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Abstract

Recent results in infant cognition research suggest that infants can possess early

elementary logical abilities. The nature of the representations underlying these abil-

ities is still controversial. Here we begin studying them by developing computer

simulations of such results. Our initial strategy is to exploit earlier work on connec-

tionist neural networks and their application to classic cases of infant cognition. We

propose using these devices, despite their well-documented inherent limits, as yard-

sticks. That is, we seek to use them to probe the minimal character of representation

required to elicit behaviour similar to that of young human infants when presented

with cognitive tasks. In particular some of the tasks we are most interested in are

those that potentially involve logical inferences. We present three experiments and

their results with discussion on their shortcomings, and potential improvements. In

experiment 1, we test an extremely rudimentary representation, which nonetheless

acts as a proof of concept and as a base for comparison for later experiments. In ex-

periment 2, we present a much more articulated and realistic representation, whose

performance is quite distinct from that of our first experiment. In experiment 3,

we apply an incoherent and physically impossible sequence of events to the net-

work used in experiment 2, probing its ’cognitive’ characteristics. We conclude with

suggestions to further develop possibly promising lines of inquiry.
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1 Introduction

“There is a gap between the mind and the world, and (as far as anybody

knows) you need to posit internal representations if you are to have a hope

of getting across it. Mind the gap. You’ll regret it if you don’t.”

– Jerry A. Fodor

Infants from a very early age demonstrate many advanced capabilities which appear

to be universal. In particular, they show knowledge of basic physical principles

about the world such as continuity and solidity, often grouped under the broader

term object permanence or object concept (Baillargeon, 1993). There has been much

research in this area, particularly on object individuation (Xu, 1999), and on the

role of labels and language (Xu & Carey, 1996). This work suggests a rich and

subtle developing inner mental world but the character of representational structure

being used is still an open question.

One possibility is that the richness of this inner mental world is really the result

of extremely minimal representational structures. This is the stance taken by the

connectionist framework, positing that these capabilities arise from weak internal

representations supported by strong network architectures. From this point of view

infants exhibit such an apparently rich inner world, not because they possess com-

plex and articulated structural representations, but because they can better exploit

their experience. Their behaviour is learned from their experience, e.g. from envi-

ronmental stimuli and feedback. This learning is performed by simple configurations

of elementary nodes that can take advantage of the associations between stimuli of

varying kinds. If complexity exists, this lays in the configuration of the network

(e.g. more layers, better node structure, improved training algorithms).

Investigations into the possibility of developing connectionist neural networks with

these abilities began in the mid 1980s, with the resurgence of interest in connection-

ism. This was largely due to the discoveries of back-propagation and newer more

powerful network types, especially that of the Parallel Distributed Processing (PDP)

networks (Rumelhart & McClelland, 1986). These networks transcended the limits

of earlier technologies such as the Perceptron (Rosenblatt, 1958).

A paradigm example of this work is due to Munakata(Munakata, 1998) who worked

on the classic Piagetian AB task among others. In this task, an object is hidden in

a location (A). Children repeatedly reach for it and successfully retrieve it from A

several times before the experimenter hides it in location B, in full view of the infant.
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While an adult would at this point reach for location B, infants before 7 months of

age reach for it instead at A, even when they keep their eyes focused on the correct

B location. This puzzling behaviour (technically called perseverative reaching) has

been attributed to the infants’ inability to inhibit a previously successful retrieval

of an object; an object whose identity and location they can nevertheless perfectly

represent. In her work, Munakata found certain interesting parallels in the way the

networks behaved with the behaviour of infants. She experimented with varying

representations and network architectures to simulate the infants behavioural id-

iosyncrasies. The interest of her proposal lies in the fact that while infant behavior

in this task has generally been attributed to the fact that they possess a complex

inner representation of objects, she tried to show that the same behavioral outcomes

could be predicted by reasonably simple networks and how they process an abstract

description of the input that a child could have received during the tasks (that is,

the sequence of repeated successful retrieving events).

Despite the bold attempt, the results from this line of work were modest. The

program itself has become mostly dormant for a number of reasons. For one, the

network simulations diverged in significant ways from infant behaviour, particularly

with regard to the familiarisation sequence.

Another more significant issue with this program arose due to Fodor & Pylyshyn.

Their critical analysis of the connectionist framework (J. A. Fodor & Pylyshyn,

1988), like that of Minsky & Papert (Minsky & Papert, 1969) a generation before

them, brought to light the limits of such a theoretical framework. The core point

made in their analysis is that while connectionism & classical cognitive science are

both representational systems, connectionism does not provide a framework for fluid

combinatorial and syntactic organisation of these representations. It does not use

a ’symbol-level’ representation. These networks fail to capture basic cognitive sym-

metries of a language of thought (J. Fodor, 1975). To use their rather illustrative

example, no one who understands “John loves Mary” can fail to understand “Mary

loves John”, or, more importantly, that they express very different states of the

world. These are entirely different expressions with no underlying structural similar-

ity in a connectionist net. Another limitation is that they fail to capture constituent

or part/whole structures among representations. Broader philosophical critiques of

empiricist philosophy also emphasise the shortcomings of this general approach to

cognition (Chomsky, 1967). The limitations stemming from this conceptual com-

mitment are seen by some as a fatal flaw.
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Research Goal These limits prevented the connectionist framework from achiev-

ing its maximal objectives, namely, to show that simple networks deprived of rich

inner structure are plausible models of cognition. However, even though the con-

nectionist grand plan was not realized, there is a different fashion by which their

networks could be used in cognitive research. Following the basic principles & guide-

lines laid down by the work of Munakata, the networks can be used as tools to probe

the minimal representational structure required to achieve some of the basic capac-

ities that infants show from a very young age. In this way connectionist simulations

become a way to apply Occam’s razor to the explanation offered of certain cognitive

phenomena: even if they fail to account for them, they can give us indications of

how rich a mental representation must be to overcome the networks shortcomings.

