
 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

REVEALING THE INFLUENCE OF DEFINITE BRAIN REGIONS UPON THE 

EMERGENCE OF SPATIAL AND TEMPORAL PATTERNS IN THE RESTING-STATE 

BRAIN ACTIVITY 

 

 

By 

Sergei D. Verzilin 

 

THESIS 

Submitted in partial fulfillment of the requirements for the degree 

MASTER IN BRAIN AND COGNITION 

Department of Information and Communication Technologies 

Universitat Pompeu Fabra Barcelona 

 

 

Advisor: 

Gustavo Deco  

ICREA Full Professor and Research Professor  

Director of the Center of Brain and Cognition & 

Head of CNS research group 

Department of Information and Communication 

Technologies 

Universitat Pompeu Fabra Barcelona 

 

 

 

 

 

Barcelona, September 2015 

  



2 

 

Contents 

Abstract ........................................................................................................................................................ 3 
1. Introduction ............................................................................................................................................. 3 
2. Methods .................................................................................................................................................... 5 

2.1. Empirical data processing ...............................................................................................................5 

2.1.1. Averaging and normalization .....................................................................................................5 

2.1.2. Spectrum processing ...................................................................................................................6 

2.2. Model adjustment ............................................................................................................................6 

2.2.1. Whole-brain model .....................................................................................................................6 

2.2.2. Metrics of model quality.............................................................................................................7 

Functional connectivity ................................................................................................................................... 7 

Functional connectivity dynamics ................................................................................................................... 7 

Metastability.................................................................................................................................................... 7 

Additional metrics ........................................................................................................................................... 8 

2.2.3. Model parameters identification .................................................................................................8 

2.3. Nodes suppression ..........................................................................................................................12 

3. Results .................................................................................................................................................... 12 
3.1. Criteria for Nodes Selection ..........................................................................................................12 

3.2. General Results for Suppressed Groups of Nodes ......................................................................15 

3.3. Results for sequential suppression of nodes ................................................................................18 

3.4. Experiments with nodes matching two criteria ...........................................................................21 

4. Discussion ............................................................................................................................................... 22 
4.1. Capabilities of the nodes suppression methods ...........................................................................22 

4.2. Coherent activities in right and left hemispheres in a resting state ..........................................22 

4.3. Roles of different brain regions in emergence of spatial and temporal patterns in a resting-

state brain activity ................................................................................................................................22 

4.4. Direction for future research ........................................................................................................22 

5. Conclusion .............................................................................................................................................. 23 
References .................................................................................................................................................. 24 
Annex 1 ....................................................................................................................................................... 25 
Annex 2 ....................................................................................................................................................... 26 
 

  



3 

Abstract 

The resting-state brain activity exhibits stable spatial and temporal patterns of well-structured coherence 

between different brain regions. We used a whole-brain model applying the normal form of the Hopf 

bifurcation for clarification of the roles that different brain regions play in the emergence of the patterns. 

For this purpose we worked out methods for suppression of model nodes representing different brain 

regions. We conducted simulation experiments with different groups of nodes suppressed in alternative 

modes of suppression. 

Via comparative analysis of the results obtained in the experiments we distinguished nodes and 

corresponding brain regions acting as generators of coherent activity or as inter-node transmitters. These 

nodes played a critical role in patterns emergence. We also observed nodes acting as best recipients of the 

signals coming from the other nodes. 

 

1. Introduction 

In a resting state a person is awake, in static, free from any tasks. The patterns of the resting-state brain 

activity are distinguishable from patterns observed during sleeping or goal-directed behavior (G. Deco et 

al., 2013a). 

Correlative activity between brain voxels in a resting state define so-called resting state networks. 

The analysis of the blood-oxygen-level depended (BOLD) signal obtained in functional magnetic 

resonance imaging (fMRI) is a verifiable and comprehensible approach to understanding resting state 

networks through significant amount of empirical data (J. Cabral, M. L. Kringelbach, G. Deco, 2014).  

We used the empirical data acquired at Berlin Center for Advanced Imaging, Charité University 

Medicine, Berlin, Germany. The data were collected from 24 subjects, healthy young men and women 

(12 males, 12 females, minimal age was 18 years, maximal age was 33, mean 25.7). 

The empirical data included standard fMRI BOLD signal time series and individual anatomical brain 

characteristics obtained via diffusion weighted/tensor imaging methods (DTI) (Basser and Pierpaoli 1996, 

Beaulieu 2002). Both fMRI and DTI data components conformed to 68 brain regions enumerated in 

Table 1. 

 

Table 1. Anatomical labels for the 68 parcellated brain regions. The two region numbers per line refer to 

right and left hemisphere respectively. 

Region number Region name 

1;35 Banks superior temporal sulcus 

2;36 Caudal anterior cingulate cortex 

3;37 Caudal middle frontal gyrus 

4;38 Cuneus cortex 

5;39 Entorhinal cortex 

6;40 Fusiform gyrus 

7;41 Inferior parietal cortex 

8;42 Inferior temporal gyrus 
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Region number Region name 

9;43 Isthmus cingulate cortex 

10;44 Lateral occipital cortex 

11;45 Lateral orbital frontal cortex 

12;46 Lingual gyrus 

13;47 Medial orbital frontal cortex 

14;48 Middle temporal gyrus 

15;49 Parahippocampal gyrus 

16;50 Paracentral lobule 

17;51 Pars opercularis 

18;52 Pars orbitalis 

19;53 Pars triangularis 

20;54 Pericalcarine cortex 

21;55 Postcentral gyrus 

22;56 Posterior cingulate cortex 

23;57 Precentral gyrus 

24;58 Precuneus cortex 

25;59 Rostral anterior cingulate cortex 

26;60 Rostral middle frontal gyrus 

Superior frontal gyrus 

27;61 Superior frontal cortex 

28;62 Superior parietal cortex 

29;63 Superior temporal gyrus 

30;64 Supramarginal gyrus 

31;65 Frontal pole 

32;66 Temporal pole 

33;67 Transverse temporal cortex 

34;68 Insula 

 

Bold signals were recoded during subjects’ resting state condition (awake, eyes closed, no task to be 

performed). Sampling rate was one frame per two seconds. We had a dataset of size 68x661, i.e. 661 

frames recoded for all the 68 brain regions during 22 minutes for all the 24 subjects. 

