0 according to assump-
tion (ii), there exists a first time \tau > 0 such that S(\tau ) = 0. Since S(t) > 0 on [0, \tau ),
one can easily argue from (6.1) that y(t) \geq 0 for a.e. t \in [0, \tau ]. But then we can esti-

mate as in (6.4) that S(\theta ) \geq e - i
\int \theta 
0
c(s) dsS(0) > 0, which contradicts the assumption

that S(\tau ) = 0. Thus S is nonnegative, hence also y. The inequality S(t) \leq ic(t)S(0)
is fulfilled by the same argument as in (6.2). Then y \in \scrY T and it must coincide with
\^y.

The other claims of the proposition have already been proved.

Derivation of the reproduction rates (2.13)--(2.14). The cohort of newly
infected individuals at time t \in [0, T  - \Theta ] may infect other individuals on [t, t + \Theta ].
According to the random mixing assumptions, the number of new cases at time \tau \in 
[t, t+\Theta ] caused by the cohort y(t) is

\~q(\tau  - t)y(t)

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ).

Integrating on [t, t+\Theta ] we obtain the total numbers of secondary cases caused by the
cohort y(t). The per capita secondary cases are given by (2.14).

Now, we shall derive (2.13). Observe that the new cases at time \tau \in [t, t + \Theta ]
caused by all infectious, I(t), at time t may result from any cohort y(s) with s \in 
[t - \Theta , t]. Thus the number of new cases at time \tau caused by I(t) is\int t

\tau  - \Theta 
\~q(\tau  - s)y(s) ds

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ) =

\int \Theta 

\tau  - t
\~q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ) +R(\tau ) +
\int \Theta 

0
q(\theta )y(\tau  - \theta ) d\theta 

S(\tau ).

Integrating on [t, t+\Theta ] to obtain the total number of secondary cases caused by I(t)
and dividing by I(t) we obtain the expression (2.13).

Proof of Proposition 3.2. Let us fix an arbitrary u \in \scrU and consider an increment
\Delta u \in L2[0, T ]. In the calculation of the derivative of J it is enough to consider \Delta u
with \| u\| 2 \leq 1. The corresponding solutions (y, z) and (y +\Delta y, z +\Delta z) are assumed
to exist. Moreover, z and z - \Delta z are bounded (uniformly in \Delta u \| u\| 2 \leq 1) due to the
last assumption in section 3.1. Then J(u) and J(u + \Delta u) are finite because of the
assumed Lipschitz properties of g.

Below we use first order Taylor expansions, where rg and rf denote the corre-
sponding residuals, which will be analyzed at the end. Moreover, we shorten fz(z(t),
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u(t)) =: fz(t), similarly for fu, gz, gu. We have

(6.5) J(u+\Delta u) - J(u) =

\int T

0

[gz(t)\Delta z(t) + gu(t)\Delta u(t) + rg(t)] dt,

\Delta z(t) =

\int t

0

\varphi (\theta )\Delta y(t - \theta ) d\theta ,

(6.6) 0 =  - \Delta y(t) + fz(t)

\int t

0

\varphi (\theta )\Delta y(t - \theta ) d\theta + fu(t)\Delta u(t) + rf (t).

We multiply (6.6) with the solution \lambda of (3.12) (which exists, as explained after the
formulation of the proposition), integrate on [0, T ], and add to (6.5) to obtain

J(u+\Delta u) - J(u) =

\int T

0

\biggl[ 
gz(t)

\int t

0

\varphi (\theta )\Delta y(t - \theta ) d\theta + gu(t)\Delta u(t) + rg(t)

 - \lambda (t)\Delta y(t) + \lambda (t)fz(t)

\int t

0

\varphi (\theta )\Delta y(t - \theta ) d\theta + \lambda (t)fu(t)\Delta u(t) + \lambda (t)rf (t)

\biggr] 
dt

=

\int T

0

\Bigl[ 
gu(t)\Delta u(t) + \lambda (t)fu(t)\Delta u(t) + rg(t) + \lambda (t)rf (t)

\Bigr] 
dt+ \Lambda ,

where

\Lambda 

=

\int T

0

\biggl[ 
 - \lambda (t)\Delta y(t) + gz(t)

\int t

0

\varphi (t - s)\Delta y(s) ds+ \lambda (t)fz(t)

\int t

0

\varphi (t - s)\Delta y(s) ds

\biggr] 
dt

=

\int T

0

\biggl[ 
 - \lambda (s)\Delta y(s) +

\int T

s

\bigl( 
gz(t)\varphi (t - s)\Delta y(s) + \lambda (t)fz(t)\varphi (t - s)\Delta y(s)

\bigr) 
dt

\biggr] 
ds = 0

due to the choice of \lambda in (3.12).
To estimate the terms rf and rg is a matter of elementary analysis. We give only a

sketch. Knowing that z+\Delta z is bounded in L\infty , uniformly in \Delta u with \| \Delta u\| 2 \leq 1, and
using the Gr\"onwall inequality we obtain the estimate \| \Delta z\| \infty \leq c1\| \Delta u\| 1 \leq c2\| \Delta u\| 2
with appropriate constants c1 and c2. Then we can use the inequality

| rf (t)| \leq sup
s\in [0,1]

\bigl[ 
| fz(z(t) + s\Delta z(t), u(t) + s\Delta u(t) - gz(t))| | \Delta z(t)| 

+| fu(z(t) + s\Delta z(t), u(t) + s\Delta u(t)) - gu(t)| | \Delta u(t)| 
\bigr] 

and the similar one for rg to estimate \| rf\| 2 \leq c3\| \Delta u\| 22 and complete the proof.
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