This is how we intend to use network simulations in this work.

Specifically we are interested in the recent results from (Cesana-Arlotti et al., 2018).

Our interest in this work is that, according to its authors, it reveals natural capacities

such as logical deduction. Given the potential complexity of such a capacity, we

believe it is a prime candidate for testing just what a network can do and just what

kind of representational complexity is required for it to do so in an infant like way.

2 Methods

“The original question, ‘Can machines think?’ I believe to be too meaning-

less to deserve discussion.”

– Alan Turing, Mechanical Intelligence

The aim of this work is to explore under what conditions a connectionist network

can reproduce computational analogs to infants’ behaviors during a task potentially

involving a mental logical inference. We will explain the details of the results below.

For starters, it is important to keep in mind that there are two main ways to alter

connectionist networks to probe the complexity of a cognitive task: the architecture

can be changed, or the input/output representation presented to the network for

training and test can be changed. While not entirely orthogonal (e.g. the input

and output nodes must be tailored to the representation), the hidden layers and

feedback connections inter alia can be varied independently of the representation.

In this work, which should be seen as the first step of a broader inquiry, only the rep-

resentations are altered, keeping the network architecture static. The architecture
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is described in detail in Appendix A. This simplifies our approach a little.

We will focus on one particularly important recent result from the infant cognition

literature (Cesana-Arlotti et al., 2018) and construct different plausible represen-

tations to apply to our networks. Measurements are taken of the effectiveness of

the network at simulating infants’ behavior (as described by the authors), under

the heavy simplifications that the current approach involves. Our aim is to try to

determine the character of the representations required to perform these capacities.

In particular, our main target will be the infants’ surprise reaction at the outcome of

a scene which is logically inconsistent with a potential inference about the location

of objects.

The representations are based on the scenarios (described below) tested in (Cesana-

Arlotti et al., 2018). These form the basis of the training and testing sets for our

neural networks.

Figure 1: A typical snapshot from one of our scenarios
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Figure 2: Scenario evolution and the potential deduction phase.

2.1 The Scenarios

The scenarios normally consist of a pair of (colourful and toy like) objects interacting

with very basic but dynamic elements (e.g. an occluding wall, a scooping cup) of

their environment in straightforward and intuitive fashions. An example of a typical

scene is presented in Figure 1. Typically the scene opens with the scooping cup

present on the right hand side. The occluding wall is not usually initially visible,

though it will be animated in later.

The scenario then evolves with the pair of objects, call them object A and object

B, introduced one after the other. They have an important invariant, which is that

their top halves are always identical. This means if the bottom halves are hidden

(by means of the occluding wall, or scooping cup) there is no way to tell A from B,

a key part of the inference process to be examined.
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There are two basic variations on the development of a scenario. They are called

the Inference and No-Inference variations and they are described briefly below, and

also presented more graphically in figure 2.

2.1.1 Inference Required Variation

This variation begins in the usual fashion, with two objects present on the scene. An

occluding wall ascends obscuring both objects and the scooping cup moves behind

the wall to scoop one of the objects and move it to the right hand side. Once in this

position, it is impossible to tell which of the objects was scooped by the cup from

behind the wall (because the bottom halves are occluded). The next step begins

what is called the Potential Deduction Phase. The object that had remained behind

the occluding wall slides out, revealing itself. At this point it is possible to deduce

the identity of the object in the cup, e.g. dinosaur behind the wall therefore flower

in the cup.

2.1.2 No Inference Required Variation

In the no inference variation, the cup scoops an object in plain sight, before the

occluding wall comes up. This means the infant (or our network) does not need to

draw any inference about the object locations, it has all the information necessary

to know where object A and object B are located. The scenario will continue with

the occluding wall raising as before, and the emergence of the object from behind

the wall.

2.1.3 Consistent & Inconsistent Endings

There are two different ways a scenario can end. The consistent ending is when

the expected object appears from behind the wall in line with expectations. The

inconsistent ending has an object which could not have been behind the wall appear

from behind it. These endings were used to test if the infant had made the correct

inference (in the inference variation) and was surprised (violation-of-expectation) by

the inconsistency. These endings can be seen in context in figure 2.
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2.1.4 Familiarisation Scenarios

Familiarisation scenarios were used both in the original infant experiments (Cesana-

Arlotti et al., 2018) and our own neural network training. These are simpler pre-

sentations of the objects in the scene, performing simple motions, with no emphasis

on complex world logic, reasoning or inference. The networks are trained on these

simpler scenarios only, in the same way that infants only view familiarisation videos

before they are tested. Importantly, the familiarisation scenarios were all different,

and did not contain any phase where making an inference was necessary or desirable.

In these two aspects, our task and the nature of our simulations are sharply differ-

ent from previous work, such as Munakata’s simulations of the AB task. In that

work, the network was trained with repeated identical experiences which matched

the tasks required for the test phase. In contrast, and by principle, our case pro-

vides no such facilitation to the network. The training set is always composed of

partial and inchoate segments of a potentially more complex scenario, never the full

scenario on which testing is based.

2.1.5 Measuring Performance

In the original experiments (Cesana-Arlotti et al., 2018) infant looking time is

recorded in the outcome phase (the final frame of the scene with consistent or incon-

sistent endings), in a violation-of-expectation paradigm. This is used as a measure

of surprise at what has transpired in the movies.