Individual spatial configuration of 68 brain regions (inter-region distance) was reconstructed for each 

subject from the DTI data with the aid of probabilistic tractographic methods (Johansen-Berg and 

Rushworth (2009), Hagmann, P., L. Cammoun, et al, 2010). 

Individual spatial configurations were arranged in a form of the 24 68x68 connectivity matrices according 

to (Schirner, Rothmeier, et al., Ritter, Schirner, et al., 2013). 

Individual connectivity matrices and subjects’ BOLD signal time series constitute the empirical datasets 

we used for the model verification.  

We proclaim the goal of modeling as a search for basic mechanisms producing spatial and temporal 

patterns in the resting-state brain activity. This goal necessitates determination of such common features 

in individual datasets that are important for an emergent of patterns. 

A simple analysis of empirical datasets provides reasoning for main approaches to model construction 

and adjustment. 
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Direct comparison of individual BOLD signal time series shows sufficient variety of subjects’ datasets. 

We performed the standard one-way analysis of variance (one-way ANOVA) for every of the 68 brain 

regions taking signal value as a dependent variable and a subject ownership of a time series as an 

independent factor. Figure 1 in Annex 1 shows the ANOVA results. 

Fortunately, we can obtain reliable spatial and temporal patterns of the resting-state brain activity. Such 

patterns are common for all subjects and can be described in a uniform way. The most simple and well-

understood spatial pattern is the functional connectivity (FC) expressing correlation between brain 

regions (see Deco, Jirsa, 2011, Deco, Jirsa, et al., 2013b) Schirner, Rothmeier, et al., Ritter, Schirner, et 

al., 2013). 

We calculated individual FC as 68x68 matrices taking BOLD signal time series for each pair of brain 

regions. Then we evaluated the similarity of individual FC patterns. For that purpose we obtainend inter-

subject correlations for samples consisting of FC elements below the main diagonal. Each sample was of 

the size (68x68-68)/2=2278. 

Thus we calculated a 24x24 correlation matrix. All correlations appeared to be statistically significant. 

The minimal correlation was 0.3494, the maximal one was equal to 0.8374, while the mean value was 

0.598. We can conclude that the level of similarity for individual FC patterns is rather high. 

Now we can formulate the main approches to model construction and adjustment. 

1. The most evident conclusion bear on the directions of modeling we should avoid rather than on the 

directions we should accept. Clearly, trying to simulate individual BOLD signal time series and especially 

some average time series is meaningless. 

2. Instead of linking to particular time series we need to consider cause-effect relations between activities 

in different brain regions. The model should produce spatial and temporal patterns emerging from those 

relations. 

3. Similarly, adaptation of model parameters should be qualified through metrics expressing conformity 

of simulated patterns to empirical ones. More spatial patterns and some temporal patterns will be 

considered below. 

 

2. Methods 

2.1. Empirical data processing 

2.1.1. Averaging and normalization 

As far as we aim to obtain common factors arousing the emergence of brain-activity patterns, then the 

most simple and reasonable way to use all individual connectivity data is to bring into models mean 

connectivity and functional connectivity matrices. Thus we calculated simple average values for each 

element of the FC matrix summing over subjects and dividing by the total number of subjects (24). We 

can get the same results in a different way. We may normalize each individual time series and then 

arrange a united sample consisting of 24 normalized individual datasets. Obviously, we would get the 
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same average FC matrix calculating correlation through the united sample. We can normalize and bring 

together datasets whenever an affine transformation of a sample does not change the characteristics to be 

obtained.  

Besides of correlations that condition pertains to characteristics of BOLD-signal spectrums.  

2.1.2. Spectrum processing 

We analyzed spectrums applying signal filtering of empirical BOLD signals for three purposes. First, we 

found out prevailing frequencies of signals at different brain regions. Second, we estimated a proportion 

of a spectrum power at a target frequency band of 0.04 – 0.07 Hz known to be most functionally relevant 

(Biswal, Yetkin, et al., 1995). Third, we considered a phase shift of signals at different brain regions and 

an altering of the phase shift.  

We used two bandpass filters. The first band covered BOLD-signal spectrum from 0.04 Hz to the Nyquist 

frequency equal to 0.25 Hz. It was defined as sampling rate (1 frame per 2 seconds) divided by 2. The 

second was the above mentioned target band of 0.04 – 0.07 Hz. 

We used the Butterworth filter to get a flat amplitude response (Butterworth, 1930)). To compensate a 

phase distortion we performed the bi-directional filtering (Smith, 1997). The details of filtration and 

spectrum smoothing are presented in Annex 2. 

 

2.2. Model adjustment 

2.2.1. Whole-brain model 

The whole brain model corresponds to the structure and contents of the empirical data. It reveals a mutual 

interaction of the local brain activity in 68 model nodes corresponding to the 68 brain regions. The model 

describes a neural mass activity via a normal form of a Hopf bifurcation (Freyer, Roberts, et al., 2011, 

2012). This form lets identify each node to be asynchronius or oscilatory depending on a bifurcation 

parameter. 