The question then arises, how should we measure surprise in our networks? The

answer is not so simple and each choice has its advantages and disadvantages. We

decided to use the standard measure of Mean Squared Error (MSE) or ’loss’ as a

measure of accuracy and ’surprise’. The greater the loss the worse the performance,

an analog of longer looking time or surprise. Similarly, the lower the loss, the

better the performance. This idealization could provide an analog of shorter looking

time and therefore less surprise. Notice, however, that in this way we disregard

the fact that some parts or aspects of the scene are more salient for measuring

cognitive performance than others. For example, the potential deduction phase has

a particular relevance for infants solving their logical reasoning task; this phase of

the scenario is more important than the initial introduction of Object A and B, a

necessary but quotidian dimension of the task requiring no special logical calculus.

In using MSE as our measure of surprise, we average over performance at all points

in the scenario equally, losing detail where it may be most enlightening. This being
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Figure 3: Infant Looking Time (Consistent (light-green) vs Inconsistent)

said, MSE strikes us as a reasonable first-pass attempt at finding a plausible analog

to infants’ surprise. We will revisit this compromise in the General Discussion.

NB: The movies can be found online in the supplementary material of

the referenced work.

2.2 Scenario Representation Schemata

The representation of the movies as a sequence of discrete events appealed to us

as the most natural format for our data and this suggested that a recurrent neural

net architecture was most suitable for our experiments. This architecture is further

described in Appendix A.

To describe a scenario a simple sequence of events is used. These events might be

thought of as the important frames from the original movies. Each event contains

a representation of a scene described briefly above and shown in figure 2, and these

events are input to the network sequentially. The differences between the repre-

sentations in each event are limited to those most salient for the inference process

that we seek to test, e.g. The cup has scooped an object or The occluding wall has

appeared.
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In line with our research goal, we start with a basic model, and we then proceed

to gradually increase the complexity of the representation to examine what effect

it has on the networks performance. This way a progression of representations is

built that can be used to measure the character of network performance against

the amount or quality of representations used. What follows is a description of the

experiments performed and their respective representational schemata.

2.3 Experiment 1 - A Consistency Detection Schema

“Colorless green ideas sleep furiously”

– Noam Chomsky, Syntactic Structures

Figure 4: The four possible locations for objects

Material The first model is a consistency violation detector. This is a simple

representation with a basic internal structure and a direct mapping from scenes to

input data. It was selected in line with the aim of building incrementally from basic

and limited towards more complex and articulated representations. Any elements

or unnecessary detail which we felt could interfere with the inference process were

removed. The representational system included the four basic elements of each

scene. Spatial location is broken down into four positions (1-4 from left to right) as

shown in figure 4. The objects can theoretically appear in any of these locations.
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The output of this design is a single bit representation which indicates whether

the scene is consistent or inconsistent. This corresponds to the infants ’surprise’

response when something occurred that was inconsistent with her world knowledge.

If this representation is a plausible proxy for the infants representation system we

should expect that the network will show a ’surprise’ response similar to the infants

in the same situations.

Figure 5: Sample input and expected output test data

Figure 5 presents the schematic representation of the event sequences corresponding

to the consistent sequence shown in figure 2 (Movie S3 of Cesana-Arlotti et al.’s

supplementary material). The timeline runs chronologically, each row representing

a further evolution of the scene. The columns describe different physical aspects of

the scene.

A Brief Description of our data A full description of the representation used

may be found in Appendix B, but briefly there are four main component parts. The

two objects, the cup and the occluder. The output column is what we expect the

network to output and is used for our (MSE) loss measurement. Each object has

four locations it can be present in, corresponding to L1, L2, L3, and L4 columns.

It also has 3 visibility components, T1, B1, and B2. T1 indicates to the network

that the top half of this object is visible (1) or not (0). B1 and B2 indicate that

the bottom half of this object is again visible or not, but this time B1/B2 indicates

that the bottom half is of one type or another. The scooping cup has four location

elements that operate in the same way as the objects’ location elements. The other

two components, TVis indicating that the top half of one of the objects (A or B) is

visibly protruding from the cup, i.e. that the cup contains an object. Vis indicates

whether or not the cup is visible on the scene. Finally the occluder is simply specified
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by a single element indicating whether the wall is down (0), half up (0.5) or fully

up (1).

As presented in Figure 5, the timeline starts with an empty scene (’Beginning/START’).

Next, Object A enters the scene, followed by Object B entering. The occluder then

raises up half way, before retracting fully down. The occluder then comes back up,

first half then fully, completely occluding the objects. Next, the scooping cup which

had been resting at location 4, scoops an object. We have now reached the poten-

tial deduction phase highlighted in yellow in the Event column. Object A moves

to location 3, allowing the infant or our network to infer the identity of the object

in the scooping cup, and more obviously the identity of the object behind the wall.

Object A returns behind the occluder, before finally reappearing. In the inconsistent

variation of this scenario, at this final stage a different object appears from behind

the wall, violating expectations.

A Note on Object Individuation An important further simplification is to

deliberately exclude individual object identity. That is to say, it is not indicated

to the network which particular object (e.g. flower, dinosaur, umbrella or snake)

is on the scene, only that there are two different objects present in the scene, A

and B. We believe this simplification can be justified due to findings concerning ob-

ject individuation, particularly the object first hypothesis discussed in Xu & Carey

1996 (Xu & Carey, 1996). This research provides evidence that infants first learn

to individuate objects based solely on spatio-temporal boundaries, developing later

capacities to individuate objects based on other properties (shape, colour, function,

and other more complex sortals). Infants do however have a more basic capacity,

that of tracking the number of objects present, known as numeric identity which

is captured in our representations explicitly. Object individuation could be an im-

portant factor for infants, and would possibly change the behaviour of our network

and so it recommends itself as an important later addition to our progression of

representations.

Procedure The experiment is run using a Jupyter Notebook (Python) with the

help of the machine learning library PyTorch. Cesana-Arlotti et al tested approx-

imately 24 participants in a typical experiment. Accordingly we aimed to test at

least this amount. Given the ease with which participants can be instantiated in our

software, we decided to use a group of one hundred (n=100), a generous but man-

ageable quantity. This group of participants are instantiated (see below for further
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details on participant initialisation), and then exposed to the familiarisation data

sequences. These familiarisation sequences are run through the networks, and a

measure of error (see section 2.1.5), called loss, is computed. Learning is performed

by the standard gradient descent technique (altering network weights in line with

this loss). A run through all familiarisation sequences in this fashion continually

altering the weights to reduce error is called a training epoch.

This process is repeated for multiple epochs and the network rapidly converges on

an error plateau. At this point, the network is deemed sufficiently trained. Once

the network is trained using our preferred hyper-parameters (see below), a final test

is performed. Similar to Cesana-Arlotti et al(Cesana-Arlotti et al., 2018), inference

and no-inference scenarios are tested separately. We record the results of these tests

and our analysis and interpretation below.

A Note on Participant Initialisation To create participants, a random initial-

isation process was used. This is could be thought of as being somewhat biologically

inspired, mimicking the random variation found in all individuals. Each participant

instance begins with a randomly (normal) distributed set of weights which are then

trained on the familiarisation sequences described above. For this experiment one

hundred (n=100) participants were trained and tested.

Test Set The test data set consists of multiple instances of the scenarios described

in section 2.1 above. These include both inference and no inference variations as

well as the consistent/inconsistent endings.

Hyper Parameter Optimisation During training we periodically run the test-

ing set through the network (these runs do not affect the weights, i.e. no learning

takes place) to measure its accuracy at varying epochs, and also to try to optimise

network hyper-parameters like learning rate and activation function. This process

is described in detail in Appendix A. For this experiment it was found that the

following hyper-parameters gave the lowest loss scores/training time trade-off: (ac-

tivation=sigmoid, learning rate=0.4, epochs=100).

Results The differences at various stages of training progression (graphed in figure

6) are measured. To test if the our loss (accuracy) figures are normally distributed

we used a Jarque-Bera test on each group. The results of these (Inference: p =
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Figure 6: Inference vs No Inference Loss Progression

Figure 7: Inference Loss Histogram
Figure 8: No Inference Loss His-

togram

1.1e-16, No-Inference: p = ˜0, (also see figures 7 and 8)) indicate that this is so. An

independent t-test was then performed on these groups. A significant (p = 1.46e-14.

t = 8.89) difference in the way the networks treated these distinct scenarios was

found.

Discussion In the original infant reasoning experiment (Cesana-Arlotti et al.,

2018) the authors found, first, that infants were surprised at an inconsistent out-

come both if when they were presented with scenarios that required an inference

to be drawn in order to determine that the outcome was indeed inconsistent, and

when they were presented with scenarios where no inference was required. Second,

when comparing the degree of surprise between groups, it was found that 12 month

old infants in the no-inference condition were as surprised as those in the infer-
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ence condition, not showing any significant looking time differences at the outcome

stage when presented with these distinct scenarios, see Figure 3. A small difference

appeared in 19 month-old infants, who gave signs of being more surprised at the

outcome when it directly violated a physical law than when they had to logically

derive the inconsistency of the outcome.

This suggests that at least younger infants construct a model of the world that

they update using various methods, inference-based updates being only one kind of

update. They do not appear to differentiate between states of the world arrived at

via inference vs states directly perceived, without the need for an inference. That

is, their model of the world is independent of the method of arriving at that model.

They forget the ’how’ or ’why’, and react based solely on the ’what’ of their model.

The results above indicate that the network behaves significantly differently than an

infant at her earliest stages of knowledge acquisition, when presented with our rep-

resentations. It treats the inference variations quite distinctly. This is an interesting

result. We believe that it is probably an artifact of the network architecture and

training rather than being specifically related to the inference/no-inference proper-

ties of our test scenarios. Given some knowledge of the principals of neural networks

and the gradient descent procedure, it can be said that they learn to approximate a

function more and more accurately with training. In this case, manually examining

the training data we discovered that the network might be trying to approximate a

constant ’one’ (consistent) output response no matter the input data. This makes

sense since our familiarisation scenarios are not designed to include inconsistent

world states or violations of normal world properties. Further, this is a realistic

assumption, because an infant is almost always in that same position: she never

experiences any breaks in the laws of physics, outside the realm of cartoons or fairy

tales which are by nature exceptional (and thereby entertaining and surprising). It

is however a substantial flaw in this representation that because of how impoverished

our output representation is (i.e. a single bit), it is not possible to give the network

a better hint of the true function it should be learning.

Thus, the results of this first representation are mixed. On the one hand, the rapid

descent of the loss function over a small number of epochs suggests a reasonably quick

convergence towards a solution. On the other hand, the solution converged upon

seems to exhibit some potentially considerable differences with respect to infants’

surprise behavior. In short, the network succeeds for reasons that have nothing to

do with the inner mental processes of an infant. The fact that it is only at the end of

each scenario that we can usefully examine the output of the network poses another
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difficulty for the interpretation. This is the only point in the experiment where

the scene can become inconsistent. Ideally measuring the accuracy of the network

throughout the scenario would allow us to reduce the gap between the network’s

behavior and the infants’ behavior, but this analysis is not possible here.