The local activity of each node j is described by the real part xj of the complex variable zj in the following 

equation:  

dzj/dt = [aj + ij - |zj|
2
]zj + j(t),     (1) 

where zj = j exp(ij) = xj + iyj 

and j(t) is an additive Gauss noise with a standart deviation . In the adjusted model we used =0.02. 

Here aj is a parameter specifying whether node j is asynchronous with random fluctuations around the 

stable value zj=0 at a<0, or synchronous at a>0, while aj=0 is a state of a supercritical  bifurcation. At 

the synchronous mode node j gets a stable limit cycle such that the variable z oscillates wth an intrinsic 

frequency of j = j/2. The inter-node interaction depends on the connectivity matrix C described 

above. The following couple of differential equations incorporate mutual interaction of nodes. 

dxj/dt = [aj – xj
2
 – yj

2
]xj - jyj + G

i
Cij(xi – xj) + j(t)     (2) 

dyj/dt = [aj – xj
2
 – yj

2
]yj - jxj + G

i
Cij(yi – yj) + j(t)     (3) 
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Where G is a global connectivity parameter.  

In our research we used first-order Euler method to handle differential equations. That reduced the 

simulation time and provided suitable accuracy for obtaining spatial and temporal patterns of the resting-

state brain activity. The global parameter G and the parameters j and aj  introduced for each node j were 

to be identified in order to improve metrics of model quality.  

 

2.2.2. Metrics of model quality 

Functional connectivity 

The model should produce a reasonably good approximation of the average empirical functional 

connectivity matrix (FC) described above. We used values of variables xj in the equations (5)-(6) for each 

node j at different time points to calculate a simulated functional connectivity matrix SFC. Then we 

repeated the same approach we exploited for comparison of individual subjects’ functional connectivity 

matrices. Thus, the metric “FC Fitting” for the model quality regarding simulation of the functional 

connectivity is the correlation between two samples consisting of respective elements of FC and SFC 

below the main diagonal. 

Functional connectivity dynamics 

To consider temporal patterns of the functional connectivity we calculated so-called functional 

connectivity dynamics matrices (FCD) (Hansen, Battaglia, et al., 2015).  For that we calculated FC 

matrices for 61 windows each of which contained 30 sequential observations. Proximate windows 

contained 20 common observations. In other words, each window lasted one minute and proximate 

windows overlaped by 40 seconds.  

Thus we got 61 empirical FC matrices for each of the 24 subjects. Taking elements below the main 

diagonal we calculated 24 inter-window corelations obtaining 24 61x61 FCD matrices. Then we arranged 

a sample containing 24*(61*61-61/2) = 43920 subdiagonal elements of the 24 FCD matricts. 

In a similar way we got 24 simulated FCD matrices and arranged a simulated saple of the same size 

(43920 elements). 

In order to measure the ability of the model to describe temporal FC patterns we compared the two 

samples. 

More exactly, we compared two distribution functions applying the non-parametric Kolmogorov-Smirnov 

criteria to the samples. The distance “KS distance” generated in the Kolmogorov-Smirnov test was used 

as a quality metric. 

Metastability 

We analyzed phase synchronization between different nodes and fluctuations of such synchronization. 

The “Metastability” is a metric characterizing the level of fluctuations in the inter-node synchronization 

(Wildie, Shanahan, 2012). We expected fluctuations not to be high. We calculated the metastability as the 
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standart deviation (across time) of the Kuramoto order parameter. The Kuramoto order parameter can be 

defined as follows:  

R(t) = |j=1…N exp(i*j(t))|/N,       (4) 

where j(t) is a phase of a filtered signal for the bandpass 0.04 .. 0.07 at node j. 

The Kuramoto order parameter is a measure of the inter-node synchronization varying from 0 (copletly 

independent phases) to 1 (full) synchonization. We computed phases j(t) for filtered signals at each node 

j via the Hilbert transform H [V. Alan, 1998]. 

The Hilbert transform produced an imaginary component for a real-value signal xj(t) at node j: 

zj(t) = xj(t) + i*H[xj(t)]        (5) 

The phase j(t) at each node j and time t can be determined as follows: 

j(t)= arccos[xj(t)/ |zj(t)|] for H[xj(t)]>=0,     (6) 

j(t)= 2 - arccos[xj(t)/ |zj(t)|] for H[xj(t)]<0.     (7) 

We can use equation (7) to calculate the Kuramoto order parameter at each time t and then we can obtain 

the metric “Metastability” as a standard deviation across time. 

Additional metrics 

Here we introduce two additional metrics, namely “Integration” and “Mean Synchronization”. We do not 

use these metrics for the model adjustment, but use them together with the other ones in further 

experiments. 

Integration = 
0

1

SA(p))dp / size(FC)     (8) 

A(p) = [(|FC – E| - I*p) > 0],      (9) 

i.e. the matrix A(p) contains the elements 1=true and 0=false according to the fulfillment of the 

inequality in (9). 

Here FC is a functional connectivity matrix; E is an identity matrix; I is a matrix of ones (the two latter 

have the same size as FC); S(A(p)) is the size (the number of elements) of the maximal component for the 

connectivity matrix A(p); size(FC)=68. 

Mean synchronization is calculated as a mean value of the Kuramoto oder parameter (7) across time. 