What we can affirm with certainty is that the capabilities of the network are rudi-

mentary in comparison with what it is known that infants can do. For example,

the output does not include identity (object or numeric) or spatial location tracking

representations. Overall, these considerations lead us to conclude that this is not

a particularly good or likely model of infant cognition. In order to reduce the dis-

tance between infants’ plausible representations and the functioning of a network,

we decided to construct a different network characterized by a finer representational

structure. Experiment 2 implements a different schema, described below. In that

experiment we seek to ameliorate the single and constant output bit during training,

and monitor accuracy throughout scenario evolution. We hope that the expanded

output representation will improve the behaviour of the network, towards a more

cognitively plausible one. The extra information provided in the training scenarios

should also help the network to converge on a solution which does not show such

categorical differences especially with regard to the inference/no-inference gap.

2.4 Experiment 2 - A World Modelling Schema

“No computer has ever been designed that is ever aware of what it’s doing;

but most of the time, we aren’t either.”

– Marvin Minsky

Material To address the shortcomings of the representation used in experiment

1, a different and somewhat more articulated representation was devised. This

representation aims to have the network learn to keep an ongoing model of its world

up to date as the scene changes. More specifically the aim is to train the network

to keep track of the location of object A and B throughout the scenario. It must

successfully predict the location and make the required inferences when appropriate.

A change is made to how the location is represented, reducing the number of in-

dependent locations to three, as it was felt that four was redundant in the first

experiment. The locations are broken down as presented in Figure 9 and the data
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representation of those locations (L1, L2 and L3 for each object) are exemplified in

Figure 10.

Figure 9: The three possible locations for objects

Figure 10: Sample input and expected output test data

We reduce the representation of the objects here by removing the elements indicating

top and bottom half visibility, and replace the visibility components with a simpler

’presence’ component (P). This indicates to the network that this object is present

in the scene, but not its visibility status. That status is indicated by the location

components. If it is possible to tell where an object is located then the location

components (L1, L2, L3) will carry that information, otherwise, they will be zero.

Cup location is also removed from this representation. It is represented here by

a ’presence’ component, and a component indicating whether something is visible

inside the cup. For a fuller description see Appendix C. These modifications are, we

believe, justified because it was felt they did not add any extra (logical) information

to the first representation.

The output representation is however much expanded. We decided to explicitly
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represent the locations of each object throughout the scene. We use the same three

locations, for each object A and B, leading to six separate elements of the output

(AL1, AL2, AL3, BL1, BL2, and BL3). This appealed to us as the simplest way

to directly represent the ongoing world, with the nice property of also exhibiting

an ideal input/output location representation symmetry. This output format also

allows the performance of the network to be tracked throughout the scenario, some-

thing we sought to achieve after our experiences in experiment 1.

Procedure The procedure in this experiment is identical to the first, with mi-

nor and necessary modifications to the architecture to change the input and output

node counts. The key difference is the representational structure. The partici-

pants (n=100) are again created using the normally distributed random initialisa-

tion procedure. It was found that the same hyper-parameters (learning rate=0.4,

epochs=100, activation=sigmoid) provided a satisfactory accuracy/time trade off

during training. Training proceeds as previously described and when this is done,

we measure the accuracy in the key inference and no inference scenarios.

Results The overall performance of the network measured using MSE was com-

parable if a little bit worse than the performance of experiment 1. The difference

however is small, and overall the representation achieved a reasonable degree of

accuracy.

A gap was found in the performance among the inference and no-inference varia-

tions when these groups were compared, but in contrast to the result in our first

representation, here the network was found to perform worse in the no inference

condition. Also noteworthy, is the progressive decrease in test accuracy (especially

in the no-inference variation) as the network becomes more and more trained on the

familiarisation set. Both of these aspects are presented in Figure 11.

To test if the final loss (accuracy) figures are normally distributed, a Jarque-Bera

test was performed on each group. The results of these (Inference: p = 0.02, No-

Inference: p = 0.05, (also see figures 12 and 13)) indicate that these groups are

close to normal. An independent t-test was then performed on these groups giving a

result of (p = 1.46e-14. t = 8.89). A separate non parametric test (Mann Whitney

U) produced similar results (p = 9.15e-14. statistic = 1987.0). This indicates a

significant difference in the way the networks treated these distinct variations.
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Figure 11: Inference vs No Inference loss (on test set) n=100

Figure 12: Inference Loss Histogram
Figure 13: No Inference Loss His-

togram
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Discussion This model makes assessing progress possible at each step in the sce-

nario, and provides a more transparent gauge on what the network ’believes’ about

the world. Overall accuracy is comparable with the first experiment. The network

provides a more explicit output from a more compact input, but retains some of the

major simplifications used in the first experiment (object identity in particular, see

note above). The result indicates a difference in how the network views inference

and no-inference variations. An indicator that the network is doing something dis-

tinct from what a human infant is doing. What the network has learned here, and

what it is doing is more complex to determine. The function it approximates is less

clear to us from an inspection of the data.

Another interesting aspect is the inversion in the pattern of inference & no infer-

ence scenario accuracy. It is difficult to interpret this inversion, and we can offer

no particular interpretive insight here. What is important is the difference when

compared with infant behaviour. This model is an unlikely candidate for 12 month

old cognition as they show no difference between the either type. However for the 19

month old’s this presents an extreme divergence, they show the opposite behaviour

to our networks, a tendency to be less surprised at the no inference scenario, where

our network predicts the opposite. We believe it is remarkable that as soon as

the representational structure of the network takes a step closer to a plausible im-

plementation of what infants may represent, the results of the simulations begin

diverging from infants’ behavior. This result seems to point at a trade-off between

representational richness and real world network performance which may reveal an

intrinsic limitation of these kinds of networks. Alternatively, it is conceivable that

this divergence is related, not to the intrinsic limits of the network, but to one of

the necessary abstractions that we imposed over it in constructing its basic repre-

sentational structure, and in particular, to the object-identity simplification. This

hypothesis presents another opportunity for further future experimentation.

2.5 Experiment 3 - An Impossible Situation

“Most people would sooner die than think; in fact, they do so.”

– Bertrand Russell

To test if the divergence discovered in experiment 2 may be due to a general limit of

the network or to how objects are represented, we tested it by presenting it with a

highly unusual, incoherent and physically impossible situation, one which had could
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Figure 14: An Impossible Situation Dataset (NB: Object A Location 3 highlighted)

never appear in the real world. Our reasoning behind this was that in so doing

we could test if the network would react in a ’natural’ (surprised) way or merely

accept the situation the same as any other. If the network accepted the situation as

normal, we could plausibly argue that the divergence between the network’s behavior

and infants’ behavior could be due to the severe limitations we imposed upon the

representation of the objects in the scene. If, instead, the network reacted with

’surprise’ at the impossible situation, we would be more likely to believe that this

was not the cause of the divergence, which might therefore be attributed to some

deeper limits of its functioning.

Material To force the network to represent an impossible object, we decided to

present it with object A located at both position 1 and 3, from the beginning of

the scene. This situation can be created in a straightforward manner by altering

the representation, which does not implicitly block such a configuration. This is

presented in Figure 14, with Object A, Location 3 highlighted in yellow.

Procedure The network was trained as before on the familiarisation set. Once

trained the network was presented with the constructed impossible scenario pre-

sented in Figure 14. The accuracy of the network was measured in the standard

fashion and compared as training progresses with our standard test cases.

Results The results of this comparison are presented visually in Figure 15. The

accuracy of the network looks worse (higher loss) for this strange situation.

A T-Test was run on the two distributions (fully trained at 100 epochs, with possible

and impossible Jarque Bera tests indicating normality at (p = 4.7e-06) and (p =

1.0e-07) respectively). The results (p = 3.8e-27. t = -14.61) indicate that they are

indeed significantly different.
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Figure 15: Possible vs impossible loss (n=100)

Discussion The significantly poorer performance in this situation suggests that

the network does appear to detect an anomaly in the scenario. We can interpret

this as surprise as we do when infant looking time is increased. This supports the

conclusion that this representation is a more powerful and realistic candidate for

minimal structural complexity because it exhibits some more human (infant) like

cognitive behaviour. This conclusion is in a sense a double-edged sword. On the one

hand it is possible to conclude that a network as simple as ours already embodies

some basic object representation abilities. It indicates that, perhaps basic object

representation is emerges rather naturally from these systems, and it also explains

why other researchers have found reasonably positive results when testing how these

simple connectionist neural networks mimic basic results in object representations

(Munakata, 1998). On the other hand, it excludes simple explanations as to why

our network was unable to pick up some basic differences in infants’ behavior when

simulating inference vs no-inference situations, thus possibly indicating a deeper

limitation in how this architecture can be a plausible candidate to account for early

human cognition.

3 General Discussion

“It has been a long road from Plato’s Meno to the present, but it is perhaps

encouraging that most of the progress along that road has been made since
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the turn of the twentieth century, and a large fraction of it since the mid-

point of the century. Thought was still wholly intangible and ineffable until

modern formal logic interpreted it as the manipulation of formal tokens.

And it seemed still to inhabit mainly the heaven of Platonic ideals, or the

equally obscure spaces of the human mind, until computers taught us how

symbols could be processed by machines.”

– Allen Newell

With the aim of probing what level of structural complexity is necessary to exhibit

some basic infant like cognitive capacities we constructed multiple experiments.

These experiments varied the representational format used to train and test the

networks while keeping the underlying architecture constant.

The results were mixed with the networks exhibiting some patterns that did not

parallel infant behaviour, and others that could be interpreted as successful and

realistic reasoning about the world.

Our first representation had a very limited output. This output could only really

be interrogated in the final outcome stage making judgment of performance difficult

in intermediate stages of a scenario. It demonstrated reasonable accuracy, though a

further inspection of the output suggests that network had learned a relatively con-

stant output due to the nature of the familiarisation sequences (always consistent).

In the second representation a fuller more articulated output model proved to be

much more amenable to analysis. This model provided a consistent view of the world

for comparison at each step in the scenario. While this network had a comparable

accuracy score on our test set, the difference between inference and no-inference

conditions showed an inverted pattern compared with that of the first representa-

tion, i.e. the network performed worse on no-inference variations than inference

variations.

This particular gap demonstrated between inference and no-inference conditions

presents an anomaly. This difference does not emerge in 12 month old infants

though there is a small difference with 19 month olds (Cesana-Arlotti et al., 2018).

The gap is quite distinctive in our results and is evidence that can be drawn against

a cognitive similarity between our networks and infant cognitive behaviour. Inter-

estingly, the dissimilarity began to arise when the representation of events started

moving closer to what infants may plausibly be said to represent in their structure

of the events. It is difficult to know whether we are tapping into some fundamental
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limitation of the network used here, or whether the discrepancies are due to some

of the radical simplifications we introduced in our initial representation. We are

inclined to think that the latter possibility can be excluded. First, because our rep-

resentation is not so different from what other similar studies have used to simulate

cognitive phenomena, and second, because of the results of experiment 3 with the

impossible scenario.