2.2.3. Model parameters identification  

We identified model parameters comprised of the frequency parameter j for each node j, bifurcation 

parameter aj for each node j, and the global parameter G in three respective stages.  The most simple and 

evident method was used at the first stage for calculation of frequency parameters j, j=1 .. 68.  We 

considered an average (across 24 subjects) filtered with a bandpass 0.04…0.07Hz one-sided smoothed 

amplitude spectrums at each node j. All details of filtering, spectrum evaluation and smoothing were 

described above and in Annex 2. Then we found prevailing frequencies j, j = 1..68 with maximal 

amplitudes. And finally we got j = 2j, j = 1..68. 
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At the second stage we evaluated the bifurcation parameter aj for each node j. We targeted to simulate the 

empirical average proportion of an absolute power amount within the band 0.04 …0.07 Hz to that within 

the band 0.04 …0.25 Hz at each node j: 

pj = 
0.04

0.07

Pj(f)df / 
0.04

0.25

Pj(f)df      (10) 

As nodes activities influence each other, we used an iterative descendent strategy to update all 68 

parameters simultaneously:  

aj = aj + ( pj
empirical

 - pj
simulated

)      (11) 

until convergence. 

We must note that pj is an increasing function of aj, j=1…N, hence we need not define a general goal 

function for all nodes and calculate its exact gradient. We used =0.1. 

We got the difference between empirical and simulated proportion (normalized to the empirical 

proportion) less than 0.01 for all nodes. 

Figure 1 illustrates the results of the bifurcation parameters selection. 

 

Figure 1. Power spectrums. The filtered simulated spectrums and smoothed spectrums for two nodes 

(with the best ratio fitting the empirical data and the worst one) are shown here. 

 

At the third stage we obtained reasonable values for the global parameter G taking into account three 

metrics introduced above. 

We determined the interval from 3 to 6 to be the most suitable to take the value of G from (see Figure 2.)  
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Figure 2. The values of quality metrics subject to the global parameter G. Here FC fitting is a metric for 

quality of FC simulation; KS distance is a distance obtained in the Kolmogorov-Smirnov test applied to 

simulated and empirical FCD matrices. Absolute difference between nodes is an additional characteristic 

for the same distributions as in the Kolmogorov-Smirnov test. Metastability is a standard deviation across 

the time of fluctuation on the inter-node synchronization. 

 

We performed a more detailed analysis of the fitting for G=4.5. 

The regression analysis was used to control the accuracy of functional connectivity data (FCsimul) obtained 

via the simulation as compared with the empirical functional connectivity (FCemp). 

We regarded FCsimul as a depended variable and FCemp as an independent variable in the linear regression 

model: 

FCsimul =b0 + b1*FCemp + Error.      (12) 

Table 2 contains regression summary, and Figure 3 shows the scatter chart with the regression line. 

 

Table 2. Regression summary 

Estimated Coefficients: 

 Estimate SE tStat p-value 

b0 (Intercept) -0.078373 0.008877 -8.8288 2.0663e-18 

b1 1.1037 0.018468 59.762 0 

Number of observations: 2278, Error degrees of freedom: 2276 

Root Mean Squared Error: 0.129 

R-squared: 0.611, Adjusted R-Squared 0.611 

F-statistic vs. constant model: 3.57e+03, p-value could not be distinguished from 0. 
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Figure 3. Scatter chart. According to the value of R-squared, the regression accounted for 61% of the  

variance in the FCsimul data, while the correlation of FCsimul and FCemp was equal to 0.782. The latter value 

was regarded as an acceptable fitting characteristic for the model functional connectivity.  

 

 

 

Figure 3 also shows the dotted line representing the ideal regression with b0=0 and b1=1. Though the 

deviation of b0 from zero is statistically significant (P=2.0663e-18), the absolute value of deviation is not 

big (less than 0.1). Similarly the value of b1 is close to 1. Thus not only the fitting characteristic, but also 

the results of regression analysis show the accuracy suitable for simulation purposes. 

However we can see slightest specific of simulated FC distribution: we have got gaps at the correlation 

values near 0.2 and 0.43, while no gaps can be seen for the empirical data. 

Figure 4 shows colored versions of absolute (positive) FC and SFC matrices. 
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                                   FC                                                                                  SFC 
 

Figure 4. FC and SFC matrices. We used the blue-green-yellow palette from dark blue (close to zero 

correlations) to bright yellow (high positive correlations). Here the matrices are transposed: the elements 

are enumerated from the south-west corner. The differences between two pictures are attributed to high 

empirical correlations obtained for symmetrical nodes in the left and right hemisphere (nodes 2 and 36, 4 

and 38, 6 and 40, etc.). The model could not display that effect. 

 

2.3. Nodes suppression 

The adjusted model was used in order to find nodes and factors significant for emergence of spatial and 

temporal patterns in the resting-state brain activity. 

In our experiments we suppressed different groups of nodes and examined alteration of patterns’ 

characteristics. We used three methods for nodes suppression, namely: isolating, deleting, and freezing. 

The isolating method changed the empirical connectivity matrix in such a way that the rows and columns 

corresponding to the suppressed nodes contained zero elements.  

The deleting method reduced the size of matrices and vectors by the number of nodes deleted. 

More properly, the deleting method, as compared with the isolating method, does not change the 

modeling processes but influences the calculation of the model metrics. 

The freezing method substituted the bifurcation parameters of the nodes suppressed for a minimal (across 

all nodes) value. 

 

 

3. Results 

3.1. Criteria for Nodes Selection 

We conducted modeling with different groups of nodes suppressed comparing output values of the 

metrics introduced above (FC Fitting, KS Distance, Metastability, Integration, Mean Synchronization). 

We formed the groups of nodes to be suppressed according to the bifurcation parameters ai and the values 

of the connectivity rate ci calculated for each node i=1,…,68 as a sum over column or row i in the 

connectivity matrix C. 

All the data used for nodes selection are placed in the Table 3. 
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Table 3. Data for nodes selection 

Node Number Rank a a Rank |a| |a| Rank c c 

1 55 0.2028 32 0.2028 21 0.1360 

2 42 0.0816 10 0.0816 14 0.0867 

3 59 0.2474 38 0.2474 45 0.3914 

4 54 0.2012 31 0.2012 22 0.1363 

5 21 -0.2824 39 0.2824 2 0.0138 

6 16 -0.3834 49 0.3834 39 0.3021 

7 13 -0.4489 54 0.4489 61 0.6959 

8 2 -1.5562 67 1.5562 46 0.3977 

9 63 0.3421 47 0.3421 32 0.2064 

10 47 0.1410 19 0.1410 56 0.5343 

11 6 -0.7665 63 0.7665 24 0.1430 

12 67 0.4643 55 0.4643 36 0.2156 

13 39 0.0364 5 0.0364 15 0.0966 

14 11 -0.4957 58 0.4957 47 0.3982 

15 31 -0.1164 14 0.1164 7 0.0378 

16 51 0.1769 27 0.1769 25 0.1512 

17 50 0.1686 26 0.1686 41 0.3227 

18 28 -0.1448 20 0.1448 13 0.0807 

19 64 0.3831 48 0.3831 31 0.1973 

20 49 0.1674 24 0.1674 33 0.2073 

21 65 0.3965 50 0.3965 48 0.4009 

22 40 0.0607 7 0.0607 26 0.1589 

23 32 -0.0962 12 0.0962 62 0.7130 

24 57 0.2164 34 0.2164 54 0.5147 

25 41 0.0783 9 0.0783 12 0.0704 

26 20 -0.2870 40 0.2870 60 0.6825 

27 4 -1.1397 65 1.1397 68 1.1589 

28 22 -0.2458 37 0.2458 65 0.7897 

29 5 -1.0171 64 1.0171 52 0.4753 

30 10 -0.4982 59 0.4982 58 0.5451 

31 24 -0.1933 30 0.1933 3 0.0143 

32 23 -0.2355 36 0.2355 6 0.0270 

33 38 0.0107 1 0.0107 10 0.0487 

34 29 -0.1349 16 0.1349 40 0.3023 

35 53 0.1888 29 0.1888 23 0.1407 

36 45 0.1356 17 0.1356 17 0.1053 

37 43 0.0844 11 0.0844 44 0.3777 

38 52 0.1784 28 0.1784 19 0.1310 

39 19 -0.3123 43 0.3123 1 0.0100 

40 14 -0.4386 53 0.4386 38 0.2931 

41 15 -0.4203 51 0.4203 64 0.7750 
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Node Number Rank a a Rank |a| |a| Rank c c 

42 1 -1.7865 68 1.7865 42 0.3498 

43 60 0.2879 41 0.2879 30 0.1959 

44 61 0.2965 42 0.2965 53 0.4938 

45 9 -0.6454 60 0.6454 20 0.1355 

46 66 0.4384 52 0.4384 35 0.2137 

47 44 0.1111 13 0.1111 18 0.1104 

48 7 -0.6724 62 0.6724 50 0.4206 

49 25 -0.1685 25 0.1685 9 0.0431 

50 58 0.2261 35 0.2261 28 0.1739 

51 48 0.1552 21 0.1552 37 0.2611 

52 30 -0.1333 15 0.1333 16 0.1024 

53 62 0.3403 46 0.3403 34 0.2122 

54 56 0.2104 33 0.2104 29 0.1844 

55 68 0.4829 57 0.4829 49 0.4157 

56 46 0.1382 18 0.1382 27 0.1609 

57 34 -0.0475 6 0.0475 63 0.7218 

58 35 -0.0290 4 0.0290 57 0.5370 

59 37 -0.0120 2 0.0120 11 0.0652 

60 26 -0.1621 23 0.1621 59 0.6813 

61 3 -1.3580 66 1.3580 67 1.1055 

62 12 -0.4682 56 0.4682 66 0.8470 

63 8 -0.6474 61 0.6474 51 0.4526 

64 33 -0.0703 8 0.0703 55 0.5154 

65 27 -0.1600 22 0.1600 4 0.0216 

66 18 -0.3198 44 0.3198 5 0.0225 

67 36 -0.0160 3 0.0160 8 0.0385 

68 17 -0.3330 45 0.3330 43 0.3688 

 

 

Here node number correspond to numeration used above in Table 1, columns a, |a|, contain respectively 

bifurcation parameters and their absolute values, column c contains connectivity rates. Ranks were 

obtained for corresponding characteristics by sorting them in ascending order. 

We can see a strong relationship between bifurcation parameters in symmetrical nodes corresponding to 

brain regions of right (1…34) and left (35…68) hemispheres. This relationship was confirmed via the 

regression analysis with the results summarized in Figure 5. 
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Figure 5. Regression for bifurcation parameters in nodes corresponding to symmetrical brain regions of 

left and right hemispheres. We can see that the trend almost coincides with the identical function graph 

with squared R greater than 0.9. Recalling the procedure of parameters identification we can conclude 

that the source of the regression lays in similarity of spectrums in symmetrical brain regions.  

 

 

The link between symmetrical nodes was considered for selection of nodes with specific characteristics 

for additional experiments. 

We used the data in Table 3 to establish the criteria of nodes selection and to generate corresponding 

groups of suppressed nodes: nodes with bifurcation parameters close to zero (BC); nodes with the lowest 

bifurcation parameters (LBC); nodes with the highest bifurcation parameters (HBC); nodes with the 

highest connectivity rate (RC); nodes with the lowest connectivity rate (NRC). 