The networks performance in experiment 3 shows a degree of natural aversion to an

impossible situation, that could be interpreted as demonstrating some basic physical

knowledge and reasoning about the world. This suggests our second ’World Mod-

elling’ representation possesses a degree of structural complexity powerful enough

to be considered a candidate for a minimal representation. As a consequence, the

limits we encountered in how such networks can reproduce infants’ behavior are

probably not due to a deficient object representation.

As mentioned briefly in section 2.1.5, we have chosen MSE as our loss measure, a

simple euclidean distance metric, which averages across the losses at each step in

the scenario. In retrospect, we believe we are running up against the limits of this

metric with these more advanced representations, and so this has turned out to be a

less than ideal choice of performance metric. Particularly given the fact that one of

our principle design considerations for this representation was continuous evaluation.

The truly important steps (inference drawing stages) in our scenarios are the places

that should be focused on the most performance-wise, so that the true character of

the representation with regards to its cognitive similitude can be fairly judged. We

believe a more focused and tailored metric should be used in future experiments, to

avoid this rather simplified accuracy measure concealing possibly interesting aspects

of our networks’ capacities.

There are other concerns which are not just limited to our experimentation here

but are a more general aspect of connectionist neural networks. As briefly discussed

above in experiment 1, neural networks learn to approximate a function from input to

output. They use the gradient descent technique to reduce the error between their

current approximation of the function, and the function expressed by the input-

output training data. The problem here is the well known one of finding a balance

between over training and under training. If the network is over trained, it learns

the training set too well, and approximates only that function, not being able to

generalise to newer data it has not seen before. It misses the subtlety or generality

of the function that was desired having swept past it in an over eager attempt to

reduce training set error. Similarly if the network is not trained enough the function
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it approximates is either inaccurate or imprecise, both conditions leading to poor

performance in most cases against the actual desired objective function.

One alternative explanation for our results, as discussed, is that our networks have

learned something approaching the right function, but remain either over or under

trained. The results we see then are possibly simply artefacts which we may in

ignorance over interpret as evidence, pro or con, for actual cognition-like behaviour.

We have demonstrated the use of these older connectionist models as tools for prob-

ing the quality of structure required to reproduce some very rudimentary elements

of infant cognition. While connectionist networks may not currently provide satis-

factory computational or theoretical models for cognition, they do show some utility

as implements, as a kind of yardstick of structural complexity.

This work then displays some promise for further lines of inquiry. In particular

the architecture of the network has been kept static in this work. This presents an

obvious and interesting dimension worth exploring, especially considering our use of

an older and quite primitive Elman recurrent neural network. The significant recent

developments in modern neural network technology (e.g. LTSM networks) suggest

many further permutations and configurations deserving of greater examination.

Another possibility is to present the scenes to the network as a two dimensional

matrix of pixel values. This method has the advantage of being free of subjective

human judgments entering into the representation. The downside here is the amount

of data and the computational resources needed to train the network on such a large

input. Most of the large AI companies follow this approach in their video game

based training (Mnih et al., 2015), although they do downsample quite significantly.

Another downside that can be foreseen is how to explain what the network has

learned and what it is reasoning about and how, another unsolved problem in the

field.

This paper has presented a modest and somewhat novel use of an older tool for

cognitive simulation and experimentation. The results are suggestive of further

interesting exploratory work. There are many avenues forward and it would seem,

much to be learned.
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A Neural Network Architecture

“The first principle is that you must not fool yourself and you are the easiest

person to fool.”

– Richard Feynman

The architecture chosen to model the infants reasoning process was a recursive

neural network or RNN. This was based on the structure of the input data, which is

presented as a series of discrete events over time, building an environmental context

or narrative. In particular we chose an Elman Neural Network (Elman, 1990),

one of the earliest and simplest RNN’s available. There are other more advanced

RNN architectures available (e.g. LSTM), and these could be examined as possible

successors in our experimentation.

A.1 Network Initialisation

The network was initialised with normally distributed (µ = 0, σ = 0.3) random val-

ues, as briefly described above in the participant initialisation section. Further inves-

tigation was not pursued on varying this standard initialisation procedure, though

it is possible one could see some performance improvements on network convergence

here, i.e. fewer training epochs maybe required. it is possible that a positive only

normal distribution (with µ = 0.5 for example) or a uniform distribution (in the

range [0-1]) might lead to values more representative of the training and test sets

initially.

A.2 Training Procedure

Training data is presented to the network as a series of events with varying represen-

tations. These representations are described fully in Appendices B and C. We used

the standard gradient descent method to change the network’s weights after each

event, and after a full pass through all of our training scenarios, technically termed

an epoch, the process is repeated. How often the process is repeated is determined

by an accuracy/time trade off. Figure 16 and 17 present the decrease in the loss of

the network with the number of epochs trained, but this tails off quickly after a few

epochs and shows diminishing returns.
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Figure 16: Loss (accuracy on test set) over epochs with different activation functions.

(Learning Rate=0.4, Number of Participants (n=10))

A.3 Activation Functions

There are several activation functions that can be used with our network. Testing

took place on the two most common to find the best performance. Figure 16 plots

the TanH versus the Sigmoid activation functions, showing a noticeable difference in

overall accuracy and spread across differing participants. For this reason the sigmoid

activation function was chosen as the best option.

A.4 Learning Rate

The speed at which the network “learns”, or more precisely the rate at which the

weights are adjusted by the gradient descent algorithm can be varied. This learning

rate parameter is important to optimise, though determining it a priori is not usually

possible. If it is too low, the network will take a very long time to learn anything. If

it is too high it is possible it will skip over or miss an important optimal weighting

to solve the problem. Figure 17 presents the effects of various learning rates on the

accuracy of the network.
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Figure 17: Loss (accuracy on test set) over epochs at various learning rates. (Acti-

vation=Sigmoid, Number of Participants (n=10))
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B Consistency Detection Representation

“In the computer field, the moment of truth is a running program; all else

is prophecy.”