 
 

3.2. General Results for Suppressed Groups of Nodes 

Here we analyze the results of experiments carried out for four groups of suppressed nodes (BC, RC, 

LBC, HBC). We also considered the empirical data (EMP) and the results of modeling with the full set of 

nodes (FN). All simulated data were obtained for the global connectivity parameter G=4.5. We used 

isolating and freezing methods (see Methods) of nodes suppression.  

Figure 6 shows functional connectivity (FC) matrices for ten variants of data specified above. 
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Figure 6. FC matrices. FC matrices are displayed in the blue-green-yellow palette (similarly to Figure 4 

see Methods) from dark blue (close to zero correlations) to bright yellow (high positive correlations). The 

matrices are transposed as the elements are enumerated from the south-west corner. We can see dark 

stripes at every picture corresponding to data with isolated nodes. These stripes show close-to-zero 

correlations of time series in the isolated nodes. 

 

We used the deleting method (see Methods) to exclude the effect of zero correlations in the value of the 

FC Fitting metric. The values of the metrics for ten variants of data can be found in the Table 4 below. 

The considerations about the influence of different groups of nodes upon the functional connectivity 

patterns are presented in the comments to the table. 

Figure 7 shows functional connectivity dynamics matrices (FCD) for the same ten variants of data. 

 

Figure 7. FCD matrices. We used the same palette as in the previous figure. When comparing pictures of 

different FCD matrices we should keep in mind that the KS Distance metric, as distinct from the FC 

Fitting, depends on distribution of colons, rather than on the position of spots. 

 

For more precise analysis of FC and FCD patterns we put together the exact values of FC Fitting and KS 

Distance metrics are in Table 4. 
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Table 4. FC Fitting and KS distance metrics 

 FN BC RC LBC HBC EMP 

   Freezing    

FC Fitting 0.7838 0.6772 0.6831 0.7460 0.5730 1 

KS Distance 0.0535 0.8665 0.9091 0.7762 0.9286 0 

   Isolating    

FC Fitting 0.7838 0.2463 -0.1606 -0.1408 0.3871 1 

KS Distance 0.0535 0.5844 0.9184 0.9823 0.7623 0 

   Deleting    

FC Fitting 0.7838 0.7816 0.5465 0.5224 0.6969 1 

KS Distance 0.0535 0.4670 0.8774 0.9065 0.8665 0 

 

All the differences between values of the FC Fitting metric are statistically significant because of the 

large sizes ((68*68-68)/2=2278) of the samples consisting of the subdiagonal elements of the FC matrices 

(we calculated p-values through the Fisher transform). 

The deleting method involves the same processes of simulation as the isolating method, however it lets 

ignore isolated nodes when calculating the values of metrics. We can see that the values of the FC Fitting 

metric calculated through the deleting method are all positive so that it is easier to interpret them.  

Clearly, that the suppression of oscillating nodes with highest bifurcation parameters (HBC) and nodes 

with highest rate of connectivity (RC) results in the worse values of metrics. 

The difference between the freezing and isolating/deleting methods is evident when we compare the 

values of the FC Fitting metric for the nodes with the lowest bifurcation parameters, producing random 

close-to-zero time series (LBC). We can see that the value of FC fitting obtained after deleting of these 

nodes is the least.  

This effect may be caused by the significant influence of neighboring nodes upon the LBC nodes. Thus 

the isolation of the LBC nodes excludes this influence. We can see a general tendency of KS Distance 

growth with decrease of the FC Fitting metric.  

Figure 8 shows the temporal variation of the Kuramoto order parameter for the same ten variants of data. 

The exact values of the Mean Synchronization and Metastability metrics are presented in Table 5. 

 

Table 5. Mean Synchronization and Metastability metrics 

 FN BC RC LBC HBC EMP 

   Freezing    

Mean Synchronization  0.7621 0.3984 0.3738 0.5287 0.2491 0.5627 

Metastability 0.1493 0.1625 0.1615 0.1775 0.1178 0.1938 

   Isolating    

Mean Synchronization  0.7621 0.8058 0.8209 0.8242 0.3419 0.5627 

Metastability 0.1493 0.0370 0.0356 0.0355 0.1423 0.1938 

 

We can see a sufficient influence of the oscillating nodes (HBC) upon the inter-node synchronization. We 

can also see that isolation, as distinct from freezing, of all groups of nodes except of the HBC nodes 

raises the level of synchronization. 
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More simple system with less connections and the same number of oscillating nodes may be more 

synchronized.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Time history of the Kuramoto order parameter. We used the empirical data for the 24 subjects, 

similarly we simulated 24 datasets for every group of the suppressed nodes. We displayed graphics of the 

Kuramoto order parameter within the 300-second periods for the datasets with the highest Metastability 

metric. 

 

 

3.3. Results for sequential suppression of nodes 

We analyzed alteration of the Mean Synchronization, Metastability and Integration metrics for a 

sequential suppression of nodes. Thus, we could determine the exact contribution of each node. The 

nodes were suppressed in an order of descending conformance to the corresponding criteria (from the 

highest bifurcation parameter for HBC, from the closest to zero bifurcation parameter for BC, etc.). The 

simulation was performed for 11 variants of the global connectivity parameter G=4.0,4.1,..5.0. Mean 

values of metrics were calculated. Figures 9 a), b), c) and 10 a), b), c) show the values of the metrics for 

the freezing and isolating methods respectively. 
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Figures 9 a), b), c). The value of the metrics for the freezing method: a) Mean Synchronization, b) 

Metastability, c) Integration. We can see monotonous changes in the Mean Synchronization and 

Integration metrics with equal positions of the node groups (from high to weaker influence: HBC, RC, 

BC, LBC, NBC) and unessential non-monotonic change in the Metastability metric. 
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Figures 10 a), b), c) for the isolating method. Here we detected three BC nodes with ranks 4, 6, 8 altering 

the metrics most significantly when isolated. These nodes refer to the left hemisphere and have the 

numbers 57, 58, 64 respectively.  
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We copied out to the Table 6 characteristics of three nodes detected in Figure 10. 

 

Table 6. Characteristics of the nodes matching two criteria 

Node Number Rank a a Rank |a| |a| Rank c c 

57 34 -0.0475 6 0.0475 63 0.7218 

58 35 -0.0290 4 0.0290 57 0.5370 

64 33 -0.0703 8 0.0703 55 0.5154 

 

We can see that the nodes match two criteria of nodes selection: their bifurcation parameters are close to 

zero and the connectivity rate is high. 

 

3.4. Experiments with nodes matching two criteria 

We examined if the freezing of the two-criteria nodes would result in essential change of the model 

metrics. We obtained essential positive results for the node 58 combined with the symmetrical node 24 

referring to the right hemisphere. The pair (24; 58) corresponds to precunens cortex (PC) (see Fig.11). 

 

    a)                                                                                   b) 
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Figures 11 a) Mean synchronization, b) Metastability, c) Integration. The values of metrics for 

precuneus cortex (PC) (nodes 24, 58), two nodes with the highest bifurcation parameters (HBC2) and two 

nodes with the highest rate of connectivity (RC2). We can see the effect of PC nodes equal to that of 

HBC2. 
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4. Discussion 

4.1. Capabilities of the nodes suppression methods 

Comparison of the results obtained via two methods, namely freezing and isolating, lets analyze different 

aspects of spatial and temporal patterns emergence in the resting-state brain activity. More specifically, 

the isolating method, as distinct from the freezing method, blocks the influence of the other nodes upon 

the isolated node and prevents a transition of signals through this node. 

4.2. Coherent activities in right and left hemispheres in a resting state 

The data used for the model construction (connectivity of brain regions, spectrums of BOLD signals) 

could not explain high functional connectivity between symmetrical regions in right and left hemispheres. 

Two links to the models symmetry: close values of bifurcation parameters and identical connectivity 

levels in symmetrical nodes do not result in the high functional connectivity. 

4.3. Roles of different brain regions in emergence of spatial and temporal patterns in a resting-state 

brain activity 

A performance of nodes representing different brain regions gives a link to understanding the emergence 

of spatial and temporal patterns in a resting-state brain activity.  

The most prominent in all patterns are the oscillating nodes with high bifurcation parameters. These 

nodes are necessary for the inter-node synchronization.  

Less critical are nodes with a high connectivity rate. These nodes have an ability of intensive 

communication with their neighborhood.  

The nodes with the lowest bifurcation parameters (high negative) appeared to be good recipients of 

signals from the other nodes. 

We detected two-criteria nodes (with bifurcation parameters close to zero and high connectivity rate) that 

may have a critical role in transmitting signals between the other nodes.  

The most significant effect in inter-node synchronization was obtained for the pairs of nodes representing 

the regions of precuneus cortex in right and left hemisphere. The node representing precuneus cortex in 

the left hemisphere appeared to be the most typical two-criteria node. 

4.4. Direction for future research 

Two aspects should be investigated more thoroughly: first, the significance of the functional connectivity 

between symmetrical brain regions in right and left hemispheres for simulation of the resting-state 

activity; second, the transit inter-node communications through intermediate nodes, specifically, the 

influence of node characteristics on its ability to transmit signal between other nodes.  
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5. Conclusion 

Alternative methods of nodes suppression in a whole brain model provide us with results revealing the 

roles of different brain regions in the emergence of spatial and temporal patterns in the resting-state brain 

activity. Particularly, we distinguished critical nodes in generation of coherent behavior and in 

transmitting inter-node signals. 

Future refinement of the model may be concerned with accounting of functional connectivity between the 

symmetrical brain regions in right and left hemispheres. 

 

  



24 

References  

Alan, V. Oppenheim and Ronald W. Schafer, Discrete-Time Signal Processing, 2nd ed., Prentice-Hall, 

Upper Saddle River,   New Jersey, 1998. 

Basser, P. J. and C. Pierpaoli (1996). "Microstructural and physiological features of tissues elucidated by 

quantitative-diffusion-tensor MRI." J Magn Reson B111(3): 209-219. 

Beaulieu, C. (2002). "The basis of anisotropic water diffusion in the nervous system - a technical review." 

NMR Biomed15(7-8): 435-455. 

Biswal, B., F. Z. Yetkin, V. M. Haughton and J. S. Hyde (1995). "Functional connectivity in the motor 

cortex of resting human brain using echo-planar MRI." Magn.Reson.Med.34: 537-541. 

Butterworth, S. (1930) "On the Theory of Filter Amplifiers". In Wireless Engineer (also called 

Experimental Wireless and the Wireless Engineer), vol. 7, 1930, pp. 536–541. 

Cabral, J., Kringelbach M. L., Deco, G. (2014) “Exploring the network dynamics underlying brain 

activity during rest”. Progress in Neurobiology 114: 102–131. 

Deco, G., Hagmann, P., Hudetz, A.G., Tononi, G., 2013a. Modeling resting-state functional networks 

when the cortex falls sleep: local and global changes. Cereb Cortex, [Epub ahead of print]. 

Deco, G., V. K. Jirsa and A. R. McIntosh (2011). "Emerging concepts for the dynamical organization of 

resting-state activity in the brain." Nat Rev Neurosci12(1): 43-56. 