– Herbert A. Simon

Data for a sample scenario can be seen below (including input and expected output)

below in Figure 18. It can be seen that there are twenty one different input symbols

and a single output symbol. Included in the figure is a brief description of the event

happening at that particular time step.

Figure 18: Input and expected output test data for one particular scenario

This representation can be broken down into different groups, which are shown in

the headers of figure 18, and are documented below.

Locations There are four possible locations for an element in the scene. These

are show in Figure 19.

Object A and B representations There are seven component elements used to

represent the state of an object in a scene, three for visibility and four to represent

the location. They are described in detail in Table 1 below.

Cup Representation The cup has a similar representational schema to the ob-

jects, it has four location elements, L1 to L4, and two visibility elements. The

visibility element Vis describes the overall visibility of the cup itself within the

scene. The TVis element indicates whether the top half of one of the objects within
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Figure 19: The four possible locations for objects in this representation

the scene is visible in the cup, i.e. whether there is an object in the cup. These

elements are further specified in Table 3.

Occluding Wall Representation The occluding wall never changes position and

therefore has a simpler representation than the other objects. However since the wall

can be in three different states, down, half way up or fully up, it has three different

values it can take on. These are described fully in Table 5.

Output Representation As discussed, we use a very minimal output representa-

tion, which was designed to simulate the infants level of surprise at the consistency

of what she has seen. This simplifies our accuracy measure, so that we can judge

the effectiveness of the network in a straightforward manner. We use 1 to indicate

consistency or lack of surprise with the state of the world, and 0 to indicate sur-

prise, that something does not conform to expectations. This is described briefly in

Table 7.
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Name Description Values

T Top half visible 0,1

B1 Bottom half (Type 1) visible 0,1

B2 Bottom half (Type 2) visible 0,1

L1 Object is at location 1 0,1

L2 Object is at location 2 0,1

L3 Object is at location 3 0,1

L4 Object is at location 4 0,1

Table 1: Object Representation

Legend

0 = VISIBLE

1 = NOT VISIBLE

Name Description Values

TVis Top half of object is visible in cup 0,1

Vis Cup is visible 0,1

L1 Object is at location 1 0,1

L2 Object is at location 2 0,1

L3 Object is at location 3 0,1

L4 Object is at location 4 0,1

Table 3: Cup Representation

Legend

0 = VISIBLE

1 = NOT VISIBLE
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Name Description Values

Vis Visibility of Wall (Down, Half Up, Up) 0, 0.5, 1

Table 5: Occluding Wall Representation

Legend

0 = WALL DOWN

0.5 = WALL HALF UP

1 = WALL FULLY UP

Name Description Values

O Scenario Consistency 0, 1

Table 7: Output Representation

Legend

0 = SCENARIO INCONSISTENT

1 = SCENARIO CONSISTENT
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C World Model Representation

“Every good mathematician is at least half a philosopher, and every good

philosopher is at least half a mathematician.”

– Gottlob Frege

Data for a sample scenario can be seen (including input and expected output) in

Figure 20. It can be seen that there are seventeen different input symbols and six

output symbols.

Figure 20: Sample input and expected output test data

This differs from the first representation not only in the size of the output but also

in the semantics of the location components. These are described below.

Figure 21: The three possible locations for objects in this representation

Locations There are three possible locations for an element in the scene. These

are show in Figure 21. This differs from the first representation in that we merge
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locations 1 and 2 which are both behind the occluding wall.

Object A and B representations There are four components elements used to

represent the state of an object in a scene, one for presence in the scene, and three

to represent the location. They are described in detail in Table 9.

Name Description Values

P Object is present in scene 0,1

L1 Object is at location 1 0,1

L2 Object is at location 2 0,1

L3 Object is at location 3 0,1

Table 9: Object Representation

Legend

0 = NOT PRESENT

1 = PRESENT

Cup Representation The cup representation is much reduced from the first rep-

resentation, it doesn’t contain any location component, purely the presence of the

cup on the scene and whether it contains an object.

Name Description Values Legend

Cup Cup is present in scene 0,1 0=NOT PRESENT, 1=PRESENT

Cup Full Cup contains an object 0,1 0=CUP EMPTY, 1=CUP FULL

Table 11: Cup Representation

Occluding Wall Representation The occluding wall representation is similar

to the Consistency Detector representation, a very elemental single bit, indicating

the presence or absense of the wall.

Output Representation The output representation is more articulated in this

representation in comparison with our alternative. Here we try to capture the lo-

cations of the object after each step or scene. This is what gives rise to the name

World Model representation, we aim to construct and maintain an internal model

of the scene or world.

34



Name Description Values

Occluder Occluding Wall is visible (Up) in scene 0,1

Table 12: Occluder Representation

Legend

0 = OCCLUDER DOWN

1 = OCCLUDER UP

Name Description Values

AL1 Object A is at location 1 0,0.5,1

AL2 Object A is at location 2 0,0.5,1

AL3 Object A is at location 3 0,0.5,1

BL1 Object B is at location 1 0,0.5,1

BL2 Object B is at location 2 0,0.5,1

BL3 Object B is at location 3 0,0.5,1

Table 14: Output Representation

Legend

0 = NOT at this location

0.5 = UNKNOWN if at this location

1 = AT this location
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D Resources

“Whereof one cannot speak, thereof one must be silent.”

– Ludwig Wittgenstein

All code for the above experiments and analysis can be found online on at:

https://github.com/mmcguill/MBC-Precursors-NN

These can be run as Jupyter notebooks on any compatible system.
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