Deco, G., V. K. Jirsa and A. R. McIntosh (2013b). "Resting brains never rest: computational insights into 

potential cognitive architectures." Trends Neurosci36(5): 268-274. 

Freyer, F., J. A. Roberts, P. Ritter and M. Breakspear (2012). "A canonical model of multistability and 

scale-invariance in biological systems." PLoS Comput Biol8(8): e1002634. 

Freyer, F., J. A. Roberts, R. Becker, P. A. Robinson, P. Ritter and M. Breakspear (2011). "Biophysical 

mechanisms of multistability in resting-state cortical rhythms." J Neurosci31(17): 6353-6361. 

Hagmann, P., L. Cammoun, X. Gigandet, S. Gerhard, P. Ellen Grant, V. Wedeen, R. Meuli, J. P. Thiran, 

C. J. Honey and O. Sporns (2010). "MR connectomics: Principles and challenges." J Neurosci 

Methods194(1): 34-45. 

Hansen, E. C., D. Battaglia, A. Spiegler, G. Deco and V. K. Jirsa (2015). "Functional connectivity 

dynamics: Modeling the switching behavior of the resting state." Neuroimage105: 525-535. 

Johansen-Berg, H. and M. F. Rushworth (2009). "Using diffusion imaging to study human connectional 

anatomy." Annu Rev Neurosci32: 75-94. 

Ritter, P., M. Schirner, A. R. McIntosh and V. K. Jirsa (2013). "The virtual brain integrates computational 

modeling and multimodal neuroimaging." Brain Connect3(2): 121-145. 

Schirner, M., S. Rothmeier, V. Jirsa, A. R. McIntosh and P. Ritter "Constructing subject-specific virtual 

brains from multimodal neuroimaging data." (Neuroimage, first revision). 

Smith, Steven W. (1997) “The Scientist and Engineer's Guide to Digital Signal Processing”. California 

Technical Pub.; 1st edition: 626 p. 

Wand, M. P. and Jones, M. C. (1995). Kernel Smoothing, Vol. 60 of Monographs on Statistics and 

Applied Probability, Chapman and Hall, London. 

Wildie, M. and M. Shanahan (2012). "Metastability and chimera states in modular delay and pulse-

coupled oscillator networks." Chaos22(4): 043131. 

  



25 

Annex 1 

 

Figure 1. One-way ANOVA results describing difference between subjects’ BOLD signal series. 

Numbers of rows (1 … 68) correspond to numbers of brain regions. “Grand Average” is an average level 

of a signal (at a given region) calculated for all frames (for all the 661 time points) and for all the 24 

subjects. “MS-effect” shows mean squares for inter-subject differences, it is equal to inter-group variance 

expressing a variation of mean signal levels for different subjects. Similarly “MS-Error” (mean squares 

for frames differences within individual time series) is equal to a total variance not associated with inter-

subject differences. “F” (F-statistic) is a ratio of “MS-effect” to “MS-error”. “F” follows F-distribution 

with (24-1, 661x24-24)=(23, 15840) degrees of freedom. For all brain regions p-values calculated by F-

statistics could not be distinguished from 0, hence the inter-subject differences are highly significant.  
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Annex 2 

The one-way filtering through a four-order Butterworth filter produced an output signal for a set of 

previous sequential values according to the following recurrence equation: 

y(n)=b0x(n)+ b2x(n-2)+ b4x(n-4) – a1y(n-1) – a2y(n-2) – a3y(n-3) – a4y(n-4),   (1) 

where b0 … b4>0 are numerator coefficients and a0 … a4>0 are denominator coefficients. 

For describing a bi-directional filtering process a symmetrical form of the equation is more convenient: 

b0x(n)+ b2x(n-2)+ b4x(n-4) = a0y(n) + a1y(n-1) + a2y(n-2) + a3y(n-3) + a4y(n-4),   (2) 

where a0=1. 

Thus, we calculated the output time series y for the input time series x. Then we performed a backward 

filtering for y calculating an output time series z through a set of future sequential signals. For example, 

we may obtain z(n-4) through y(n-3) … y(n) and z(n-3) … z(n): 

b0y(n-1)+ b2y(n-2)+ b4y(n) = a0z(n-4) + a1z(n-3) + a2z(n-2) + a3z(n-1) + a4z(n),   (3) 

where all coefficients are the same as in the previous equation. 

The backward filtering compensated the phase distortion, so we got a zero-phase shift as compare z and x. 

The responses of the one-way and bi-directional filtering are shown at Figure 2. 

To get a single-sided amplitude spectrum we applied a Fourier transform to the filtered signals and got a 

magnitude: 

Z(k)=| n=1..N
 
z(n)*exp(-i*2*(k-1)*(n-1)/N)|,     (4) 

where Z(k) is an amplitude for the frequency number k, 1<=k<=N. 

The frequencies were enumerated with the step of 1/(661*2), where 661 is number of frames (one frame 

recoded per two seconds). 

We performed a kernel smoothing (Wand and Jones, 1995) of the power spectrums to exclude random 

peaks. In a kernel smoothing the resulting value at a given point is calculated via a weighted sum of 

values at neighboring points the weights are defined by a kernel function. We used the Gauss kernel (the 

density of normal distribution) sigma equal to 0.01. 

 

 

Figure 2. One way and bi-directional filtering responses for the bandpass Butterworth filters. 

The graphics show the amplitude and phase responses for the one-way and bi-directional filtering. The 

logarithmic scale was used for the amplitude response. The axis of abscises shows normalized 

frequencies 0…1 (real frequencies were divided by the Nyquist frequency). The bi-directional filtering 

produced nearly the same amplitude flat response for the bandpass  frequencies and more sharp decline at 

the bandstop frequencies. 
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